
Foggy: a platform for workload orchestration in a
Fog Computing environment

Daniele Santoro∗, Daniel Zozin∗, Daniele Pizzolli∗,
Francesco De Pellegrini∗,� and Silvio Cretti∗

Abstract

In this paper we present Foggy, an architectural framework and software platform based on Open Source
technologies. Foggy orchestrates application workload, negotiates resources and supports IoT operations for multi-
tier, distributed, heterogeneous and decentralized Cloud Computing systems.

Foggy is tailored for emerging domains such as 5G Networks and IoT, which demand resources and services to
be distributed and located close to data sources and users following the Fog Computing paradigm. Foggy provides
a platform for infrastructure owners and tenants (i.e., application providers) offering functionality of negotiation,
scheduling and workload placement taking into account traditional requirements (e.g. based on RAM, CPU, disk)
and non-traditional ones (e.g. based on networking) as well as diversified constraints on location and access rights.
Economics and pricing of resources can also be considered by the Foggy model in a near future.

The ability of Foggy to find a trade-off between infrastructure owners’ and tenants’ needs, in terms of efficient
and optimized use of the infrastructure while satisfying the application requirements, is demonstrated through three
use cases in the video surveillance and vehicle tracking contexts.

Index Terms

Workload orchestration, Negotiation, Fog Computing, Internet of Things, Docker, Kubernetes, OpenStack.

I. INTRODUCTION

In the last few years, Cloud computing has undergone a deep transformation driven by the technological
evolution, namely new containerization techniques, and by new requirements imposed by emerging 5G
and IoT domains. From the technological standpoint, the operating system virtualization, i.e. the con-
tainerization complements the traditional virtual machines one, because it is more lightweight, flexible,
and portable. Thus, developers and cloud providers can devise innovative architectural patterns such as
microservices and novel paradigm like Infrastructure as Code. At the same time, emerging 5G networks
and pervasive IoT technologies demand for distributed and decentralized support by Cloud services: Cloud
Computing must escape from centralized data centers and Cloud services should be provided closer to
the users or data sources. This corresponds to the vision of Fog Computing [1].

Several advantages of such an approach, including real time responses, low network latency and
bandwidth usage, fault tolerance and support to data privacy, are well known in literature [2]. Scenarios
in which these new cloud technologies can be applied include IoT, Automotive, Industry 4.0, Tactile
Internet applications. At the same time, a whole new set of stakeholders can benefit, including, e.g.,
cloud providers, telecommunication providers, IoT providers, cloud integrators, innovative industries and
application providers.

Our reference application scenario is a smart city one, where a Fog infrastructure is connected with IoT
sensors and cameras. The infrastructure belongs to a given owner (O) that offers resources and services
on this infrastructure to different tenants (T), wanting to deploy innovative applications and competing
for the same resources. Tenants can negotiate resources and services which the infrastructure owners can
guarantee and reserve to specific applications. In this scenario, business-related problems that should be

∗FBK CREATE-NET, via alla Cascata 56/D, 38123 Trento, Italy; �CERI/LIA University of Avignon, chemin des Meinajaries 339, 84911
Avignon, France. This work has received funding from the EU ROMA project under grant agreement 754514. A version of this paper has
appeared in the Proceedings of IEEE CloudCom 2017.



Fig. 1. Logical diagram representing the Foggy platform.

addressed include: i) maximize the usage of the infrastructure avoiding over provisioning (O); ii) satisfy
the contractual SLA, i.e. minimize SLA violations across tenants (O); iii) maximize revenues (O); iv)
negotiate requested resources, services and corresponding SLA (T); v) adapt to changing requirements in
a flexible manner (e.g. burst of data, need for real-time processing, more workload to process, etc.) (T);
vi) minimize economic costs (T).

From a technological point of view, conversely, handling deployment and operations and managing
workload orchestration and efficient placement in a distributed, heterogeneous, decentralized, multi-tier
cloud environment adds many “degrees of freedom” to similar problems with respect to a centralized
and homogeneous cluster of resources [3]. In fact, devices and services are scattered on the territory, and
not always connected to data centers (e.g., a public cloud) through reliable and homogeneous network
connections. In this context, the process of scheduling applications should account for a wider range of
different parameters. It is reasonable to foresee a whole new class of policies with respect to the legacy
ones currently used to allocate computing and network resources in traditional systems. Such policies
should indeed cover jointly context-awareness, location detection, and network performance.

Even though many scientific papers, envisioning a tight coupling and integration of IoT, Cloud and
Future Network technologies, have been published in recent years [4], very few effort has been carried
out on the development of platforms to make this integration possible and optimized. Foggy, as an evolution
of a previous work [5], is meant to improve the aforementioned integration and the experimentation on
workload management, thanks to a model of ICT resources that considers not only computation and
storage ones, but also the kind, location, spatial distribution and the networking among them, leveraging
osmotic computing concepts [6].

The architecture and implementation of Foggy will be presented in Sec. II and III. Three use cases that
are meant to elucidate the Foggy’s capabilities to orchestrate workloads in a distributed environment are
then described in Sec. IV. Finally concluding Sec. V comments on achieved results and suggests next
research directions.

II. ARCHITECTURE

Foggy aims at managing the workload placement in a Fog infrastructure satisfying requirements of
deployed applications that in turn request to access and use resources and services offered by that



infrastructure.
The design of Foggy platform focuses on a multi-tier Cloud Computing context generally composed by
more than three (3+) tiers specialized for Fog environments: i) Cloud tier which offers high resource
capacity and is generally far from the source of data; ii) Edge Cloudlets tier composed by physical or
virtual nodes which have medium resource capacity and are closer to data sources; iii) Edge Gateways tier
that is composed by nodes with low storage and computational capacity which are located very close to
data producers; iv) Swarm of Things tier is where IoT devices (sensors, actuators, cameras, smartphones)
are hosted and where raw data is produced. Foggy aims at controlling the first three tiers.

Fig. 1 shows the main components of Foggy and their relationships in the form of a logical model. In
order to build this model we considered two reference schedulers, namely, OpenStack [7] and Kubernetes
[8].
A deployment Request is of the form: Request = {app component, [Req1, Req2, . . . , ReqN ]} and
consists of: i) the Application component to be deployed and ii) a set of optional deployment Requirements.
Application Component is an independently deployable, replaceable and upgradable unit of software, such
as a microservice, which plays a specific role as part of a larger application. It is generally distributed via
software container images (e.g, a Docker container image), which are stored in an Application Repository
(e.g., a Docker registry).
Requirement offers a way for the tenant to specify constraints imposed to the deployment/execution of the
Application Component in terms of Resources requested and/or specific application needs (e.g., location,
access rights).
Resource refers to any computational, storage or network capacity provided by the nodes of the infras-
tructure. Regarding computational and network resources, Foggy identifies a set of profiles in order to
simplify how the associated requirements are expressed. Thus, computational resources on a node such as
vCPUs, RAM and disk are characterized by the following usage profiles: General purpose (default profile),
Compute optimized, Memory optimized and Storage optimized. Network resources such as bandwidth,
latency and jitter are defined between an Application Component (thus the node where it is executed) and
a service endpoint (e.g., a stream from a camera). They are classified with the following usage profiles:
Best Effort (default profile), Interactive application, Signaling and video streaming, Interactive and real-
time video.
The Inventory stores the status (i.e., resources availability) of the distributed infrastructure together with the
resources location. It is populated with information from external systems like SDN network orchestrators
and/or IaaS managers (e.g., ONOS, OpenStack). Information maintained by the Inventory are key for the
Foggy operations and must be preserved, for this reason it is based on a consistent, distributed and highly
available key value store, such as etcd [9]).
The Negotiator handles the submitted Requests, negotiating with the tenants the possibility to satisfy the
associated requirements. The resources’ availability status is retrieved from the Inventory.
The Orchestrator, in response to deployment requests, deploys Application Components on the node that
best satisfy the requirements imposed. It embeds a custom, shared state scheduler [10] which extends
the Kubernetes one and supports non-traditional requirements (i.e. beyond computational and storage
capacity).

Foggy receives deployment Requests submissions from tenants through a RESTful API and processes
them one by one following a First Come - First Served (FCFS) policy. First step is to go through a
transaction mechanism handled by the Negotiator. In this phase the request from the tenant is either
accepted or rejected. The second step is responsibility of the Orchestrator that, by querying the Inventory,
applies filtering and ranking rules to identify the best nodes to host the requested Application Component.
It first i) filters the nodes that can satisfy the requirements specified in the deployment request; then it
ii) ranks the remaining nodes according to a ”priority function”; iii) chooses the highest from the rank



results; and iv) deploys on that node the container image of the accepted application component. Finally,
the Orchestrator updates the Inventory to reflect the global status of the resources.

III. IMPLEMENTATION

We present hereafter the technical details of the implemented solution including specific reference to
the technologies adopted in Foggy. To support such a flexible environment OpenStack acts as the IaaS
layer, while Kubernetes acts as the container orchestration tool. This scheme permits to achieve application
and services orchestration in a lightweight and flexible manner. In Fig. 2 we present the schema of our
deployment: the three main software platforms, i.e., OpenStack, Kubernetes and Foggy are stacked one
above the other.
OpenStack: the OpenStack distributed deployment follows the architecture proposed by the Fog/Edge
Massively Distributed Cloud Working Group [11]. This deployment installs OpenStack controller nodes on
the Cloud tier while compute nodes on both Cloud and Edge Cloudlets tiers, keeping them interconnected
via ”WANWide” links.
Kubernetes: a customized Kubernetes cluster is installed in a hybrid way depending on the tier: on the
Cloud and Cloudlets tiers, it is distributed on top of OpenStack virtual machines, thus granting maximum
isolation and flexibility, while on the Edge Gateways tier it is directly installed on the bare metal nodes
due to scarce computational resources.
Foggy: The Foggy platform, composed by three main modules: Negotiator, Orchestrator and Inventory,
is deployed by Kubernetes using Docker containers. The Application Repository (e.g., Docker registry)
can be public or private and it is generally deployed on the Cloud tier but the place where images are
located can affect the start-up time of Application components, which in turn, are deployed by Foggy on
top of Kubernetes worker nodes.
Physical testbed: the Cloud tier is hosted in the FBK CREATE-NET data center, while the Edge Cloudlet
tier is composed by 3 nodes (Intel i7 CPU, 16GB RAM, 480GB SSD). At the Edge Gateways level we
deployed small and low power consumption devices (Raspberry Pi version 3) that serve as both i) hardware
abstraction layer and ii) network provider for non-IP IoT devices. For the specific use cases demoed in this
paper, the Swarm of Things tier is composed by access points (TP-Link TL-WR740N), cameras (Tenvis
JPT3815W-HD) and smartphones (Samsung GT-I9195); indeed several other devices could be attached to
validate different scenarios.

To test Foggy, we need to control the status and performances of the interconnections among the 3+
tiers. Using the EnOS tool [11], we are able to emulate various OpenStack deployments with different
kinds of connectivity. As an example, EnOS can emulate a real world situation in which the link between
the Edge Cloudlets and the Cloud tiers is offered by an xDSL connection with low bandwidth and high
latency capabilities.

IV. STORYBOARD AND USE CASES

As introduced earlier, the reference scenario is the smart city one where the Fog infrastructure is
owned and managed by a public entity (e.g., a municipality). The infrastructure allows to access cameras
installed on public streets and squares. With Foggy, the municipality can lease this infrastructure to multiple
tenants. Tenants, in turn, can deploy components of their applications close to cameras, thus leveraging
the advantages of the Fog Computing paradigm for better user experience and premier grade service.

In order to showcase the advantages of Foggy compared to an IoT platforms based on a conventional
cloud-only approach (i.e., without the Fog tiers), three use cases have been devised.
In the first two, a tenant wants to process video streams coming from cameras in order to perform face
detection. The very first represents a baseline case: a cloud-only IoT application acquires data by streaming
them directly from a camera to specific application component running in the central cloud. The second
demonstrates how Foggy, as specified by the application deployment request, can schedule the workload



Fig. 2. Representation of the Foggy testbed: (left) deployment architecture in a smart city, (right) kind of hardware for each tier.

close to the data source: when face detection from a video stream is performed close to the source, the
traffic load towards the cloud is reduced and the service level of the application is maintained even in
case of limited network performance. The third use case highlights the ability of Foggy to orchestrate
the workload based on the geographic location: the key scenario involves privacy constraints which need
to be satisfied. A tenant wants to track vehicles location and, for privacy concerns, such sensible data is
processed only within a geographically limited area before being sent, anonymised, to the central cloud.
Deploying the tracking functionality at the edge also increases the application resiliency by avoiding to
lose data in case of connectivity faults between Cloud and Edge.

A. Cloud-only Face Detection
In this use-case a tenant wants to extract human faces [12] from a video stream. The video stream is

generated by a camera and forwarded to a cloud data-center, where it is processed. No intermediate Fog
tier is used. The bandwidth has to be sufficient to stream the video produced by the camera to the remote
server in the central cloud. Scalability problems arise when multiple cameras are used, since bandwidth
requirements increase accordingly. The application is composed by two microservices: face detection
and face store. The former detects and extracts faces from a video stream while the latter stores them
for persistency. This demonstration comprises the following steps:

1) The tenant submits to Foggy two deployment requests: r1 = {face detection} and r2 = {face store}.
Note that in both r1 and r2 no deployment requirement is specified;

2) Foggy, accounting for the current status of the infrastructure, tries to deploy the microservices by
satisfying the tenant requests. Since no particular requirement is specified, both microservices are deployed
on the central cloud;

3) The streaming video from the camera is collected and face detection is performed;



4) Detected faces are saved in an object storage.
If another application is deployed and requires video streams from cameras, bandwidth usage increases
and the performance of concurrently deployed applications may experience degradation.

B. Bandwidth-aware Face Detection
This application performs same activity as in the previous scenario. However, now the tenant specifies

the face detection microservice to be deployed close to the data source. In this way, only the detected
faces are extracted and forwarded to the cloud, thus reducing the bandwidth consumption with respect to
the cloud-only face detection scenario. This demonstration is composed by the following steps:

1) The tenant submits to Foggy two deployment requests: r1 = {face detection, nsvs} and r2 =
{face store}. Where nsvs indicates a network requirement specifying a Signaling and video straming
profile between the face detection and the endpoint (e.g., the camera).

2) Foggy, accounting for the current status of the infrastructure, deploys the microservices satisfying
the tenant requests. It deploys the face detection on a cloudlet close to the camera in order to meet the
requirement in terms of the network profile. Since the face store doesn’t specify any requirement, it is
deployed on the central cloud;

3) Only extracted faces (not the whole stream) are sent to the cloud: this greatly reduces bandwidth
consumption.
If another application using the same camera is added, graceful degradation of performance occurs since
available bandwidth is sufficient to satisfy several concurrent applications.

C. Privacy-aware Vehicles Tracking
In this scenario a tenant needs to track vehicles moving on certain streets where cameras are installed,

e.g., for the purpose of traffic flows analysis. Tracking is performed by recognizing license plates [13] and
associating them with the location and the timestamp. Since this practice involves privacy issues, licence
plates are anonymized as soon as they are collected.

Anonymization is performed by the anonymizer microservice: data privacy constraints suggest that the
microservice should run on the local cloudlet where the camera is installed. The anonymized data is then
forwarded to a second microservice, namely, the analyser, hosted on the central cloud and performing
further analysis and final storage. This demonstration comprises the following steps:

1) The tenant submits to Foggy two deployment requests: r1 = {anonymizer, location} and r2 =
{analyzer}. Where location indicates a geographical requirement specifying that the deployment has to
be done in a given region;

2) Foggy, accounting for the current status of the infrastructure, deploys the microservices satisfying
the tenant’s requests. It deploys the anonymizer on the selected cloudlet in order to meet the location
requirement while the analyzer is deployed on the cloud;

3) Only anonymized data are moved to the central cloud: this guarantees data privacy;
4) In the case when a network fault happens between cloud and edge, data is not lost because it is

cached in the cloudlet and then, once connectivity is restored, it is sent to the cloud (this would not be
possible without the presence of a cloudlet).

V. CONCLUSION

In this paper we have described Foggy, an architectural framework and a software platform for workload
orchestration and resource negotiation in a multi-tier, highly distributed, heterogeneous and decentralized
Cloud Computing system. Through the presentation of three use cases, Foggy proves to be able to
orchestrate the workload in a Fog Computing environment. It acts as a matchmaker between infrastructure
owner and tenants improving i) the efficient, effective and eventually optimized use of the infrastructure
and ii) the application performances to satisfy the requirements imposed.



After this initial deployment, we shall pursue, among the others, the following aspects: i) a negotiation
phase to involve also economic aspects (i.e., pricing and billing) able to handle both tenants’ and infras-
tructure owners’ needs; ii) modelling more complex interactions among different application components;
iii) different scheduling policies other than the FCFS one; iv) new use cases to demonstrate real scenarios
with multi-components application in a way to measure impact and performance at infrastructure and
application level.

REFERENCES

[1] F. Bonomi et al., “Fog computing and its role in the Internet of Things,” in Proc. of MCC. New York, NY, USA: ACM, 2012, pp.
13–16.

[2] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, no. 1, pp. 30–39, Jan 2017.
[3] L. F. Bittencourt et al., “Mobility-aware application scheduling in fog computing,” IEEE Cloud Computing, vol. 4, no. 2, pp. 26–35,

March 2017.
[4] A. Botta et al., “Integration of cloud computing and internet of things: a survey,” Future Generation Computer Systems, vol. 56, pp.

684–700, 2016.
[5] D. Pizzolli et al., “Cloud4iot: A heterogeneous, distributed and autonomic cloud platform for the iot,” in 2016 IEEE CloudCom, Dec

2016, pp. 476–479.
[6] M. Nardelli et al., “Osmotic flow: Osmotic computing + iot workflow,” IEEE Cloud Computing, vol. 4, no. 2, pp. 68–75, March 2017.
[7] Openstack placement API service. https://docs.openstack.org/nova/latest/user/placement.html.
[8] Kubernetes scheduler. https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md.
[9] Etcd. https://coreos.com/etcd.

[10] M. Schwarzkopf et al., “Omega: flexible, scalable schedulers for large compute clusters,” in SIGOPS EuroSys, Prague, Czech Republic,
2013, pp. 351–364.

[11] Fog Edge Massively Distributed Clouds. https://wiki.openstack.org/wiki/Fog Edge Massively Distributed Clouds.
[12] B. Amos et al., “Openface: A general-purpose face recognition library with mobile applications,” CMU-CS-16-118, CMU School of

Computer Science, Tech. Rep., 2016.
[13] OpenALPR. https://github.com/openalpr/openalpr.

https://docs.openstack.org/nova/latest/user/placement.html
https://github.com/kubernetes/community/blob/master/contributors/devel/scheduler.md
https://coreos.com/etcd
https://wiki.openstack.org/wiki/Fog_Edge_Massively_Distributed_Clouds
https://github.com/openalpr/openalpr

	Introduction
	Architecture
	Implementation
	Storyboard and Use Cases
	Cloud-only Face Detection
	Bandwidth-aware Face Detection
	Privacy-aware Vehicles Tracking

	Conclusion
	References

