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SHARP SPECTRAL MULTIPLIERS WITHOUT SEMIGROUP FRAMEWORK
AND APPLICATION TO RANDOM WALKS

PENG CHEN, EL MAATI OUHABAZ, ADAM SIKORA, AND LIXIN YAN

Abstract. In this paper we prove spectral multiplier theorems for abstract self-adjoint operators on
spaces of homogeneous type. We have two main objectives. The first one is to work outside the
semigroup context. In contrast to previous works on this subject, we do not make any assumption
on the semigroup. The second objective is to consider polynomial off-diagonal decay instead of
exponential one. Our approach and results lead to new applications to several operators such as
differential operators, pseudo-differential operators as well as Markov chains. In our general context
we introduce a restriction type estimates à la Stein-Tomas. This allows us to obtain sharp spectral
multiplier theorems and hence sharp Bochner-Riesz summability results. Finally, we consider the
random walk on the integer lattice Zn and prove sharp Bochner-Riesz summability results similar to
those known for the standard Laplacian on Rn.
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1. Introduction

Let (X, d, µ) be a metric measure space, i.e. X is a metric space with distance function d and µ is
a nonnegative, Borel, doubling measure on X. Let A be a self-adjoint operator acting on L2(X, µ).
By the spectral theorem one has

A =

∫ ∞

−∞

λdE(λ),

where dE(λ) is the spectral resolution of the operator A. Then for any bounded measurable function
F : R→ R one can define operator

F(A) =

∫ ∞

−∞

F(λ)dE(λ).

It is a standard fact that the operator F(A) is bounded on L2 with norm bounded by the L∞ norm of
the function F.

The theory of spectral multipliers consists of finding minimal regularity conditions on F (e.g.
existence of a finite number of derivatives of F in a certain space) which ensure that the operator
F(A) can be extended to a bounded operator on Lp(X, µ) for some range of exponents p , 2.
Spectral multipliers results are modeled on Fourier multiplier results described in fundamental
works of Mikhlin [32] and Hörmander [25]. The initial motivation for spectral multipliers comes
from the problem of convergence of Fourier series or more generally of eigenfunction expansion
for differential operators. One of the most famous spectral multipliers is the Bochner-Riesz mean

σR,α(A) :=
(
1 −

A
R

)α
+
.

When α is large, the function σR,α is smooth. The problem is then to prove boundedness on Lp(X)
(uniformly w.r.t. the parameter R) for small values of α. This is the reason why, for general function
F with compact support, we study supt>0 ‖F(tA)‖p→p ≤ C < ∞. The constant C depends on F and
measures the (minimal) smoothness required on the function.

In recent years, spectral multipliers have been studied by many authors in different contexts,
including differential or pseudo-differential operators on manifolds, sub-Laplacians on Lie groups,
Markov chains as well as operators in abstract settings. We refer the reader to [1, 2, 4, 5, 14, 16,
19, 20, 21, 22, 25, 27, 28, 29, 32, 34] and references therein. We mention in particular the recent
paper [11] where sharp spectral multiplier results as well as end-point estimates for Bochner-Riesz
means are proved. A restriction type estimate was introduced there in an abstract setting which turns
out to be equivalent to the classical Stein-Tomas restriction estimate in the case of the Euclidean
Laplacian. Also it is proved there (see also [4]) that in an abstract setting, dispersive or Strichartz
estimates for the Schrödinger equation imply sharp spectral multiplier results.

1.1. The main results. There are two main objectives of the present paper. First, in contrast to
the previous papers on spectral multipliers where usually decay assumptions are made on the heat
kernel or the semigroup, we do not make directly such assumptions and work outside the semigroup
framework. The second objective is to replace the usual exponentiel decay of the heat kernel by
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a polynomial one. All of this is motivated by applications to new settings and examples which
were not covered by previous works. In addition most of spectral multipliers proved before can be
included in our framework.

In order to state explicitly our contributions we first recall that (X, d, µ) satisfies the doubling
property (see Chapter 3, [15]) if there exists a constant C > 0 such that

V(x, 2r) ≤ CV(x, r) ∀ r > 0, x ∈ X.(1.1)

Note that the doubling property implies the following strong homogeneity property,

(1.2) V(x, λr) ≤ CλnV(x, r)

for some C, n > 0 uniformly for all λ ≥ 1 and x ∈ X. In Euclidean space with Lebesgue measure,
the parameter n corresponds to the dimension of the space, but in our more abstract setting, the
optimal n need not even be an integer.

Let τ > 0 be a fixed positive parameter and suppose that A is a bounded self-adjoint operator on
L2(X, µ) which satisfies the following polynomial off-diagonal decay

(1.3) ‖PB(x,τ)V
σp
τ APB(y,τ)‖p→2 < C

(
1 +

d(x, y)
τ

)−n−a

∀x, y ∈ X

with σp = 1/p − 1/2 and PB(x,τ) is the projection on the open ball B(x, τ). We prove that if a >

[n/2] + 1 and F is a bounded Borel function such that F ∈ H s(R) for some s > n(1/p − 1/2) + 1/2,
then

‖F(A)A‖p→p ≤ C‖F‖Hs .

Note that the operator A which we discuss here cannot be, in a natural way, considered as a part of a
semigroups framework. See Theorem 3.1 below for more additional information. In the particular
case where A = e−τL for some non-negative (unbounded) self-adjoint operator L with constant in
(1.3) independent of τ, we obtain for s > n(1/p − 1/2) + 1/2

(1.4) sup
τ>0
‖F(τL)‖p→p ≤ C‖F‖Hs .

As mentioned previously, this latter property implies Bochner-Riesz Lp-summability with index
α > n(1/p − 1/2). See Corollary 3.2.

Some significant spectral multiplier results for operators satisfying polynomial estimates were
considered by Hebisch in [22] and indirectly also in [26, 27] by Jensen and Nakamura. Our results
are inspired by ideas initiated in [17, 22, 26, 27, 31].

Following [11] we introduce the following restriction type estimate

(1.5)
∥∥∥F(A)AVσp

τ

∥∥∥
p→2
≤ C‖F‖q, σp =

1
p
−

1
2
.

We then prove a sharper spectral multiplier result under this condition. Namely,

(1.6) ‖AF(A)‖p→p ≤ Cp‖F‖W s,q

for F ∈ W s,q(R) for some

s > n
(

1
p
−

1
2

)
+

n
4[a]

.
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We refer to Theorem 4.1 for the precise statement. We prove several other results such as bounds
for eitAA on Lp for p as in (1.3). The proofs are very much based on Littlewood-Paley type theory,
commutator estimates and amalgam spaces [10, 17, 26].

Our result can be applied to many examples. Obviously, if the A has an exponential decay
(e.g. a Gaussian upper bound) then it satisfies the previous polynomial off-diagonal decay. Hence
our results apply to a wide class of elliptic operators on Euclidean domains or on Riemannian
manifolds. They also apply in cases where the heat kernel has polynomial decay. This is the
case for example for fractional powers of elliptic or Schrödinger operators. In the last section we
discuss applications to Markov chains. We also study spectral multipliers (and hence Bochner-
Riesz means) for random walk on Zn. To be more precise, we consider

A f (d) :=
1

2n

n∑
i=1

∑
j=±1

f (d + jei)

where ei = (0, . . . , 1, . . . 0). We prove for appropriate function F

sup
t>1
‖F(t(I − A)‖p→p ≤ C‖F‖Hs

for any s > n|1/p − 1/2|. If in addition, if supp F ⊂ [0, 1/n] and

sup
1/n>t>0

‖ηF(t·)‖Hs < ∞

for some s > n|1/p − 1/2| and η is a non-trivial C∞c (0,∞) function, then F(I − A) is bounded on
Lp if 1 < p < (2n + 2)/(n + 3) and weak type (1, 1) if p = 1. This result is similar to the sharp
spectral multiplier theorem for the standard Laplacian on Rn. Here again the operator A cannot be,
in a natural way, included in a semigroups framework.

1.2. Notations and assumptions. In the sequel we always assume that the considered ambient
space is a separable metric measure space (X, d, µ) with metric d and Borel measure µ. We denote
by B(x, r) := {y ∈ X, d(x, y) < r} the open ball with centre x ∈ X and radius r > 0. We often use B
instead of B(x, r). Given λ > 0, we write λB for the λ-dilated ball which is the ball with the same
centre as B and radius λr. For x, ∈ X and r > 0 we set V(x, r) := µ(B(x, r)) the volume of B(x, r).
We set

Vr(x) := V(x, r), r > 0, x ∈ X.(1.7)

We will often write V(x) in place of V1(x).
For 1 ≤ p ≤ +∞, we denote by ‖ f ‖p the norm of f ∈ Lp(X), 〈., .〉 the scalar product of L2(X), and if
T is a bounded linear operator from Lp(X) to Lq(X) we write ‖T‖p→q for its corresponding operator
norm. For a given p ∈ [1, 2) we define

σp =
1
p
−

1
2
.(1.8)

Given a subset E ⊆ X, we denote by χE the characteristic function of E and set PE f (x) = χE(x) f (x).
For every x ∈ X and r > 0.



SHARP SPECTRAL MULTIPLIERS WITHOUT SEMIGROUP FRAMEWORK 5

Throughout this paper we always assume that the space X is of homogeneous type in the sense
that it satisfies the classical doubling property (1.2) with some constants C and n independent of
x ∈ X and λ ≥ 1. In the Euclidean space with Lebesgue measure, n is the dimension of the space.
In our results critical index is always expressed in terms of homogeneous dimension n.
Note also that there exists c and D, 0 ≤ D ≤ n so that

(1.9) V(y, r) ≤ c
(
1 +

d(x, y)
r

)D

V(x, r)

uniformly for all x, y ∈ X and r > 0. Indeed, the property (1.9) with D = n is a direct consequence
of triangle inequality of the metric d and the strong homogeneity property. In the cases of Euclidean
spaces Rn and Lie groups of polynomial growth, D can be chosen to be 0.

2. Preliminary results

In this this section we give some elementary results which will be used later.

2.1. A criterion for Lp-Lq boundedness for linear operators. We start with a countable partitions
of X. For every r > 0, we choose a sequence (xi)∞i=1 ∈ X such that d(xi, x j) > r/4 for i , j and
supx∈X infi d(x, xi) ≤ r/4. Such sequence exists because X is separable. Set

D =
⋃
i∈N

B(xi, r/4).

Then define Qi(r) by the formula

Qi(r) = B(xi, r/4)
⋃B (xi, r/2) \

⋃
j<i

B
(
x j, r/2

)
\ D


 ,(2.1)

so that (Qi(r))i is a countable partition of X (Qi(r) ∩ Q j(r) = ∅ if i , j). Note that Qi(r) ⊂ Bi =

B(xi, r) and there exists a uniform constant C > 0 depending only on the doubling constants in (1.2)
such that µ(Qi(r)) ≥ Cµ(Bi).

We have the following Schur-test for the norm ‖T‖p→q of a given linear operator T .

Lemma 2.1. Let T be a linear operator and 1 ≤ p ≤ q ≤ ∞. For every r > 0,

‖T‖p→q ≤ sup
j

∑
i

∥∥∥PQi(r)T PQ j(r)

∥∥∥
p→q

+ sup
i

∑
j

∥∥∥PQi(r)T PQ j(r)

∥∥∥
p→q

,

where (Qi(r))i is a countable partition of X.

Proof. The proof is inspired by [20]. Given a function f ∈ Lp(X), we have

‖T f ‖qq =
∥∥∥∑

i, j

PQi(r)T PQ j(r) f
∥∥∥q

q

=
∑

i

∥∥∥∥∑
j

PQi(r)T PQ j(r) f
∥∥∥∥q

q

≤
∑

i

∑
j

‖PQi(r)T PQ j(r)‖p→q‖PQ j(r) f ‖p


q
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=:
∥∥∥∑

j

ai jc j

∥∥∥q

`q ,

where ai j = ‖PQi(r)T PQ j(r)‖p→q and c j = ‖PQ j(r) f ‖p.
Next note that, for all 1 ≤ p ≤ ∞,

(2.2)
∑

k

∑
l

|alkcl|

p

≤

max

sup
l

∑
k

|alk|, sup
k

∑
l

|alk|


p ∑

n

|cn|
p,

with the obvious meaning for p = ∞, where clk, al are sequences of real or complex numbers.
Indeed, for p = 1 or p = ∞, (2.2) is easy to obtain. Then we obtain (2.2) for all 1 ≤ p ≤ ∞ by
interpolation. Observe that

‖T f ‖q ≤ ‖(ai j)‖`p→`q‖c j‖`p ≤ ‖(ai j)‖`p→`p‖ f ‖p.

The lemma follows from (2.2) and the above inequality. �

2.2. Operators with kernels satisfying off-diagonal polynomial decays. For a given function
W : X → R, we denote by MW the multiplication operator by W, that is

(MW f )(x) = W(x) f (x).

In the sequel, we will identify the operator MW with the function W. This means that, if T is a
linear operator, we will denote by W1TW2 the operators MW1T MW2 . In other words,

W1TW2 f (x) := W1(x)T (W2 f )(x).

Following [7, 8, 9], we introduce the following estimates which are interpreted as polynomial off-
diagonal estimates.

Definition 2.2. Let A be a self-adjoint operator on L2(X) and τ > 0 be a constant. For 1 ≤ p < 2
and a > 0, we say that A satisfies the property (PVEa

p,2(τ)) if there exists a constant C > 0 such that
for all x, y ∈ X,

(PVEa
p,2(τ)) ‖PB(x,τ)V

σp
τ APB(y,τ)‖p→2 < C

(
1 +

d(x, y)
τ

)−n−a

with σp = 1/p − 1/2.

By Hölder’s inequality and duality, the condition (PVEa
p,2(τ)) implies that

‖PB(x,τ)APB(y,τ)‖p→p + ‖PB(x,τ)APB(y,τ)‖p′→p′ ≤ C
(
1 +

d(x, y)
τ

)−n−a

.(2.3)

By interpolation,

‖PB(x,τ)APB(y,τ)‖2→2 ≤ C
(
1 +

d(x, y)
τ

)−n−a

.(2.4)

Remark 2.3. Suppose that (PVEa
p,2(τ)) holds for some p < 2. Then (PVEa

q,2) holds for every
q ∈ [p, 2]. This can be shown by applying complex interpolation to the family

F(z) = PB(x,τ)V
zσp
τ APB(y,τ).
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For z = 1 + is we use (PVEa
p,2(τ)) and for z = is we use (2.4).

In the sequel, for a given τ > 0 we fix a countable partition {Q`(τ)}∞`=1 of X and and a sequence
(x`)∞`=1 ∈ X as in Section 2.1. First, we have the following result.

Proposition 2.4. Let 1 ≤ p ≤ 2, and A be a self-adjoint operator on L2(X). Assume that condition
(PVEa

p,2(τ)) holds for some τ > 0 and a > 0. There exists a constant C > 0 independent of τ > 0
such that ∥∥∥Vσp

τ A
∥∥∥

p→2
≤ C.(2.5)

As a consequence, the operator A is a bounded operator on Lp(X), and ‖A‖p→p + ‖A‖2→2 ≤ C.

Proof. By Lemma 2.1 and condition (PVEa
p,2(τ)), one is lead to estimate

sup
j

∑
i

(
1 +

d(xi, x j)
τ

)−n−a

≤ C < ∞.(2.6)

Note that for every k ≥ 1,

sup
j, τ

#
{
i : 2kτ ≤ d(xi, x j) < 2k+1τ

}
≤ sup

j, τ
sup

{i:2kτ≤d(xi,x j)<2k+1τ}

V(xi, 2k+3τ)
V(xi, τ)

≤ C2kn < ∞.(2.7)

This implies that for every j ≥ 1 and k ≥ 1,∑
i: 2kτ≤d(xi,x j)<2k+1τ

(
1 +

d(xi, x j)
τ

)−n−a

≤ C(1 + 2k)−n−a2kn ≤ C2−ka

and we sum over k to get (2.6).
The boundedness of the operator A on Lp is proved in the same way by applying (2.3). �

Note that when the operator A has integral kernel KA(x, y) satisfying the following pointwise
estimate

|KA(x, y)| ≤ CV(x, τ)−1
(
1 +

d(x, y)
τ

)−n−a

for some τ > 0 and all x, y ∈ X, then A satisfies the property (PVEa
p,2(τ)) with p = 1. Conversely,

we have the following result.

Proposition 2.5. Suppose that a > D where D is the constant in (1.9). If the operator A satisfies
the property (PVEa

p,2(τ)) for some τ > 0 and p = 1, then the operator A2 has integral kernel
KA2(x, y) satisfying the following pointwise estimate: For any ε > 0, there exists a constant C > 0
independent of τ such that

|KA2(x, y)| ≤ CV(x, τ)−1
(
1 +

d(x, y)
τ

)−(a−D−ε)

(2.8)

for all x, y ∈ X.
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Proof. For every x, y ∈ X and τ > 0, we write

PB(x,τ)A2PB(y,τ) = PB(x,τ)APB(x,τ)APB(y,τ) +

∞∑
`=0

∑
i:2`τ≤d(xi,x)<2`+1τ

PB(x,τ)APB(xi,τ)APB(y,τ).

From the property (PVEa
p,2(τ)) with p = 1 we get∥∥∥PB(x,τ)A2PB(y,τ)

∥∥∥
L1→L∞

≤ CV(x, τ)−1
(
1 +

d(x, y)
τ

)−n−a

+C
∞∑
`=0

∑
i:2`τ≤d(xi,x)<2`+1τ

V(xi, τ)−1
(
1 +

d(x, xi)
τ

)−n−a (
1 +

d(xi, y)
τ

)−n−a

.

This, in combination with the fact that V(xi, τ)−1 ≤ C2`DV(x, τ)−1 for every ` ≥ 0 and 2`τ ≤
d(xi, x) < 2`+1τ, and the property (2.7), implies that∥∥∥PB(x,τ)A2PB(y,r)

∥∥∥
L1→L∞

≤ CV(x, τ)−1
(
1 +

d(x, y)
τ

)−(a−D−ε)

for any ε > 0. Hence it follows that (2.8) holds. This completes the proof of Proposition 2.5. �

Finally, we mention that if A is the semigroup e−tL generated by (minus) a non-negative self-
adjoint operator L, then the condition PVEa

p,2(t1/m) holds for some m ≥ 1 if the corresponding heat
kernel Kt(x, y) has a polynomial decay

(2.9) |Kt(x, y)| ≤ CV(x, t1/m)−1
(
1 +

d(x, y)
t1/m

)−n−a

.

it is known that the heat kernel satisfies a Gaussian upper bound, for a wide class of differential
operators of order m ∈ 2N on Euclidean domains or Riemannian manifolds (see for example [18]).
In this case (2.9) holds with any arbitrary a > 0.

3. Spectral multipliers via polynomial off-diagonal decay kernels

In this section we prove spectral multiplier results corresponding to compactly supported func-
tions in the abstract setting of self-adjoint operators on homogeneous spaces. Recall that we as-
sume that (X, d, µ) is a metric measure space satisfying the doubling property and n is the homoge-
neous dimension from condition (1.2). We use the standard notation H s(R) for the Sobolev space
‖F‖Hs = ‖(I − d2/dx2)s/2F‖2.

Theorem 3.1. Suppose that A is a bounded self-adjoint operator on L2(X) which satisfies condition
(PVEa

p,2(τ)) for some τ > 0, 1 ≤ p < 2 and a > [n/2] + 1. If F is a bounded Borel function such
that F ∈ H s(R) for some s > n(1/p − 1/2) + 1/2, then there exists constant C > 0 such that

‖F(A)A‖p→p ≤ C‖F‖Hs .

The constant C above does not depend on the choice of τ > 0. In addition, if we assume that A is a
nonnegative self-adjoint operator and supp F ⊂ [−1, 1], then there exists a constant C > 0 which is
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also independent of τ such that

‖F(− log A)‖p→p ≤ C‖F‖Hs .

The proof of Theorem 3.1 will be given at the end of this section after a series of preparatory
results. The following statement is a direct consequence of Theorem 3.1.

Corollary 3.2. Suppose that L is a non-negative self-adjoint operator on L2(X) that for a given
τ > 0 the semigroup operator e−τL satisfies condition (PVEa

p,2(τ)) for some 1 ≤ p < 2 and a >

[n/2] + 1. If F is a bounded Borel function such that supp F ⊂ [−1, 1] and F ∈ H s(R) for some
s > n(1/p − 1/2) + 1/2, then there exists constant C > 0 such that

‖F(τL)‖p→p ≤ C‖F‖Hs .

As a consequence if operators e−τL satisfies condition (PVEa
p,2(τ)) with constant independent of τ

then

sup
τ>0
‖F(τL)‖p→p ≤ C‖F‖Hs

for the same range of exponents p and s.

Proof. We apply Theorem 3.1 to the operator A = e−τL for all τ > 0. Then the theorem follows
from the fact that the constants in statement of Theorem 3.1 are independent of τ. �

Remark 3.3. It is possible to obtain a version of Theorem 3.1 under the weaker assumption a > 0.
However, this requires a different approach which we do not discuss here. Related results can be
found in [22] and [29]. We will consider this more general case in a forthcoming paper [12].

3.1. Preparatory results. The following result plays a essential role in the proof of Theorem 3.1.

Theorem 3.4. Suppose that A is a bounded self-adjoint operator on L2(X) and satisfies condition
(PVEa

p,2(τ)) for 1 ≤ p < 2, a > [n/2] + 1 and for some τ > 0. Then there exists a constant C > 0
such that for all t ∈ R,

‖eitAA‖p→p ≤ C(1 + |t|)nσp(3.1)

where σp = 1/p − 1/2.

Remark 3.5. It is interesting to compare the above statement with Theorem 1.1 of [17]. Note that
in Theorem 3.4 we assume condition (PVEa

p,2(τ)) for one fixed exponent τ but conclusion is valid
for all t ∈ R.

In order to prove Theorem 3.4 we need two technical lemmas. First, we state the following
known formula for the commutator of a Lipschitz function and an operator T on L2(X) on metric
measure space X. Recall our notation convention ηT = MηT .
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Lemma 3.6. Let T be a self-ajoint operator on L2(X). Assume that for some η ∈ Lip(X), the
commutator [η,T ], defined by [η,T ] f = MηT f − T Mη f , satisfies that for all f ∈ Dom(T ), η f ∈
Dom(T ) and

‖[η,T ] f ‖2 ≤ C‖ f ‖2,

where Dom(T ) denotes the domain of T . Then the following formula holds:

[η, eitT ] f = it
∫ 1

0
eistT [η,T ]ei(1−s)tT f ds ∀t ∈ R,∀ f ∈ L2(X).

Proof. The proof of Lemma 3.6 follows by integration by parts. See for example, [31, Lemma
3.5]. �

Next we recall some useful results concerning amalgam spaces [10, 17, 26]. For a given τ > 0,
we recall that {Q`(τ)}∞`=1 is a countable partition of X as in Section 2.1. For 1 ≤ p, q ≤ ∞ and a
non-negative number τ > 0, consider a two-scale Lebesgue space Xp,q

τ of measurable functions on
X equipped with the norm

‖ f ‖Xp,q
τ

:=

 ∞∑
`=1

‖PQ`(τ) f ‖p
q

1/p

.(3.2)

(with obvious changes if q = ∞).
Notice that when q = p these spaces are just the Lebesgue spaces Xp,p

τ = Lp for every τ > 0 and
p. Note also that for 1 ≤ p1 < p2 ≤ ∞, we have that Xp1,q

τ ⊆ Xp2,q
τ with

‖ f ‖Xp2 ,q
τ
≤ ‖ f ‖Xp1 ,q

τ
.

The following result gives a criterion for a linear operator A to be bounded on Xp,2
τ , 1 ≤ p ≤ 2.

We define a family of functions {η`(x)}` by

η`(x) :=
d(x, x`)
τ

, ` = 1, 2, · · ·(3.3)

i.e., the distance function between x` and x (up to a constant).

Lemma 3.7. Let τ > 0 and {η`(x)}∞`=1 be as above. For a bounded operator T on L2(X), the
multi-commutator adk

`(T ) : L2(X)→ L2(X) is defined inductively by

ad0
`(T ) = T, adk

`(T ) = adk−1
` (η`T − Tη`), ` ≥ 1, k ≥ 1.(3.4)

Suppose that there exists a constant M > 1 such that for all 1 ≤ ` < ∞,

‖adk
`(T )‖2→2 ≤ CMk, 0 ≤ k ≤ [n/2] + 1.

Then for 1 ≤ p ≤ 2,

‖Vσp
τ TV−σp

τ f ‖Xp,2
τ
≤ CMnσp‖ f ‖Xp,2

τ
with σp = (1/p − 1/2)

for some constant C > 0 depending on n, p and ‖T‖2→2.
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Proof. We prove this lemma by using the complex interpolation method. Let S be the closed strip
0 ≤ Rez ≤ 1 in the complex plane. For every z ∈ S, we consider the analytic family of operators:

Tz := Vz/2
r T V−z/2

τ .

Consider z = 1 + iy, y ∈ R and p = 1. Let N ≥ 1 be a constant large enough to be chosen later.
Let {Q`(τ)}` be a countable partition of X in Section 2.1. By definition of X1,2

τ ,

‖T1+iy f ‖X1,2
τ

=

∞∑
j=1

‖PQ j(τ)V
1+iy

2
τ TV−

1+iy
2

τ f ‖2

≤

∞∑
`=1

∞∑
j=1

‖PQ j(τ)V
1+iy

2
τ TV−

1+iy
2

τ PQ`(τ) f ‖2

=

∑
`

∑
j: d(x`,x j)>Nτ

+
∑
`

∑
j: d(x`,x j)≤Nτ

 ‖PQ j(τ)V
1+iy

2
τ TV−

1+iy
2

τ PQ`(τ) f ‖2

=: I + II.(3.5)

By the Cauchy-Schwarz inequality, we obtain

II ≤ C
∞∑
`=1

 ∑
j: d(x`,x j)≤Nr

Vτ(x j)


1/2  ∑

j: d(x`,x j)≤Nτ

‖PQ j(τ)TV−
1+iy

2
τ PQ`(τ) f ‖22


1/2

≤ C
∑
`

V(x`,Nτ)1/2‖TV−
1+iy

2
τ PQ`(τ) f ‖2

≤ CNn/2‖T‖2→2

∑
`

µ(Q`(τ))1/2‖V−
1+iy

2
τ PQ`(τ) f ‖2

≤ CNn/2‖T‖2→2‖ f ‖X1,2
τ
.(3.6)

Now we estimate the term I. Let κ = [n/2] + 1. We apply the Cauchy-Schwarz inequality again to
obtain

I ≤ C
∞∑
`=1

 ∑
j: d(x`,x j)>Nτ

µ(Q j(τ))η`(x j)−2κ


1/2  ∑

j:d(x`,x j)>Nτ

η`(x j)2κ‖PQ j(τ)TV−
1+iy

2
τ PQ`(τ) f ‖22


1/2

≤ C
∑
`

 ∞∑
k=0

∑
j: 2kNτ<d(x`,x j)≤2k+1Nτ

µ(Q j(τ))η`(x j)−2κ


1/2

‖ηκ`TV−
1+iy

2
τ PQ`(τ) f ‖2

≤ C
∑
`

 ∞∑
k=0

(2kN)nµ(Q`(τ))(2kN)−2κ

1/2

‖ηκ`TV−
1+iy

2
τ PQ`(τ) f ‖2

≤ C
∑
`

N−κ+n/2µ(Q`(τ))1/2‖ηκ`TV−
1+iy

2
τ PQ`(τ) f ‖2.(3.7)

To continue we define we let Γ(κ, 0) = 1 for κ ≥ 1, and Γ(κ,m) defined inductively by Γ(κ,m + 1) =∑κ−1
`=m Γ(`,m) for 1 ≤ m ≤ κ − 1. Applying the following known formula for commutators (see
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Lemma 3.1, [27]):

ηκ`T =

κ∑
m=0

Γ(κ,m)adm
` (T )ηκ−m

` ,

we obtain

‖ηκ`T (1 + η`)−κ‖2→2 ≤ C
κ∑

m=0

‖adm
` (T )ηκ−m

` (1 + η`)−κ‖2→2

≤ C
κ∑

m=0

‖adm
` (T )‖2→2 ≤ CMκ.(3.8)

This implies

I ≤ CN−κ+n/2Mκ
∑
`

µ(Q`(τ))1/2‖V−
1+iy

2
τ (1 + η`)κPQ`(τ) f ‖2

≤ CN−κ+n/2Mκ
∑
`

‖PQ`(τ) f ‖2 ≤ CN−κ+n/2Mκ‖ f ‖X1,2
τ
.

Next, set N = M‖T‖−1/κ
2→2 . Then above estimates of I and II give

‖T1+iy f ‖X1,2
τ
≤ C

(
N−κ+n/2Mκ + Nn/2‖T‖2→2

)
‖ f ‖X1,2

τ

≤ CMn/2‖T‖1−1/κ
2→2 ‖ f ‖X1,2

τ
.(3.9)

On the other hand, we have that for z = iy, y ∈ R,

‖Tiy‖X2,2
τ →X2,2

τ
= ‖Tiy‖2→2 ≤ ‖T‖2→2(3.10)

From estimates (3.9) and (3.10), we apply the complex interpolation method to obtain

‖Vσp
τ TV−σp

τ f ‖Xp,2
τ

= ‖T 2
p−1 f ‖Xp,2

τ
≤ CMnσp‖ f ‖Xp,2

τ
, σp = (1/p − 1/2)

for some constant C > 0 depending on n, p and ‖T‖2→2. This finishes the proof of Lemma 3.7. �

Now we apply Lemmas 3.6 and 3.7 to prove Theorem 3.4.

Proof f Theorem 3.4. The proof is inspired by Theorem 1.3 of [27] and Theorem 1.1 of [17]. Note
that

‖eitAA‖p→p ≤ ‖V
−σp
τ ‖Xp,2

τ →Lp‖V
σp
τ eitAV−σp

τ ‖Xp,2
τ →Xp,2

τ
‖Vσp

τ A‖Lp→Xp,2
τ
.

First, we have that ‖V−σp
τ ‖Xp,2

τ →Lp ≤ C by definition of Xp,2
τ and Hölder’s inequality. To estimate

the term ‖Vσp
τ A‖Lp→Xp,2

τ
, we recall that ({Qi(τ)}∞i=1) is a countable partition of X as in Section 2.1 and

note that

‖Vσp
τ A f ‖Xp,2

τ
=

 ∞∑
j=1

‖PQ j(τ)V
σp
τ A f ‖p

2


1/p

≤

∑
j

∑
`

‖PQ j(τ)V
σp
τ APQ`(τ)‖p→2‖PQ`(τ) f ‖p

p
1/p

.
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For every j, `, we set a j` = ‖PQ j(τ)V
σp
τ APQ`(τ)‖p→2 and b` = ‖PQ`(τ) f ‖p. It follows by interpolation

that

‖Vσp
τ A f ‖Xp,2

τ
≤

∥∥∥∑
`

a j`b`
∥∥∥
`p

≤
∥∥∥(a j`)

∥∥∥
`p→`p‖b`‖`p

≤
∥∥∥(a j`)

∥∥∥θ
`1→`1

∥∥∥(a j`)
∥∥∥1−θ

`∞→`∞
‖ f ‖p.

Therefore, by condition (PVEa
p,2(τ)) we have

‖(a j`)‖`1→`1 = sup
`

∑
j

∥∥∥PQ j(τ)V
σp
τ APQ`(τ)

∥∥∥
p→2
≤ C

and
‖(a j`)‖`∞→`∞ = sup

j

∑
`

∥∥∥PQ j(τ)V
σp
τ APQ`(τ)

∥∥∥
p→2
≤ C.

Thus

(3.11)
∥∥∥Vσp

τ A
∥∥∥

Lp→Xp,2
τ
≤ C.

Next we show that ∥∥∥Vσp
τ eitAV−σp

τ

∥∥∥
Xp,2
τ →Xp,2

τ
≤ C(1 + |t|)nσp .(3.12)

By Lemma 3.7, it suffices to show for every m ∈ N,

‖adk
m(eitA)‖2→2 ≤ C(1 + |t|)k, 0 ≤ k ≤ [n/2] + 1.(3.13)

Note that A is a bounded operator on L2(X). Recall that (cf. Lemma 3.6) for all m ∈ N:

ad1
m(eitA) f = it

∫ 1

0
eistAad1

m(A)ei(1−s)tA f ds, ∀t ∈ R, f ∈ L2(X).

Repeatedly, we are reduced to prove that for every m ∈ N, there exists a constant C > 0 independent
of m such that,

‖adk
m(A)‖2→2 ≤ C, 0 ≤ k ≤ [n/2] + 1.(3.14)

Fix m ∈ N. By Lemma 2.1, it suffices to show

sup
j

∑
`

‖PQ`(τ)adk
m(A)PQ j(τ)‖2→2 ≤ C, 0 ≤ k ≤ [n/2] + 1(3.15)

for some constant C > 0 independent of m.
To show (3.15) we note that

PQ`(τ)adk
m(A)PQ j(τ) =

∑
α+β+γ=k

k!
α! β! γ!

[ηm(x`) − ηm(x j)]β[ηm(·) − ηm(x`)]α ×

×PQ`(τ)APQ j(τ)[ηm(x j) − ηm(·)]γ.

Observe that:

• |ηm(x`) − ηm(x j)| ≤ d(x`, x j)/τ;

• |ηm(x) − ηm(x`)|χQ`(τ) ≤ d(x, x`)χQ`(τ)/τ ≤ 1;
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• |ηm(x j) − ηm(y)|χQ j(τ) ≤ d(y, x j)χQ j(τ)/τ ≤ 1.
These, together with estimate (PVEa

p,2(τ)) and a > [n/2] + 1 ≥ k, yield∑
`

‖PQ`(τ)adk
m(A)PQ j(τ)‖2→2 ≤ C

∑
`

(
1 +

d(x`, x j)
τ

)k

‖PQ`(τ)APQ j(τ)‖2→2 ≤ C

for some constant C > 0 independent of j. Hence, (3.15) is proved. This, in combination with
estimates (3.13) and (3.14), implies (3.12). All together, we obtain that ‖eitAA‖p→p ≤ C(1 + |t|)nσp

where σp = (1/p − 1/2). The proof of Theorem 3.4 is complete. �

3.2. Proof of Theorem 3.1. We apply Lemma 3.4 to see that

‖F(A)A‖p→p ≤

∫
R

|F̂(ξ)|‖eiξAA‖p→p dξ

≤ C
∫
R

|F̂(ξ)|(1 + |ξ|)nσp dξ

≤ C‖F‖Hs

(∫
R

(1 + |ξ|)2(nσp−s) dξ
)1/2

≤ C‖F‖Hs .

If we also assume that A ≥ 0 and supp F ⊂ [−1, 1], then we may consider G(λ) := F(− log λ)λ−1

so that F(− log A) = G(A)A. Therefore,

‖F(− log A)‖p→p ≤ ‖G(A)A‖p→p ≤ C‖G‖Hs .

Since supp F ⊂ [−1, 1] we have ‖G‖Hs ≤ C‖F‖Hs and we obtain ‖F(− log A)‖p→p ≤ C‖F‖Hs . The
proof of Theorem 3.1 is complete. �

4. Sharp spectral multiplier results via restriction type estimates

The aim of this section is to obtain sharp Lp boundedness of spectral multipliers from restriction
type estimates. We consider the metric measure space (X, d, µ) with satisfies the doubling condition
(1.2) with the homogeneous dimension n. Let q ∈ [2,∞]. Recall that Vr = V(x, r) = µ(B(x, r)). We
say that A satisfies the restriction type condition if there exist interval [b, e] for some −∞ < b < e <
∞ and τ > 0 such that for all Borel functions F with supp F ⊂ [b, e],

(STq
p,2(τ))

∥∥∥F(A)AVσp
τ

∥∥∥
p→2
≤ C‖F‖q, σp =

1
p
−

1
2
.

The above conditions originates and in fact is a version of the classical Stein-Tomas restriction
estimates. For more detailed discussion and the rationale of formulation of the above condition we
referee readers to [11, 34]) for a related definition).

The following statement is our main result in this section.
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Theorem 4.1. Let 1 ≤ p < 2 ≤ q ≤ ∞. Let A be a bounded self-adjoint operator on L2(X)
satisfying the property (PVEa

p,2(τ)) for some a > [n/2] + 1 and τ > 0. Suppose also that A satisfies
the property (STq

p,2(τ)) on some interval [R1,R2] for −∞ < R1 < R2 < ∞. Let F be a bounded Borel
function such that supp F ⊂ [R1 + γ,R2 − γ] for some γ > 0 and F ∈ W s,q(R) for some

s > n
(

1
p
−

1
2

)
+

n
4[a]

.

Then AF(A) is bounded on Lp(X) and

(4.1) ‖AF(A)‖p→p ≤ Cp‖F‖W s,q .

Remark 4.2. One can formulate a version of Corollary 3.2 corresponding to Theorem 4.1. See
also the statement of Theorem 5.3.

Remark 4.3. Note that if A satisfies (PVEa
p,2(τ)) for some a > [n/2] + 1 and τ > 0 then A satisfies

(STq
p,2(τ)) with q = ∞. Indeed, by Proposition 2.4, we have∥∥∥F(A)AVσp

τ

∥∥∥
p→2

≤ ‖F(A)‖2→2‖AVσp
τ

∥∥∥
p→2

≤ C‖F‖∞.

As a consequence of Theorem 4.1 we obtain under the sole assumption (PVEa
p,2(τ))

(4.2) ‖AF(A)‖p→p ≤ Cp‖F‖W s,∞

for every F ∈ W s,∞ and some s > n
(

1
p −

1
2

)
+ n

4[a] .

Before we start the proof of Theorem 4.1, we need some preliminary result. For a given r > 0,
we recall that (Qi(r))i is a countable partition of X. For a bounded operator T and a given r > 0, we
decompose the operator T into the on-diagonal part [T ]<r and the off-diagonal part [T ]>r as follows:

[T ]<r :=
∑

i

∑
j:d(xi,x j)≤5r

PQ j(r)T PQi(r)(4.3)

and

[T ]>r :=
∑

i

∑
j:d(xi,x j)>5r

PQ j(r)T PQi(r).(4.4)

For the on-diagonal part [T ]<r, we have the following result.

Lemma 4.4. Assume that T is a bounded operator from Lp(X) to Lq(X) (p ≤ q). Then the on-
diagonal part [T ]<r is bounded on from Lp(X) to Lq(X) and there exists a constant C = C(n) > 0
independent of r such that

‖[T ]<r‖p→q ≤ C‖T‖p→q.

Proof. Note that∥∥∥∥∥∥∥∥
∑

i

∑
j:d(xi,x j)≤5r

PQ j(r)T PQi(r) f

∥∥∥∥∥∥∥∥
q

q

=
∑

j

∥∥∥∥ ∑
i:d(xi,x j)≤5r

PQ j(r)T PQi(r) f
∥∥∥∥q

q
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≤ C
∑

j

∑
i:d(xi,x j)≤5r

∥∥∥∥PQ j(r)T PQi(r) f
∥∥∥∥q

q

≤ C
∑

i

∑
j:d(xi,x j)≤5r

‖T‖qp→q‖PQi(r) f ‖qp

≤ C‖T‖qp→q

∑
i

‖PQi(r) f ‖qp

≤ C‖T‖qp→q‖ f ‖
q
p.

This proves Lemma 4.4. �

Proof of Theorem 4.1. Let φ ∈ C∞c (R) be a function such that suppφ ⊆ {ξ : 1/4 ≤ |ξ| ≤ 1} and∑
`∈Z φ(2−`λ) = 1 for all λ > 0. Set φ0(λ) = 1 −

∑∞
`=1 φ(2−`λ). By the Fourier inversion formula, we

can write

AF(A) =

∞∑
`=0

AF(`)(A),(4.5)

where

F(0)(λ) =
1

2π

∫ +∞

−∞

φ0(s)F̂(s)eisλ ds(4.6)

and

F(`)(λ) =
1

2π

∫ +∞

−∞

φ(2−`s)F̂(s)eisλ ds.(4.7)

We now estimate Lp-Lp norm of the operator AF(`)(A), ` ≥ 0. Let N ≥ 1 be a constant to be
chosen later. For every ` ≥ 0, we follow (4.3) and (4.4) to write

AF(`)(A) =: [AF(`)(A)]<Nτ + [AF(`)(A)]>Nτ.(4.8)

Estimate of the term [AF(`)(A)]<Nτ. Let ψ ∈ C∞c (R) be a function such that ψ(λ) = 1 for λ ∈
[R1 + γ/2,R2 − γ/2] and suppψ ⊂ [R1,R2]. We write

[AF(`)(A)]<Nτ = [ψ(A)AF(`)(A)]<Nτ + [(1 − ψ(A))AF(`)(A)]<Nτ.

Observe that∥∥∥[ψ(A)AF(`)(A)]<Nτ

∥∥∥p

p
≤ C

∑
j

∑
λ:d(x j,xλ)≤5Nτ

‖PQλ(Nτ)Aψ(A)F(`)(A)PQ j(Nτ) f ‖p
p.

We use the Hölder inequality to obtain

‖PQλ(Nτ)Aψ(A)F(`)(A)PQ j(Nτ) f ‖p ≤ µ(Qλ(Nτ))σp‖PQλ(Nτ)Aψ(A)F(`)(A)PQ j(Nτ) f ‖2

≤ Cµ(Q j(Nτ))σp‖F(`)‖q‖V1/2−1/p
τ PQ j(Nτ) f ‖p.

Note that in the last inequality we used the condition d(x j, xλ) ≤ 5Nτ and the fact that suppψF(`) ⊂

[R1,R2], and it follows from the property (STq
p,2(τ)) that ‖Aψ(A)F(`)(A)Vσp

τ ‖p→2 ≤ ‖F(`)‖q. Hence,∥∥∥[ψ(A)AF(`)(A)]<Nτ

∥∥∥p

p
≤ CNnpσp‖F(`)‖p

q

∑
j

µ(Q j(τ))pσp‖V−σp
τ PQ j(Nτ) f ‖p

p
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≤ CNnpσp‖F(`)‖p
q

∑
j

‖PQ j(Nτ) f ‖p
p

≤ CNnpσp‖F(`)‖p
q‖ f ‖

p
p.(4.9)

On the other hand, we apply Lemma 4.4 and Theorem 3.1 to obtain that for some s > n/2 + 1 and
every large number M > 0,

‖[(1 − ψ(A))AF(`)(A)]<Nτ‖p→p ≤ C‖(1 − ψ(A))AF(`)(A)‖p→p

≤ C‖(1 − ψ(·))F(`)(·)‖Hs ≤ Cσ,M2−M`‖F‖q.

This, together with (4.9), yields

‖[AF(`)(A)]<Nτ f ‖p
p ≤ CNnpσp

[
‖F(`)‖p

q + 2−Mp`‖F‖p
q

]
‖ f ‖p

p.(4.10)

Estimate of the term [AF(`)(A)]≥Nτ. From (4.6) and (4.7), we have that

[AF(`)(A)]>Nτ =
1

2π

∫ +∞

−∞

φ(2−`t)F̂(t)[AeitA]>Nτ dt.(4.11)

To estimate the term [AeitA]>Nτ, we write

AeitA = eitA[A]>Nτ/2 + [eitA]>Nτ/2[A]<Nτ/2 + [eitA]<Nτ/2[A]<Nτ/2

=: T1 + T2 + T3.

It is easy to see that ∑
i

∑
j:d(xi,x j)>5Nτ

PQ j(Nτ)T3PQi(Nτ) = 0,

and so
[AeitA]>Nτ =: [T1]>Nτ + [T2]>Nτ.

By Lemma 4.4 with r = Nτ, we obtain

‖[AeitA]>Nτ‖p→p ≤ ‖T1 − [T1]<Nτ‖p→p + ‖T2 − [T2]<Nτ‖p→p

≤ (1 + C)‖T1‖p→p + (1 + C)‖T2‖p→p,(4.12)

and hence we have to estimate ‖Ti‖p→p, i = 1, 2.
Let us estimate the term ‖T1‖p→p. We write

‖T1‖p→p = ‖eitA[A]>Nτ/2‖p→p

≤
∥∥∥V−σp

τ

∥∥∥
Xp,2
τ →Lp

∥∥∥Vσp
τ eitAV−σp

τ

∥∥∥
Xp,2
τ →Xp,2

τ

∥∥∥Vσp
τ [A]>Nτ/2

∥∥∥
Lp→Xp,2

τ
.(4.13)

We have that ‖V−σp
τ ‖Xp,2

τ →Lp ≤ C by definition of Xp,2 and Hölder’s inequality. Also it follows from
(3.12) that ∥∥∥Vσp

τ eitAV−σp
τ

∥∥∥
Xp,2
τ →Xp,2

τ
≤ C(1 + |t|)nσp .(4.14)

To handle the term
∥∥∥Vσp

τ [A]>Nτ/2

∥∥∥
Lp→Xp,2

τ
, we note that

∥∥∥Vσp
τ [A]>Nτ/2 f

∥∥∥
Xp,2
τ

=

 ∞∑
j=1

‖PQ j(τ)V
σp
τ [A]>Nτ/2 f ‖p

2


1/p
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≤

∑
j

 ∑
`:d(x`,x j)>Nτ/2

∥∥∥PQ j(τ)V
σp
τ APQ`(τ)

∥∥∥
p→2

∥∥∥PQ`(τ) f
∥∥∥

p


p

1/p

.

For every j, `, we set a j` = ‖PQ j(τ)V
σp
τ APQ`(τ)‖p→2 and b` = ‖PQ`(τ) f ‖p. This gives

‖Vσp
τ [A]>Nτ/2 f ‖Xp,2

τ
≤

∥∥∥∥∑
`

a j`b`
∥∥∥∥
`p

≤

∥∥∥∥(a j`)
∥∥∥∥
`p→`p
‖b`‖`p

≤

∥∥∥∥(a j`)
∥∥∥∥θ
`1→`1

∥∥∥∥(a j`)
∥∥∥∥1−θ

`∞→`∞
‖ f ‖p

by interpolation. It then follows from condition (PVEa
p,2(τ)) that

‖(a j`)‖`1→`1 = sup
`

∑
j:d(x`,x j)>Nτ/2

∥∥∥∥PQ j(τ)V
σp
τ APQ`(τ)

∥∥∥∥
p→2
≤ CN−a

and
‖(a j`)‖`∞→`∞ = sup

j

∑
`:d(x`,x j)>Nτ/2

∥∥∥∥PQ j(τ)V
σp
τ APQ`(τ)

∥∥∥∥
p→2
≤ CN−a,

and so ∥∥∥∥Vσp
τ [A]>Nτ/2

∥∥∥∥
Lp→Xp,2

τ

≤ CN−a.

This, in combination with (4.14) and (4.13), shows that

‖T1‖p→p = ‖eitA[A]>Nτ/2‖p→p ≤ CN−a(1 + t)nσp .(4.15)

Next we estimate the term ‖T2‖p→p. We write

‖T2‖p→p = ‖[eitA]>Nτ/2[A]<Nτ/2‖p→p

≤
∥∥∥V−σp

τ

∥∥∥
Xp,2
τ →Lp

∥∥∥Vσp
τ [eitA]>Nτ/2V−σp

τ

∥∥∥
Xp,2
τ →Xp,2

τ

∥∥∥Vσp
τ [A]<Nτ/2

∥∥∥
Lp→Xp,2

τ
.(4.16)

We have that ‖V−σp
τ ‖Xp,2

τ →Lp ≤ C by definition of Xp,2 and Hölder’s inequality. Also, we follow a
similar argument as in (3.11) to obtain

‖Vσp
τ [A]<Nτ/2‖Lp→Xp,2

τ
≤ C.(4.17)

In order to deal with the term ‖Vσp
τ [eitA]>Nτ/2V−σp

τ ‖Xp,2
τ →Xp,2

τ
, we apply the complex interpolation

method. To do it, we let S denote the closed strip 0 ≤ Rez ≤ 1 in the complex plane. For z ∈ S, we
consider an analytic family of operators:

Tz = V
z
2
τ [eitA]>Nτ/2V−

z
2

τ .

Case 1: z = 1 + iy, y ∈ R and p = 1. In this case, we observe that

‖T1+iy f ‖X1,2
τ

=

∞∑
j=1

∥∥∥PQ j(τ)V
1+iy

2
τ [eitA]>Nτ/2V−

1+iy
2

τ f
∥∥∥

2

≤

∞∑
`=1

∞∑
j=1

∥∥∥PQ j(τ)V
1+iy

2
τ [eitA]>Nτ/2V−

1+iy
2

τ PQ`(τ) f
∥∥∥

2
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≤

∞∑
`=1

∑
j: d(x`,x j)>Nτ/2

∥∥∥PQ j(τ)V
1+iy

2
τ eitAV−

1+iy
2

τ PQ`(τ) f
∥∥∥

2
.(4.18)

By the Cauchy-Schwarz inequality,∑
j: d(x`,x j)>Nτ/2

∥∥∥PQ j(τ)V
1+iy

2
τ eitAV−

1+iy
2

τ PQ`(τ) f
∥∥∥

2

≤

 ∑
j: d(x`,x j)>Nτ/2

µ(Q j(τ))η`(x j)−2[a]


1/2  ∑

d(x`,x j)>Nτ/2

η`(x j)2[a]
∥∥∥∥∥PQ j(τ)eitAV−

1+iy
2

τ PQ`(τ) f
∥∥∥∥∥2

2


1/2

,

where η`(x) := d(x, x`)/τ. Since∑
j: d(x`,x j)>Nτ/2

µ(Q j(τ))η`(x j)−2[a] ≤ C
∞∑

i=0

∑
j: 2iNτ<d(x`,x j)≤2i+1Nτ

µ(Q j(τ))η`(x j)−2[a]

≤ C
∞∑

i=0

(2iN)nµ(Q`(τ))(2iN)−2[a]

≤ CN−2[a]+nµ(Q`(τ))

and ∑
j: d(x`,x j)>Nτ/2

η`(x j)2[a]
∥∥∥PQ j(τ)eitAV−

1+iy
2

τ PQ`(τ) f
∥∥∥2

2
≤ C

∥∥∥η[a]
` eitAV−

1+iy
2

τ PQ`(τ) f
∥∥∥2

2
,

we have

‖T1+iy f ‖X1,2
τ
≤ C

∞∑
`=1

N−[a]+n/2µ(Q`(τ))1/2
∥∥∥η[a]

` eitAV−
1+iy

2
τ PQ`(τ) f

∥∥∥
2

Following an argument as in (3.8) and (3.13) we obtain

‖η[a]
` eitA(1 + η`)−[a]‖2→2 ≤ C(1 + t)[a].

From this, it follows that

‖T1+iy f ‖X1,2
τ
≤ CN−[a]+n/2(1 + t)[a]

∑
i

µ(Q`(τ))1/2
∥∥∥∥∥V−

1+iy
2

τ (1 + η`)[a]PQ`(τ) f
∥∥∥∥∥

2

≤ CN−[a]+n/2(1 + t)[a]
∑

i

‖PQ`(τ) f ‖2

≤ CN−[a]+n/2(1 + t)[a]‖ f ‖X1,2
τ
.

Case 2: z = iy, y ∈ R and p = 2. In this case, we note that∥∥∥Tiy

∥∥∥
X2,2
τ →X2,2

τ
= ‖Tiy‖2→2 ≤ ‖[eitA]>Nτ/2‖2→2 ≤ (1 + C)‖eitA‖2→2 ≤ 1 + C.

From Cases 1 and 2, we apply the complex interpolation method to obtain∥∥∥Vσp
τ [eitA]>Nτ/2V−σp

τ f
∥∥∥

Xp,2
τ

=
∥∥∥∥T 2

p−1 f
∥∥∥∥

Xp,2
τ

≤ Cp

(
N−[a]+n/2(1 + t)[a]

)θ
‖ f ‖Xp,2

τ

where θ = 2/p − 1. This implies

‖T2‖p→p ≤ CN(−[a]+n/2)(2/p−1)(1 + t)[a](2/p−1)
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Substituting this and estimate (4.15) back into (4.12), yields

‖[AeitA]>Nτ‖p→p ≤ C‖T1‖p→p + C‖T2‖p→p ≤ CN(−[a]+n/2)(2/p−1)(1 + t)[a](2/p−1).

This, in combination with (4.11) and (4.10), shows

‖AF`(A)‖p→p ≤ CNn(1/p−1/2)[‖F(`)(λ)‖q + 2−M`‖F‖q
]

+ CN(−[a]+n/2)(2/p−1)
∫ 2`+1

2`
|φ(2−`t)||F̂(t)|(1 + t)[a](2/p−1) dt.

We take N = 2`(1+p/(2[a](2−p))) to obtain

‖AF`(A)‖p→p ≤ C2`n(1/p−1/2)(1+p/(2[a](2−p)))
(
‖F(`)(λ)‖q + 2−M`‖F‖q + ‖φ`F̂‖2

)
.

After summation in `, we obtain

‖AF(A)‖p→p ≤ C‖F‖W s,q

as in (4.1), whenever

s > n
(

1
p
−

1
2

) (
1 +

p
2[a](2 − p)

)
= n

(
1
p
−

1
2

)
+

n
4[a]

.

The proof of Theorem 4.1 is complete. �

5. Applications

As an illustration of our results we shall discuss some examples. Our main results, Theorems 3.1
and 4.1. can be applied to all examples which are discussed in [19], [11] and [34].

5.1. Symmetric Markov chains. In [1] Alexopoulos considers bounded symmetric Markov op-
erator A on a homogeneous space X whose powers Ak have kernels Ak(x, y) satisfying the following
Gaussian estimates

(5.1) 0 ≤ Ak(x, y) ≤
C

V(x, k1/2)
exp

(
−

d(x, y)2

k

)
for all k ∈ N. The operator I − A is symmetric and satisfies for every f ∈ L2(X),

〈(I − A) f , f 〉 =
1
2

"
( f (x) − f (y))2A(x, y)dµ(x)dµ(y) ≥ 0.

Thus, I − A is positive. In addition, ‖(I − A) f ‖2 ≤ ‖ f ‖2 + ‖A f ‖2 ≤ 2‖ f ‖2. Hence, I − A admits the
spectral decomposition (see for example, [30]) which allows to write

I − A =

∫ 2

0
(1 − λ)dEA(λ).

Let F be a bounded Borel measurable function. Then by the spectral theorem we can define the
operator

F(I − A) =

∫ 2

0
F(1 − λ)dEA(λ).
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Note that I − A is bounded on L2(X) and ‖F(I − A)‖2→2 ≤ ‖F‖∞. In [1] Alexopoulos obtained the
following spectral multiplier type result. In the sequel, let us consider a function 0 ≤ η ∈ C∞(R)
and let us assume that η(t) = 1 for t ∈ [1, 2] and that η(t) = 0 for t < [1/2, 4].

Theorem 5.1. Assume that F is a bounded Borel function with supp F ⊂ [0, 1/2] and that

sup
0<t≤1
‖η(·)F(t·)‖Wn/2+ε,∞ < ∞

for some ε > 0. Then under above assumption on the operator A, the spectral multiplier F(I − A)
extends to a bounded operator on Lp for 1 ≤ p ≤ ∞.

Our approach allows us to prove a version of Alexopoulos’ result under the weaker assumption
of polynomial decay rather than the exponential one. We start with the following statement.

Theorem 5.2. Let 1 ≤ p < 2 ≤ q ≤ ∞. Suppose that (X, d, µ) satisfies the doubling condition with
the doubling exponent n from (1.2). Assume next that A is a bounded self-adjoint operator and
there exists k ∈ N such that the kernel of the operator Ak exists and satisfies the following estimate

(5.2) |Ak(x, y)| ≤ C
1

max(V(x, k1/2),V(y, k1/2))

(
1 +

d(x, y)2

k

)−N

for some N > n + [n/2] + 1. Then for every 1 ≤ p ≤ ∞,

(5.3) ‖F(Ak)Ak‖p→p ≤ C min
(
‖F‖W s,∞ , ‖F‖Hs′

)
for any s > nσp + n

4[a] and any s′ > nσp + 1
2 .

If in addition the restriction type bounds (STq
p,2(τ)) with τ = k1/2 are valid on the interval (R1,R2)

for some −∞ < R1 < R2 < ∞ and suppF ⊂ (R1 + γ,R2 − γ) for some γ > 0 then

(5.4) ‖F(Ak)Ak‖p→p ≤ C‖F‖W s,q

s > nσp + n
4[a] .

Proof. It follows from (5.2) that the operator Ak satisfies the property (PVEa
p,2(τ)) with a = N − n

and τ = k1/2. The theorem follows from Theorems 3.1, 4.1 and Remark 4.3. �

The following result is a direct consequence of the above theorem.

Theorem 5.3. Let 1 ≤ p < 2 ≤ q ≤ ∞. Suppose that (X, d, µ) satisfies the doubling condition with
the doubling exponent n from (1.2) and that N > n + [n/2] + 1. Assume next that A is a bounded
self-adjoint operator and that for all k ∈ N the kernel of the operator Ak exists and satisfies the
following estimate

(5.5) |Ak(x, y)| ≤ C
1

max(V(x, k1/2),V(y, k1/2))

(
1 +

d(x, y)2

k

)−N

with the constant C independent of k. In addition we assume that the restriction type bounds
(STq

p,2(τ)) with τ = k1/2 are valid on the interval (R1,R2) ⊂ [−1, 1] for all k ∈ N. Then for function
F with supp F ⊂ [1/4, 1/2]

(5.6) ‖F(k(I − A))‖p→p ≤ C‖F‖W s,q
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for any s > nσp + n
4[a] .

Proof. Note that by (5.5) we have that ‖Ak‖2→2 ≤ C < ∞ for some constant C independent of k. It
follows that the spectrum of A is contained in the interval [−1, 1]. For a given k ∈ N, we define a
function G as

G(λ) =
F(k(1 − λ1/k))

λ
.

and so G(λk)λk = F(k(1 − λ)). It follows from Theorem 5.2 that for s > nσp + n
4[a] ,

‖G(Ak)Ak‖p→p ≤ C‖G‖W s,q ,

which yields

‖F(k(I − A))‖p→p = ‖G(Ak)Ak‖p→p ≤ C‖G‖W s,q = C

∥∥∥∥∥∥F(k(1 − λ1/k))
λ

∥∥∥∥∥∥
W s,q

.

Note that supp F ⊂ [1/4, 1/2], we have

‖F(k(I − A))‖p→p ≤ C

∥∥∥∥∥∥F(k(1 − λ1/k))
λ

∥∥∥∥∥∥
W s,q

≤ C‖F‖W s,q .

This completes the proof of Theorem 5.3. �

Remark 5.4. 1) Note that we do not assume that the operator A is Markovian.
2) Using similar technique as in [34] one can obtain the singular integral version of Theorem 5.2
stated in Theorem 5.1. We do not discuss the details here.

5.2. Random walk on Zn. In this section, we consider random walk on the n-dimensional integer
lattice Zn. Define the operator A acting on l2(Zn) by the formula

A f (d) =
1

2n

n∑
i=1

∑
j=±1

f (d + jei)

where ei = (0, . . . , 1, . . . 0) and 1 is positioned on the i-coordinate. The aim of this section is to
prove the following result. Recall that η is the auxiliary nonzero compactly supported function
η ∈ C∞c [1/2, 4] as in Theorem 5.1.

Theorem 5.5. Let 1 < p < ∞. Let A be the random walk on the integer lattice defined above.
Suppose that supp F ⊂ (0, 1/n). Then

sup
t>1
‖F(t(I − A)‖p→p ≤ C‖F‖Hs(5.7)

for any s > n|1/p − 1/2|.
Next we assume that a bounded Borel function F : R+ → C satisfies supp F ⊂ [0, 1/n] and

sup
1/n>t>0

‖ηF(t·)‖Hs < ∞(5.8)

for some s > n|1/p− 1/2|. Then the operator F(I − A) is bounded on Lp if 1 < p < (2n + 2)/(n + 3)
and weak type (1, 1) if p = 1.
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The proof of Theorem 5.5 is given at the end of this section and it is based on the following
restriction type estimate.

Proposition 5.6. Let A be defined as above and dE(λ) be the spectral measure of A. Then for
λ ∈ [1 − 1/n, 1]

‖dE(λ)‖p→p′ ≤ C(1 − λ)n(1/p−1/p′)/2−1(5.9)

for 1 < p < (2n + 2)/(n + 3).

The proof of Proposition 5.6 is based on the following result due to Bak and Seeger [3, Theorem
1.1].

Lemma 5.7. Consider a probability measure µ onRn. Assume that for positive constants 0 < a < n,
0 < b ≤ a/2, Mi ≥ 1, i = 1, 2, µ satisfies

(5.10) sup
rB≤1

µ(B(xB, rB))
ra

B
≤ M1

where the supremum is taken over all balls with radius ≤ 1 and

(5.11) sup
|ξ|≥1
|ξ|b|d̂µ| ≤ M2.

Let p0 =
2(n−a+b)
2(n−a)+b . Then

(5.12)
∫ ∣∣∣ f̂ ∣∣∣2dµ ≤ CM

b
n−a+b
1 M

n−a
n−a+b
2 ‖ f ‖2Lp0 ,2(Rn),

where Lp0,2 is the Lorentz space.

Proof of Proposition 5.6. Let Tn be the n-dimensional torus (note that n is equal to the homoge-
neous dimension of Tn). For any function f ∈ l2(Zn), one can define the Fourier series F f : Tn → C

of f by
F f (θ) =

∑
d∈Zn

f (d)ei〈d,θ〉.

Then the inverse Fourier series F −1 f : Zn → C is defined by

F −1 f (d) =
1

(2π)n

∫
Tn

f (θ)e−i〈d,θ〉.

Define the convolution of f , g ∈ L2(Zn) by

f ∗ g(d) =
∑

d1∈Zn

f (d − d1)g(d1).

Note that

F (A f )(θ) =

1
n

n∑
j=1

cos θ j

F f (θ) = (G(θ))F f (θ),

where

G(θ) =
1
n

n∑
j=1

cos θ j.
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Hence for any continuous function F∫ 1

−1
F(λ)dE(λ) f = F(A) f (d) = F −1

(
F(G(θ)) f̂ (θ)

)
=

(
1

(2π)n

∫
R

∫
σλ

F(λ)ei〈d,θ〉 1
|∇G|

dσλ(θ)dλ
)
∗ f

=

∫
R

F(λ) (Γλ ∗ f ) dλ,

where σλ is the level set defined by the formula

σλ = {θ :
1
n

n∑
j=1

cos θ j = λ} ⊂ Tn

and

Γλ(d) =
1

(2π)n

∫
σλ

ei〈d,θ〉 1
|∇G|

dσλ(θ)

for all λ ∈ [−1, 1]. Thus

dE(λ) f = f ∗ Γλ.

For the range λ ∈ (1 − 1/n, 1) considered in the proposition, changing variable yields

Γλ(d) =
(1 − λ)(n−1)/2

(2πi)n

∫
σ′λ

ei〈d, (1−λ)1/2θ〉 1
|∇G|((1 − λ)1/2θ)

dσ̃λ(θ),

where

σ̃λ = {θ :
1
n

n∑
j=1

cos((1 − λ)1/2θ j) = λ} ⊂ Tn.

Next we define a probability measure µλ on the surface σ̃λ by the formula

dµλ =
1

|∇G|((1 − λ)1/2θ)N(λ)
dσ̃λ(θ),

where

N(λ) =

∫
σ̃λ

1
|∇G|((1 − λ)1/2θ)

dσ̃λ(θ).

For λ ∈ (1 − 1/n, 1) we define the restriction type operator Rλ : `1(Zn)→ L2(σ̃λ, µλ) by

(Rλ f )(θ) = F f (θ(1 − λ)1/2) =
∑
d∈Zn

f (d)ei〈d, (1−λ)1/2θ〉, θ ∈ σ̃λ.

Then the dual operator R∗λ is given by

(R∗λ f )(d) =

∫
σ̃λ

e−i(1−λ)1/2〈d,θ〉 f (θ)
|∇G|((1 − λ)1/2θ)N(λ)

dσ̃λ(θ).

Hence

dE(λ) f =
N(λ)((1 − λ)1/2)n−1

(2π)n R∗λRλ f .
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Following the standard approach on the Euclidean space we study boundedness of the operator R∗λ
acting from L2(σ̃λ, µλ) to `p(Zn). Next we define the operator R̃∗λ : L2(σ̃λ, µλ)→ L∞(Rn) by

(R̃∗λ f )(ξ) =

∫
σ̃λ

e−i〈ξ,(1−λ)1/2θ〉dµλ(θ).

By the Plancherel-Pólya inequality (cf. [36, Section 1.3.3])

(5.13) ‖(R∗λ f )(d)‖Lp(Zn) ∼ ‖R∗λ f (ξ)‖Lp(Rn)

for all 1 ≤ p ≤ ∞. Hence, it suffices to study R∗λ f (ξ), ξ ∈ Rn. Set G̃(θ) = 1
n

∑n
j=1 cos((1 − λ)1/2θ j).

Denote H(G̃) the Hessian corresponding to G̃. Then the Gaussian curvature for an implicitly defined
surface corresponding to the equation G̃(θ) = λ is given by the following formula

K = −

∣∣∣∣∣∣ H(G̃) ∇G̃T

∇G̃ 0

∣∣∣∣∣∣ |∇G̃|−(n+1)

=

(−1)n+1((1 − λ)1/2)n−1
n∏

j=1
cos((1 − λ)1/2θ j)

(
n∑

j=1
sin(θ j(1 − λ)1/2) tan((1 − λ)1/2θ j)

)
(

n∑
j=1

sin2((1 − λ)1/2θ j)
)(n+1)/2 .

Note that if λ ∈ (1 − 1/n, 1), then cos((1 − λ)1/2θ j) > 0 for all j and

cos((1 − λ)1/2θ j) ≥ 1 − (1 − λ)n.

Indeed, otherwise
1
n

n∑
j=1

cos((1 − λ)1/2θ j) <
n − 1 + 1 − (1 − λ)n

n
= λ

which contradicts θ ∈ σ̃λ. It follows that for every n ≥ 2 there exists a positive constant Cn > 0
which does not depend on λ and θ such that

|K| ≥ Cn.

There exists also a constant C > 0 such that for all λ ∈ (1 − 1/n, 1)

(1 − λ)1/2 ≥ |∇G|((1 − λ)1/2θ) =
1
n

 n∑
j=1

sin2((1 − λ)1/2θ j)


1/2

≥ C(1 − λ)1/2

so N(λ) ∼ (1 − λ)−1/2. Then from Stein [35, Page 360, Section 5.7 of Chapter VIII], we know that

|d̂µλ| ≤ C(1 + |ξ|)(1−n)/2,(5.14)

where C just depends on n and does not depend on λ and θ.
Now, it is not difficult to check that surfaces σ̃λ and measures µλ satisfy assumptions of Lemma 5.7.

The required exponent for (5.10) is equal to a = n − 1. In addition dµλ satisfies (5.11) with
b = (n − 1)/2 uniformly in λ ∈ (1 − 1/n, 1). Hence by Lemma 5.7∫

σ̃λ

∣∣∣ f̂ ∣∣∣2dµλ ≤ C‖ f ‖2Lp(Rn)
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Hence

‖R̃∗λ f (ξ)‖Lp′ (Rn) ≤ C(1 − λ)−
n

2p′ ‖ f ‖L2(σ̃λ, µλ).

Thus by the Plancherel-Pólya inequality (5.13)

‖R∗λ f (d)‖Lp′ (Zn) ≤ C(1 − λ)−
n

2p′ ‖ f ‖L2(σ̃λ, µλ)

for 1 ≤ p ≤ 2n+2
n+3 . By duality

‖dE(λ)‖p→p′ ≤
N(λ)(1 − λ)

n−1
2

(2π)n ‖R∗λRλ‖p→p′ ≤ C(1 − λ)n(1/p−1/p′)/2−1,

for 1 ≤ p ≤ 2n+2
n+3 and λ ∈ (1 − 1/n, 1). This completes the proof of Proposition 5.6. �

Now we are able to conclude the proof of Theorem 5.5.

Proof of Theorem 5.5. For every k ∈ N, we denote Ak(d1,d2) the kernel of Ak for k ∈ Z. Note that
V(x, k) ∼ kn. It is well-known (see e.g. [23]) that Ak(d1,d2) satisfies the following Gaussian type
upper estimate:

Ak(d1,d2) ≤ Ck−n/2 exp
(
−
|d1 − d2|

2

ck

)
.(5.15)

Next we verify that the operators Ak satisfy condition (ST2
p,2(τ)) with τ = k1/2 uniformly for all

k ∈ N for all bounded Borel functions F such that supp F ⊂ (1 − 1/n, 1). By T ∗T argument and
Proposition 5.6,∥∥∥F(Ak)Ak

∥∥∥2

p→2
=

∥∥∥|F|2(Ak)A2k
∥∥∥

p→p′
≤

∫ 1

[(n−1)/n]1/k
|F|2(λk)λ2k

∥∥∥dEA(λ)
∥∥∥

p→p′
dλ

≤ C
∫ 1

(n−1)/n
|F|2(λ)λ2(1 − λ1/k)n(1/p−1/p′)/2−1 dλ1/k

≤ C
(
1
k

)n(1/p−1/p′)/2

‖F‖2,

as desired.
Now (5.7) follows from Theorem 5.3. The Lp boundedness of F(I−A) for functions F satisfying

condition (5.8) follows from [34, Theorem 3.3]. This completes the proof of Theorem 5.5. �

Remark 5.8. For n = 2 it is enough to assume that supp F ⊂ (0, 1).

Remark 5.9. There is another approach to the proof of Theorem 5.5 via transference type state-
ments on equivalence of Lp boundedness of the Fourier integral and the Fourier series multipliers
under suitable condition on the multiplier support (cf. [13]).
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5.3. Fractional Schrödinger operators. Let n ≥ 1 and V,W be locally integrable non-negative
functions on Rn.
Consider the fractional Schrödinger operator with a potentials V and W:

L = (−∆ + W)α + V(x), α ∈ (0, 1].

The particular case α = 1
2 is often referred to as the relativistic Schrödinger operator. The operator L

is self-adjoint as an operator associated with a well defined closed quadratic form. By the classical
subordination formula together with the Feynman-Kac formula it follows that the semigroup kernel
pt(x, y) associated to e−tL satisfies the estimate

0 ≤ pt(x, y) ≤ Ct−
n

2α
(
1 + t−

1
2α |x − y|

)−(n+2α)

for all t > 0 and x, y ∈ Rn. See page 195 of [33]. Hence, estimates (PVEa
p,2(τ)) hold for p = 1 and

a = 2α. If n = 1 and α > 1
2 then we can apply Corollary 3.2 and obtain a spectral multiplier result

for L.
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