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ABSTRACT: This study is devoted to the analysis of the properties of continuous bamboo fiber (BF)-reinforced polyamide 11 (PA 11)
composites. The SEM observations highlighted continuity between BFs and the polymeric matrix showing a high density of hydrogen
bonds. The comparative calorimetric study of the matrix and its composites showed that the crystallinity of PA 11 was not modified by
the presence of bamboo fibers. The physical aging observed in PA 11 is no more observed in composites due to physical interactions
between PA 11 and BFs. The mechanical properties were investigated by tensile strength and dynamic mechanical analysis. The intro-
duction of BFs enhanced Young’s modulus of the matrix by a factor of 10. The presence of BFs also improved the storage shear modulus
G0 over the whole temperature range. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47623.
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of composites allows us to determine the influence of fibers on
the physical structure of the polyamide matrix. The mechanical
properties were measured by tensile tests in order to evaluate
Young’s modulus and by DMA to calculate the complex shear
modulus.

EXPERIMENTAL

Materials
Continuous Natural Fibers. The Dendrocalamus membranaceus
bamboo fibers (BFs) were supplied by the Vietnam Academy of Sci-
ence and Technology (Vietnam). The fibers were about 20 cm long
with a section of about 100 μm. The fibers were mercerized in an
alkaline solution at 3% NaOH, at 70 �C for 2 h. Then, they were
washed using water before drying at 70 �C for 24 h. As shown in
Figure 1, a BF is a bundle of about 10 elementary fibers.

Before processing of the composites, the thermal stability of the
BF was determined by thermogravimetric analysis using a TGA
Q50 (TA Instruments, New Castle, DE, USA). A dynamic test
was performed from room temperature to 1000 �C, at 20 �C
min−1, under a synthetic air flow. The increase in the weight and
the derivative are reported in Figure 2. There is a weight loss

INTRODUCTION

The substitution of synthetic reinforcing fibers by natural fibers is 
an attractive objective for tailoring of new composites in mate-

rials science. Among natural fibers, bamboo has an environmen-
tal advantage because of its rapid growth. Abundant literature is 
available on bamboo flour or short bamboo fibers for reinforcing 
polymeric matrices.1,2 These studies were first focused on the 
ultimate mechanical properties. Interesting data were obtained 
with thermoset matrices like polyester3 or epoxy.4 Thermoplastic 
polymers were also used as matrix. For polyolefin, the use of cou-
pling agents is required.5,6 The approach was analogous even for 
polar polymers.7,8 Composites with continuous bamboo fibers 
were also processed and specific attention was paid to their ten-
sile strength and impact resistance.9–12 Nevertheless, the interest 
in mechanical analysis in the linear region like dynamic mechani-
cal analyses (DMAs) was emphasized.13

In this work, composites were prepared with continuous bamboo 
fiber-reinforced biobased polyamide 11 (PA 11). The thermal sta-
bility of bamboo fibers was controlled by thermogravimetric ana-
lyses in order to define the processing conditions and the fiber 
content of the composites. Then, differential scanning calorimetry
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before 100 �C related to water desorption. The complex degradation
occurs from 200 to 500 �C.14,15 The residue is about 3%. The max-
imal processing temperature is set at 200 �C.

Moreover, an isothermal test was performed at 200 �C for
100 min under a synthetic air flow. Figure 3 shows the increase
in weight of BF. Up to 15 min, there is mass loss of about 8%: it
is associated with water desorption. There is no significant varia-
tion of weight (<1%), showing that the BFs are not damaged. In
conclusion, 200 �C can be taken as the processing temperature.

Polymeric Matrix. PA 11 is a biobased thermoplastic synthesized
by Arkema (France) under the trade name Rilsan BESVO A. Its
water uptake at room temperature is 1%. Due to its melting tem-
perature of around 190 �C,16 it is well suited for constituting the
matrix of continuous bamboo fiber composites. It was provided
as pellets for the processing of composites.

Processing of Composites. First, the PA 11 pellets were pressed
at 220 �C in order to obtain a film that was cut into rectangular
sheets of 100 × 10 mm. Then, the fibers were disposed as a uni-
directional layer between two films of polyamide (Figure 4). The
bamboo fiber/polyamide weight ratio was mBF/mPA = 3/2. All
composites have the same composition. The composite was
pressed at 198 �C for 15 min. Finally, the samples were naturally
cooled (about 20 �C min−1).

For the polymeric reference samples, several films were overlaid
to be as thick as the composites, and then were pressed at
198 �C. All the samples were stored at room temperature for
24 h before any analyses. The water uptake is then 5%.

Methods
Scanning Electron Microscopy. The interface between the
matrix and the fibers was observed by scanning electron micros-
copy (SEM). The samples were cryo-fractured by breaking the
composites frozen in liquid nitrogen. The samples were coated
using platinum. Their morphology was observed using a JSM
6700F (JEOL, Japan), equipped with a field emission gun elec-
tron, at a voltage of 5 kV. This is equipped with a secondary elec-
tron detector.

Differential Scanning Calorimetry. The physical structure was
analyzed using a Diamond DSC (Perkin Elmer) at a range of
30 to –220 �C at 10 �C min−1 under a helium atmosphere. The
samples (around 12 mg) were placed in closed aluminium pans.
After the first scan, the samples were immediately cooled at the
same rate, and the second scan is recorded always at the same
heating rate.

Tensile Test. The tensile tests were performed using a Criterion
Model 43 (MTS). Rectangular samples were analyzed at a tensile

Figure 1. SEM observation of the bamboo fibers.

Figure 2. TGA and DTGA: variation of the weight of BF and its derivative versus temperature.



speed of 1 mm s−1. The tests were performed on six samples of
each matrix, of the bamboo fibers, and of each composite.

Dynamic Mechanical Analysis. The mechanical behavior was
determined by DMA using an Advanced Rheometric Expansion
System setup (Rheometric Scientific). Rectangular samples were
used for the trials. The measurements were performed at a
temperature ranging from −130 to 150 �C and a heating rate
of 3 �C min−1, under a nitrogen flow, at an angular frequency
of 1 rad s−1 with a dynamic strain of 0.1%. After the first scan,
the samples were immediately cooled at the same rate and the
second scan is always recorded at the same heating rate. The
tests were performed using six samples.

The complex shear modulus G* is defined using eq. (1)

G* ω,Tð Þ=G0 ω,Tð Þ+ iG00 ω,Tð Þ ð1Þ

where G0 is the storage modulus and G00 is the loss modulus.

RESULTS AND DISCUSSION

Morphology Analysis
Figure 5 shows the morphology of the interfaces in the BF/PA
11 composite observed by SEM. There is a continuity of mat-
ter between the matrix and the reinforcement. This observa-
tion highlights a good compatibility between the natural fibers
and the polar matrix. This continuity is analogous with the

one observed on the composite when the filler is treated with
a coupling agent.17–19 A previous study on polyamide matrix
composites filled with bamboo flour showed that this kind of
treatment is not necessary with the PA 11 composite due to
the formation of hydrogen bonds between the polymer and
the fibers.20

Figure 3. TGA: variation of the weight of BF and that of temperature versus time.

Figure 4. Schema of the processing of bamboo fiber/polyamide 11 composites. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 5. SEM observations of the interface in the BF/PA 11 composite.
The dashed lines are guidelines for the interfaces.
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Thermal Transitions
The calorimetric responses of the PA 11 matrix and the BF/PA
11 composite are shown in Figure 6. The thermal parameters of
each sample are reported in Table I.

In the first scan shown in Figure 6, the glass transition tempera-
ture of PA 11 is at 38 �C, and a peak is superimposed on the heat
capacity step. A peak observed at 160 �C is associated with a
thermal treatment due to the previous tests performed using the
samples. Finally, two melting peaks are observed at 183 and
189 �C, with a total ΔHm of about 64.6 J g−1. These two peaks
are indicative of crystallites of different sizes.21,22 In the second
scan, the endothermic event at the glass transition vanishes: this
behavior confirms that the initial event was due to physical aging.
The melting temperatures are not modified. ΔHm decreases due
to the absence of the peak at 160 �C.

In the case of the BF/PA 11 composite, the glass transition is not
visible; moreover, bamboo fibers prevent the physical aging of the
matrix. The peak at 160 �C is still observed with the two melting
peaks at 182 and 190 �C. The melting enthalpy (63 J g−1) is close
to the one of the matrix. In the second scan, the composite’s
behavior is analogous to the one of bulk PA 11.

This study shows that the presence of bamboo fibers does not
significantly modify the thermal behavior of the crystalline phase
of PA 11 in PA 11/BF composites. The shape and magnitude of
the melting peak of PA 11 are unmodified.20 Physical interactions
in the amorphous phase of PA 11/BF composites inhibit the
physical aging observed in the amorphous phase of bulk PA 11.

Mechanical Properties
Tensile Modulus. Young’s moduli of the matrix, the bamboo
fibers, and the composites are reported in Table II. For PA
11, Young’s modulus is 1.2 GPa. The BFs exhibit a Young’s mod-
ulus of 24.2 GPa. Due to the natural origin of the fibers, the liter-
ature shows Young’s modulus ranging from 3 to 45 GPa.23–28

Figure 6. DSC curves of bulk PA 11 and BF/PA 11 composites. The first scan is represented by filled symbols, and the second scan is represented by open
symbols. [Color figure can be viewed at wileyonlinelibrary.com]

Table I. Thermal Parameters of the PA 11 Matrix and the BF/PA 11 Composite

Sample Scan Tg (�C) Tm (�C) ΔHm (J g−1) Polymer content (% wt)

PA 11 First 38 (1) 183/189 (1) 64.6 (0.6) 100

Second – 184/188 (1) 53.8 (0.5)

BF/PA 11 First – 183/190 (2) 63 (4) 63 (4)

Second – 182/189 (1) 50 (3)

Table II. Young’s Moduli of the PA 11 Matrix, the BF Bamboo Fiber, and
the BF/PA 11 Composite

Sample Young’s modulus (GPa)

PA 11 1.2 (0.2)

BF 24.2 (0.5)

BF/PA 11 11.9 (0.4)

http://wileyonlinelibrary.com


The modulus measured here is within the range of published
data. The measured Young’s modulus is 11.9 GPa for the BF/PA
11 composite. This value is consistent with the one predicted by
the calculation: 14.5 GPa for the BF/PA 11 composite. The rein-
forcement effect due to natural fibers is significant.

Dynamic Shear Modulus. Figures 7 and 8 show the temperature
variation of the storage modulus G0 and the loss modulus G00 for

the polymeric matrix and the composite, respectively. The
mechanical parameters for the two consecutive temperature scans
are reported in Table III.

In Figure 7, two relaxations are visible for PA 11: at about
−80 �C, a step associated with the mobility of the amide groups,
called the β mode, and about 35 �C, the viscoelastic step associ-
ated with the anelastic manifestation of the glass transition called
the α mode. These relaxations are typical of polyamides.29–32 The

Figure 7. Conservative shear moduli G0 versus temperature for the PA 11 matrix and the BF/PA 11 composite. The first scan is represented by filled sym-
bols, and the second scan is represented by open symbols. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 8. DMA of loss shear moduli G00 of the PA 11 matrix and the BF/PA 11 composite. The first scan is represented by filled symbols, and the second
scan is represented by open symbols. [Color figure can be viewed at wileyonlinelibrary.com]
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temperature of the α relaxation is consistent with DSC results. In
the second scan, the α relaxation is slightly shifted to a higher
temperature. The main result exhibited by this comparative study
is that the introduction of BF in PA 11 increases the modulus in
the whole temperature range. The strain transfer is improved
owing to hydrogen bonding.

In Figure 8, the loss modulus G00 is reported for each sample.
For the PA 11 composite, the β relaxation is shifted from −78
to −65 �C. It highlights the double components of the β relax-
ation: the β1 component related to the mobility of amide–
amide interactions, and the β2 component related to free
amide groups. In the first scan, the β2 component is mainly
observed due to the presence of water molecules. In the second
scan, the samples have been dried so that the β2 component
disappears. Then, the β1 component can be observed. The
same behavior is observed for the composites. For the BF/PA
11 composite, the β relaxation occurs at a temperature similar
to that for the neat PA 11.

The α relaxation happens at a higher temperature (42 �C) in
composites: this may be explained by the interactions with BFs
that stiffen the matrix. In the second scan, the α relaxation is
observed at 40 �C. The decrease is attributed to the relaxation of
internal stresses induced upon processing.

CONCLUSIONS

In this study, continuous bamboo fiber-reinforced PA 11 compos-
ites have been processed and analyzed. The SEM observations
showed a good compatibility between the natural fibers and the
polar matrix without porosity due to hydrogen bonding.

DSC analyses highlight that the bamboo fibers do not modify
the physical structure of the PA 11 composite. The mechanical
properties were improved due to the presence of the BFs.
Young’s modulus of the polymers was 1.2 GPa for the PA
11 composite; it was increased to 11.9 GPa for the BF/PA
11 composite. The shear behavior was investigated by DMA.
The temperatures of the relaxations were practically unmodi-
fied by the presence of bamboo fibers. The presence of the BFs
into the PA 11 composite leads to enhancement of the conser-
vative shear modulus over the whole temperature range. In
other words, the charge transfer operates even in shear. These
data show that it is unnecessary to introduce coupling agents.
Such biobased composites that comply REACH environmental
regulations allow weight saving. Considering their engineering
performances, they appear as attractive materials for unloaded
structures.
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