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Abstract. We present an algorithm that computes the product of two n-bit
integers in O(n logn) bit operations, thus confirming a conjecture of Schönhage

and Strassen from 1971. Our complexity analysis takes place in the multitape

Turing machine model, with integers encoded in the usual binary representa-
tion. Central to the new algorithm is a novel “Gaussian resampling” technique

that enables us to reduce the integer multiplication problem to a collection of

multidimensional discrete Fourier transforms over the complex numbers, whose
dimensions are all powers of two. These transforms may then be evaluated

rapidly by means of Nussbaumer’s fast polynomial transforms.

1. Introduction

Let M(n) denote the time required to multiply two n-bit integers. We work in
the multitape Turing model, in which the time complexity of an algorithm refers
to the number of steps performed by a deterministic Turing machine with a fixed,
finite number of linear tapes [35]. The main results of this paper also hold in the
Boolean circuit model [41, Sec. 9.3], with essentially the same proofs.

For functions f(n1, . . . , nk) and g(n1, . . . , nk), we write f(n) = O(g(n)) to in-
dicate that there exists a constant C > 0 such that f(n) 6 Cg(n) for all tuples
n = (n1, . . . , nk) in the domain of f . Similarly, we write f(n) = Ω(g(n)) to mean
that f(n) > Cg(n) for all n in the domain of f , and f(n) = Θ(g(n)) to indicate
that both f(n) = O(g(n)) and f(n) = Ω(g(n)) hold. ¿From Section 2 onwards we
will always explicitly restrict the domain of f to ensure that g(n) > 0 throughout
this domain. However, in this Introduction we will slightly abuse this notation:
when writing for instance f(n) = O(n log n log log n), we tacitly assume that the
domain of f has been restricted to [n0,∞) for some sufficiently large threshold n0.

Schönhage and Strassen conjectured in 1971 that the true complexity of inte-
ger multiplication is given by M(n) = Θ(n log n) [40], and in the same paper es-
tablished their famous upper bound M(n) = O(n log n log log n). In 2007 their
result was sharpened by Fürer to M(n) = O(n log nK log∗ n) [12, 13] for some
unspecified constant K > 1, where log∗ n denotes the iterated logarithm, i.e.,
log∗ x := min{k > 0 : log◦k x 6 1}. Prior to the present work, the record stood at
M(n) = O(n log n 4log

∗ n) [22].
The main result of this paper is a verification of the upper bound in Schönhage

and Strassen’s conjecture, thus closing the remaining 4log
∗ n gap:

Theorem 1.1. There is an integer multiplication algorithm achieving

M(n) = O(n log n).
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If the Schönhage–Strassen conjecture is correct, then Theorem 1.1 is asymp-
totically optimal. Unfortunately, no super-linear lower bound for M(n) is known.
Perhaps the best available evidence in favour of the conjecture is the Ω(n log n)
lower bound [6, 36] that has been proved for the “on-line” variant of the problem,
in which the k-th bit of the product must be written before the (k + 1)-th bits of
the multiplicands are read. Again, the true complexity of on-line multiplication is
not known: currently, the best known upper bound is O(n log n exp(C

√
log log n))

for C =
√

2 log 2 + o(1) [29].
Theorem 1.1 has many immediate consequences, as many computational prob-

lems may be reduced to integer multiplication. For example, the theorem implies
that quotients and k-th roots of real numbers may be computed to a precision of
n significant bits in time O(n log n), that transcendental functions and constants
such as ex and π may be computed to precision n in time O(n log2 n), and that the
greatest common divisor of two n-bit integers may be found in time O(n log2 n) [5].

Another interesting application is to the problem of computing DFTs (discrete
Fourier transforms) over C. Given a transform length m > 2 and a target accuracy
of p = Ω(logm) bits, it was pointed out in [20, 25] that one may use Bluestein’s
trick [2] followed by Kronecker substitution [14, Corollary 8.27] to reduce a given
DFT of length m to an integer multiplication problem of size O(mp). Theorem
1.1 then implies that the DFT may be evaluated in time O(mp log(mp)). This
compares favourably with the traditional FFT (fast Fourier transform) approach,
which requires O(m logm) operations in C, and thus time O(m logm M(p)) =
O(mp logm log p) in the Turing model.

This faster method for computing DFTs over C leads to various further appli-
cations. One such application is the conversion of an n-digit integer from one base
to another, for example from binary to decimal, in time O(n log2 n/ log log n) [30].
Alternatively, if one wishes to multiply two n-digit integers in a fixed base β 6= 2,
then it is possible to adapt the new algorithm to obtain a direct O(n log n)-time
multiplication algorithm that works in base β throughout. This is asymptotically
faster than reducing the problem to binary via the above-mentioned base conversion
algorithms.

All of the algorithms presented in this paper can be made completely explicit,
and all implied big-O constants are in principle effectively computable. On the other
hand, we make no attempt to minimise these constants or to otherwise exhibit a
practical multiplication algorithm. Our aim is to establish the theoretical O(n log n)
bound as directly as possible.

We will actually describe two new multiplication algorithms. The first one de-
pends on an unproved hypothesis concerning the least prime in an arithmetic pro-
gression. This hypothesis is weaker than standard conjectures in this area, but
stronger than the best unconditional results currently available. We give only a
brief sketch of this algorithm (see Section 1.2.1); a detailed treatment is given in
the companion paper [24], which also presents an analogue of this algorithm for mul-
tiplication in Fq[x]. The bulk of the present paper (Sections 2–5) concentrates on
working out the details of the second algorithm, which is technically more involved,
but has the virtue of reaching the O(n log n) bound unconditionally.

In the remainder of Section 1, we review the literature on integer multiplication
(Section 1.1), and give an overview of the new algorithms (Section 1.2).
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1.1. Survey of integer multiplication algorithms. The first improvement on
the classical M(n) = O(n2) bound was found by Karatsuba in 1962. Significant
progress was made during the 1960s by Toom, Cook, Schönhage and Knuth; see
[25, Sec. 1.1] for further historical details and references for this period. FFTs were
brought into the picture by Schönhage and Strassen [40] soon after the publication
of the FFT by Cooley and Tukey [7]; see [28] for more on the history of the FFT.
The multiplication algorithms published since [40] may be roughly classified into
four families:

(1) Schönhage–Strassen’s first algorithm [40] is, in retrospect, the most straight-
forward FFT-based integer multiplication algorithm imaginable. By splitting the
n-bit multiplicands into chunks of size Θ(log n), they reduce to the problem of mul-
tiplying polynomials in Z[x] of degree Θ(n/ log n) and coefficient size Θ(log n). The
product in Z[x] is handled by means of FFTs over C, i.e., evaluating the polynomi-
als at suitable complex roots of unity, multiplying their values pointwise in C, and
then interpolating to obtain the product polynomial. Elements of C are represented
approximately, with a precision of Θ(log n) bits. Arithmetic operations in C (such
as multiplication) are reduced to arithmetic in Z by scaling by a suitable power of
two. This leads to the recursive estimate

M(n) = O(nM(n′)) +O(n log n), n′ = O(log n),

whose explicit solution is

M(n) = O(K log∗ n n log n log log n · · · log◦((log
∗ n)−1) n)

for some constant K > 0. The algorithm achieves an exponential size reduction at
each recursion level, from n to O(log n), and the number of levels is log∗ n+O(1).

Pollard suggested a similar algorithm at around the same time [37], working over
a finite field rather than C. He did not analyse the bit complexity, but with some
care one can prove essentially the same complexity bound as for the complex case
(some technical difficulties arise due to the cost of finding suitable primes; these
may be resolved by techniques similar to those discussed in [25, Sec. 8.2]).

(2) Schönhage–Strassen’s second algorithm is the more famous and arguably
the more ingenious of the two algorithms presented in [40]. It is probably the
most widely used large-integer multiplication algorithm in the world today, due to
the highly optimised implementation included in the free GNU Multiple Precision
Arithmetic Library (GMP) [17, 15], which underlies the large-integer capabilities
of all of the major contemporary computer algebra systems.

The basic recursive problem is taken to be multiplication in Z/(2n+1)Z, where n
is a power of two. Let n′ := 2d(log2 2n)/2e = Θ(n1/2) and T := 2n/n′ = Θ(n1/2), so
that (n′)2 ∈ {2n, 4n} and T | n′; then by splitting the inputs into chunks of size n′/2,

the problem is reduced to multiplication in R[x]/(xT + 1) where R := Z/(2n′ + 1)Z.
The powers of 2 in R are sometimes called “synthetic” roots of unity, as they
have been synthesised algebraically, or “fast” roots of unity, as one can multiply
an element of R by an arbitrary power of 2 in linear time, i.e., in time O(n′).

Consequently, for ω := 2n
′/T , one may evaluate a polynomial at ω, ω3, . . . , ω2T−1

(the roots of xT +1) via the FFT in time O((n′ log n′)n′) = O(n log n). The original
multiplication problem is thus reduced to T pointwise multiplications in R, which
are handled recursively. Writing M1(n) for the cost of a product in Z/(2n + 1)Z,
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one obtains the recurrence

(1.1) M1(n) <
2n

n′
M1(n′) +O(n log n), n′ = O(n1/2).

Unlike the first Schönhage–Strassen algorithm, this algorithm performs only a geo-
metric size reduction, from n to O(n1/2), at each recursion level, and the number
of recursion levels is log2 log n+O(1) = O(log log n).

The constant 2 in (1.1), which arises from zero-padding in the initial splitting
stage, plays a crucial role in the complexity analysis: it ensures that at each re-
cursion level, the total cost of the “fast” FFTs remains O(n log n), with the same
implied constant at each level. The overall cost is thus M1(n) = O(n log n log log n).

(3) Fürer’s algorithm [12, 13] combines the best features of the two Schönhage–
Strassen algorithms: the exponential size reduction from the first algorithm, and
the fast roots of unity from the second one. The overall strategy is similar to
the first algorithm, but instead of working over C, one uses a bivariate splitting
to reduce to a polynomial multiplication problem over R := C[y]/(yr + 1), where
r = Θ(log n) is a power of two. This ring contains a synthetic root of unity y of
order 2r, but also inherits higher-order roots of unity from C. Elements of C are
represented approximately, with a precision of O(log n) bits; thus an element of R
occupies O((log n)2) bits.

Fürer’s key insight is to apply the Cooley–Tukey FFT decomposition in radix 2r
instead of radix two. He decomposes each “long” transform of length Θ(n/(log n)2)
into many “short” transforms of length 2r, with one round of expensive “twiddle
factor” multiplications interposed between each layer of short transforms. The short
transforms take advantage of the synthetic roots of unity, and the twiddle factor
multiplications are handled recursively (via Kronecker substitution). This leads to
the recurrence

M(n) = O

(
n log n

n′ log n′
M(n′)

)
+O(n log n), n′ = O((log n)2),

and then to the explicit bound M(n) = O(n log nK log∗ n) for some constant K > 1.
Fürer did not give a specific value for K, but it is argued in [25, Sec. 7] that careful
optimisation of his algorithm leads to the value K = 16.

Several authors have given variants of Fürer’s algorithm that also achieve M(n) =
O(n log nK log∗ n), using essentially the same idea but working over different rings.
De, Kurur, Saha and Saptharishi [10] replace C by a p-adic ring Qp; this has the
benefit of avoiding numerical analysis over C, but the value of K becomes somewhat
larger. Covanov and Thomé give another variant that achieves K = 4, conditional
on a conjecture on the distribution of generalised Fermat primes [8].

(4) The Harvey–van der Hoeven–Lecerf algorithm [25] follows Fürer in decom-
posing a “long” transform into many “short” transforms of exponentially smaller
length. However, instead of working over a ring containing fast roots of unity, one
works directly over C (as in the first Schönhage–Strassen algorithm), and converts
the short transforms back to multiplication problems via Bluestein’s trick [2]. These
short products are then handled recursively.

The first version given in [25] achieved M(n) = O(n log nK log∗ n) with K = 8.
The value of K was improved gradually over a sequence of papers [18, 19, 21],
reaching K = 4 in [22]. All of these algorithms perform exponential size reduction,
and the number of recursion levels is log∗ n+O(1).
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An interesting feature of these algorithms — related to the fact that they dispense
with the need for fast roots of unity — is that they can be adapted to prove bounds
of the form O(n log nK log∗ n) for the cost of multiplying polynomials in Fq[x] of
degree n (for fixed q). This was first established with the constant K = 8 in [26],
and improved to K = 4 in [23]. As mentioned previously, the first of the two new
algorithms presented in this paper may be adapted to obtain an O(n log n) bound
for the Fq[x] case [24], but unfortunately this result is still conditional and so does

not yet supersede the unconditional O(n log n 4log
∗ n) bound given in [23].

1.2. Overview of new algorithms. Our new algorithms are motivated by the
observation that certain multivariate polynomial rings admit particularly efficient
multiplication algorithms. Let r be a power of two, and for d > 2 consider the ring

(1.2) R[x1, . . . , xd−1]/(xt11 − 1, . . . , x
td−1

d−1 − 1), R := C[y]/(yr + 1),

where ti | 2r for all i. One may multiply in this ring by first using FFTs to
evaluate each xi at the synthetic ti-th roots of unity (the powers of y2r/ti), then
multiplying pointwise in R, and finally performing inverse FFTs. Such transforms
were studied extensively by Nussbaumer in the late 1970s (see for example [32]),
and are sometimes known as fast polynomial transforms. They consist entirely of
additions and subtractions in C, and require no multiplications in C whatsoever.

In Sections 1.2.1 and 1.2.2 below, we outline two different ways of fashioning
an integer multiplication algorithm from the polynomial multiplication algorithm
just described. The key issue is to show how to transport an integer multiplication
problem, which is intrinsically one-dimensional, to a ring of the type (1.2).

In both cases, we begin with the following setup. Suppose that we wish to multi-
ply two n-bit integers. We choose a dimension parameter d > 2 and distinct primes
s1, . . . , sd ≈ (n/ log n)1/d, subject to certain conditions that will be explained in
Sections 1.2.1 and 1.2.2. Just as in the first Schönhage–Strassen algorithm, we
split the inputs into around n/ log n chunks of roughly log n bits, thereby reducing
the problem to multiplication in Z[x]/(xs1···sd − 1). Now, following a technique
described by Agarwal and Cooley [1] (which is closely related to the Good–Thomas
FFT algorithm [16, 42]), we observe that the Chinese remainder theorem induces an
isomorphism Z[x]/(xs1···sd−1) ∼= Z[x1, . . . , xd]/(x

s1
1 −1, . . . , xsdd −1), so the problem

amounts to computing a product in the latter ring. For this, it suffices to show how
to efficiently compute a multidimensional complex DFT of size s1 × · · · × sd, i.e.,
with respect to the complex si-th roots of unity, to an accuracy of O(log n) bits.

1.2.1. A conditional algorithm — Rader’s trick. Suppose that we are able to choose
the primes s1, . . . , sd so that si = 1 (mod r), where r > 2 is a power of two, and
where the si are not much larger than r. We may then deploy a multidimensional
generalisation of Rader’s algorithm [38] to reduce the given DFT of size s1×· · ·×sd
to a multiplication problem in the ring C[x1, . . . , xd]/(x

s1−1
1 − 1, . . . , xsd−1d − 1)

(together with some lower-dimensional multiplication problems of negligible cost).
Crucially, the convolution lengths have been reduced from si to si − 1. Writing
si − 1 = qir, where the qi are “small”, we may further reduce this product to a
collection of complex DFTs of size q1 × · · · × qd, plus a collection of multiplication
problems in C[x1, . . . , xd]/(x

r
1 − 1, . . . , xrd − 1). After replacing xd with eπi/ry, we

see that the latter products are exactly of the type (1.2). As discussed previously,
we may use synthetic FFTs to reduce such a product to a collection of pointwise
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products in R = C[y]/(yr+1). These in turn are converted to integer multiplication
problems via Kronecker substitution, and then handled recursively.

The main sticking point in the above algorithm is the cost of the auxiliary DFTs
of size q1× · · · × qd. There are various options available for evaluating these DFTs,
but to ensure that this step does not dominate the complexity, the key issue is to
keep the size of the qi under control. What we are able to prove is the following.
For positive, relatively prime integers r and a, define

P (a, r) := min{s > 0 : s prime and s = a mod r},
and put P (r) := maxa P (a, r). Linnik’s theorem states that there is an absolute
constant L > 1 such that P (r) = O(rL). (In our application, we are interested
in bounding P (1, r) when r is a power of two.) The best published value for L is
currently L = 5.18 [43], and under the Generalised Riemann Hypothesis one may
take L = 2+ε for any ε > 0 [27]. In the companion paper [24], we present an integer
multiplication algorithm following the plan just described, but working over a finite
field instead of C. We prove that if Linnik’s theorem holds for some L < 1 + 1

303 ,

and if we take d near 106, then the cost of the auxiliary DFTs can be controlled
and one does in fact obtain an overall M(n) = O(n log n) bound. We expect that
the same argument works over C, with a possibly different threshold for L, but we
have not worked out the details.

On the other hand, it is widely expected that the bound P (r) = O(rL) should
hold for any L > 1. For this reason, we strongly suspect that the algorithm sketched
above does run in time O(n log n), despite us being unable to supply a proof. For
further discussion, and examples of even stronger bounds for P (r) that are expected
to hold, see [24].

Remark 1.2. The idea of evaluating a multidimensional transform via a combina-
tion of Rader’s algorithm and polynomial transforms was previously suggested in
a different context by Nussbaumer and Quandalle [33, p. 141].

1.2.2. An unconditional algorithm — Gaussian resampling. The rest of the paper
is devoted to the second method. Here we choose the primes s1, . . . , sd in such a
way that each si is slightly smaller than a power of two ti, and so that t1 · · · td =
O(s1 · · · sd). Finding such primes is easily accomplished using Eratosthenes’ sieve
and the prime number theorem with a suitable error term (see Lemma 5.1).

Assume as before that we wish to compute a complex multidimensional DFT of
size s1 × · · · × sd, to an accuracy of O(log n) bits. Our key innovation is to show
that this problem may be reduced directly to the problem of computing a complex
multidimensional DFT of size t1 × · · · × td.

The idea of the reduction is as follows. Suppose that we are given as input an
s1 × · · · × sd array of complex numbers u = (uj1,...,jd)06ji<si . We may regard this
array as lying inside the d-dimensional unit torus (R/Z)d: we imagine the coefficient
uj1,...,jd to be plotted at coordinates (j1/s1, . . . , jd/sd) in the torus (see Figure 1).
We construct from u an intermediate t1×· · ·×td array v = (vk1,...,kd)06ki<ti . Again,
we think of vk1,...,kd as being plotted at coordinates (k1/t1, . . . , kd/td) in the torus.
The coefficients of v are defined to be certain linear combinations of the coefficients
of u. The weights are essentially d-dimensional Gaussians, so each coefficient of v
depends mainly on the “nearby” coefficients of u within the torus.

This construction has two crucial properties. First, the rapid decay of the Gaus-
sians allows us to compute (i.e., approximate) the coefficients of v very quickly from
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Figure 1. Torus (R/Z)2 with 13× 11 source array (white circles)
superimposed over 16× 16 target array (black circles)

those of u; indeed, the cost of this step is asymptotically negligible compared to the
cost of the DFTs themselves. Second, using the fact that the Fourier transform of a
Gaussian is a Gaussian, we will show that û and v̂ (the DFTs of u and v) are related
by a fairly simple system of linear equations. In fact, the matrix of this system is
of the same type as the matrix relating u and v. The system is somewhat overde-
termined, because t1 · · · td > s1 · · · sd. Provided that the ratios ti/si are not too
close to 1, we will show that this system may be solved in an efficient and numeri-
cally stable manner, and that we may therefore recover û from v̂. This procedure
forms the core of our “Gaussian resampling” method, and is developed in detail in
Section 4. It is closely related to the Dutt–Rokhlin algorithm for non-equispaced
FFTs [11]; see Section 4.4.3 for a discussion of the similarities and differences.

We have therefore reduced to the problem of computing v̂ from v, and we are free
to do this by any convenient method. Note that this is a DFT of size t1 × · · · × td
rather than s1 × · · · × sd. In Section 3 we will show how to use a multivariate
generalisation of Bluestein’s algorithm [2] to reduce this DFT to a multiplication
problem in a ring of the form (1.2). As already pointed out, such a product may
be handled efficiently via synthetic FFTs; the details of this step are also discussed
in Section 3.

Analysis of this algorithm leads to a recurrence inequality of the form

(1.3) M(n) <
Kn

n′
M(n′) +O(n log n), n′ = n

1
d+o(1),

where K is an absolute constant, and in particular does not depend on d. (In
Section 5 we establish (1.3) with the explicit constant K = 1728, and in Section 5.4
we list some optimisations that improve it to K = 8.) The first term arises from
pointwise multiplications in a ring of the type R = C[y]/(yr + 1), and the second
term from the fast FFTs and other auxiliary operations, including computing v
from u and recovering û from v̂.

We stress here the similarity with the corresponding bound (1.1) for the second
Schönhage–Strassen algorithm; the difference is that we are now free to choose d.
In Section 5, we will simply take d := 1729 (any constant larger than K would do),
and then it is easy to see that (1.3) implies that M(n) = O(n log n). (A similar
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analysis holds for the conditional algorithm sketched in Section 1.2.1, for different
values of K and d.)

It is striking that for fixed d, the new algorithm performs only a geometric size
reduction at each recursion level, just like the second Schönhage–Strassen algo-
rithm, and unlike the first Schönhage–Strassen algorithm or any of the post-Fürer
algorithms. In the new algorithm, the total cost of the FFTs actually decreases
by the constant factor d/K > 1 at each subsequent recursion level, unlike in the
second Schönhage–Strassen algorithm, where it remains constant at each level, or
any of the other algorithms mentioned, where it increases by a constant factor at
each level.

Actually, it is possible to allow d to grow with n, so as to achieve size reduction
faster than geometric. With some care, this leads to a better constant in the main
O(n log n) bound, by shifting more work from the pointwise multiplications into
the fast FFTs. We will not carry out the details of this analysis.

Finally, we mention that our reduction from a DFT of size s1×· · ·× sd to one of
size t1 × · · · × td is highly non-algebraic, and depends heavily on the archimedean
property of R. Consequently, we do not know how to give an analogue of this
algorithm for multiplication in Fq[x].

Acknowledgments. The authors would like to thank the anonymous referees,
whose thoughtful comments helped to improve the presentation of these results.

2. DFTs, convolutions and fixed-point arithmetic

In the Turing model we cannot compute with elements of C exactly. In this
section we introduce a technical framework for systematic discussion of DFTs and
convolutions in the setting of fixed-point arithmetic. This framework is loosely
based on the presentation in [25, Sec. 3], and will be used throughout the rest
of the paper. The impatient reader may skip most of the section and use it as
a reference in case of doubt. To this effect, Table 1 contains a summary of the
notation introduced in this section.

2.1. Integer arithmetic. Integers are assumed to be stored in the standard bi-
nary representation. We briefly recall several well-known results concerning integer
arithmetic; see [5, Ch. 1] for further details and literature references.

Let n > 1, and assume that we are given as input x, y ∈ Z such that |x| , |y| 6 2n.
We may compute x + y and x − y in time O(n). For multiplication, we will often
use the crude estimate M(n) = O(n1+δ), where for the rest of the paper δ denotes a
small, fixed positive quantity; for definiteness, we assume that δ < 1

8 . If y > 0, then

we may compute the quotients bx/yc and dx/ye in time O(n1+δ). More generally,
for a fixed positive rational number a/b, and assuming x, y > 0, we may compute
b(x/y)a/bc and d(x/y)a/be in time O(n1+δ).

2.2. Fixed-point coordinate vectors. Fix a precision parameter p > 100. Let
C◦ := {u ∈ C : |u| 6 1} denote the complex unit disc, and set

C̃◦ := (2−pZ[i]) ∩ C◦ = {2−p(x+ iy) : x, y ∈ Z and x2 + y2 6 22p}.

In the Turing model, we represent an element z = 2−p(x+ iy) ∈ C̃◦ by the pair of
integers (x, y). It occupies O(p) bits of storage, as |x| , |y| 6 2p. The precision p is
always known from context and does not need to be stored alongside z.
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δ ∈ (0, 18 ) a constant such that M(n) = O(n1+δ) (§2.1)
p > 100 working precision in bits (§2.2)
‖·‖ supremum norm on V (a finite-dimensional vector space

over C) with respect to a specified basis BV

(§2.2)

V◦ closed unit ball in V under the supremum norm (§2.2)

Ṽ◦ set of vectors in V◦ whose coordinates are fixed-point
complex numbers with p bits of accuracy

(§2.2)

ρ : V◦ → Ṽ◦ round-towards-zero function (§2.2)

ṽ ∈ Ṽ◦ a fixed-point approximation to a vector v ∈ V◦ (§2.2)
ε(ṽ) (scaled) error incurred in approximating v by ṽ (§2.2)
Fn : Cn → Cn complex DFT of length n (§2.4)
Fn1,...,nd

multidimensional complex DFT of size n1 × · · · × nd (§2.4)
R the ring C[y]/(yr + 1), for a power of two r > 2 (§2.3)
Gn : Rn → Rn synthetic DFT of length n, where n | 2r (§2.4)
Gn1,...,nd

multidimensional synthetic DFT of size n1 × · · · × nd (§2.4)
u · v pointwise product of vectors/tensors (§2.4)
u ∗ v convolution product of vectors/tensors (§2.4)
A a linear (or bilinear) map between finite-dimensional

complex vector spaces
(§2.6)

‖A‖ operator norm of A (§2.6)

Ã a “numerical approximation” forA (assuming ‖A‖ 6 1),
i.e., a computable function intended to approximate A
on fixed-point inputs

(§2.6)

ε(Ã) worst-case error incurred in approximating A by Ã (§2.6)

C(Ã) worst-case cost of evaluating Ã on a single vector (§2.6)

Table 1. Glossary of notation introduced in Section 2

We define a round-towards-zero function ρ : C → C as follows. First, define
ρ0 : R → Z by ρ0(x) := bxc for x > 0, and ρ0(x) := dxe for x < 0. Then define
ρ0 : C → Z[i] by setting ρ0(x + iy) := ρ0(x) + iρ0(y) for x, y ∈ R. Observe that

|ρ0(u)| 6 |u| and |ρ0(u)− u| <
√

2 for any u ∈ C. Finally, set

ρ(u) := 2−pρ0(2pu), u ∈ C.

Thus |ρ(u)| 6 |u| and |ρ(u)− u| <
√

2 · 2−p for any u ∈ C. Clearly ρ(C◦) ⊂ C̃◦.
Now let V be a nonzero, finite-dimensional vector space over C. In this paper,

every such V is understood to come equipped with a privileged choice of ordered
basis BV = {b0, . . . , bm−1}, where m = dimC V > 1. For the special case V = Cm,
we always take the standard basis; in particular, for V = C the basis is simply {1}.

We define a norm ‖·‖ : V → [0,∞) in terms of the basis BV by setting

‖λ0b0 + · · ·+ λm−1bm−1‖ := max
j
|λj | , λj ∈ C.

This norm satisfies ‖u+ v‖ 6 ‖u‖+‖v‖ and ‖λu‖ = |λ| ‖u‖ for any u, v ∈ V , λ ∈ C.
The unit ball in V is defined to be

V◦ := {u ∈ V : ‖u‖ 6 1} = {λ0b0 + · · ·+ λm−1bm−1 : λj ∈ C◦},
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and we also define

Ṽ◦ := {λ0b0 + · · ·+ λm−1bm−1 : λj ∈ C̃◦}.

We extend ρ to a function ρ : V → V by acting componentwise, i.e., we put

ρ(λ0b0 + · · ·+ λm−1bm−1) :=
∑
j

ρ(λj)bj , λj ∈ C.

Then ‖ρ(u)‖ 6 ‖u‖ and ‖ρ(u)− u‖ <
√

2 · 2−p for any u ∈ V . Clearly ρ(V◦) ⊂ Ṽ◦.
In the special case V = C we have simply ‖u‖ = |u| for any u ∈ C, and the

notations C◦, C̃◦ and ρ : C→ C all agree with their previous definitions.
In the Turing model, an element u ∈ Ṽ◦ is represented by its coordinate vector

with respect to BV , i.e., as a list of m elements of C̃◦, so u occupies O(mp) bits of
storage.

For u ∈ V◦, we systematically use the notation ũ ∈ Ṽ◦ to indicate a fixed-point
approximation for u that has been computed by some algorithm. We write

ε(ũ) := 2p ‖ũ− u‖

for the associated error, measured as a multiple of 2−p (the “unit in the last place”).
For example, we have the following result for addition and subtraction in V .

Lemma 2.1 (Addition/subtraction). Recall that m = dimC V > 1. Given as

input u, v ∈ Ṽ◦, in time O(mp) we may compute an approximation w̃ ∈ Ṽ◦ for
w := 1

2 (u± v) ∈ V◦ such that ε(w̃) < 1.

Proof. Consider first the case m = 1, i.e., assume that V = C. Let u = 2−pa and
v = 2−pb where a, b ∈ Z[i] and |a| , |b| 6 2p. Since the denominators of the real
and imaginary parts of 2pw = 1

2 (a ± b) are at most 2, we have |ρ0(2pw)− 2pw| 6
(( 1

2 )2+( 1
2 )2)1/2 = 1√

2
. Define w̃ := ρ(w) = 2−pρ0(2pw). We may clearly compute w̃

in time O(p), and ε(w̃) = 2p ‖ρ(w)− w‖ 6 1√
2
< 1. The general case (m > 1)

follows by applying the same argument in each coordinate. �

Occasionally we will encounter a situation in which we have computed an approx-
imation ũ ∈ Ṽ◦ for some u ∈ V , and we wish to compute an approximation for cu,
where c > 1 is a fixed integer scaling factor for which it is known that cu ∈ V◦.
A typical example is the final scaling step in an inverse FFT. Unfortunately, the
obvious approximation cũ might lie just outside V◦. To simplify subsequent esti-
mates, it will be technically convenient to adjust cũ slightly to obtain a vector that
is guaranteed to lie in V◦. This adjustment may be carried out as follows.

Lemma 2.2 (Scaling). Recall that m = dimC V > 1. Let u ∈ V and let c be an
integer such that 1 6 c 6 2p. Assume that ‖u‖ 6 c−1, and let v := cu ∈ V◦. Given

as input c and an approximation ũ ∈ Ṽ◦, in time O(mp1+δ) we may compute an

approximation ṽ ∈ Ṽ◦ such that ε(ṽ) < 2c · ε(ũ) + 3.

Proof. Again it suffices to handle the case m = 1, V = C.
We first compute 2−p(x+ iy) := cũ in time O(p1+δ). Note that cũ might not lie

in C̃◦, but x and y are certainly integers with O(p) bits.
Next we compute a := x2 + y2 in time O(p1+δ), so that a1/2 = 2p |cũ|. If a 6 22p

then already cũ ∈ C̃◦, so we may simply take ṽ := cũ, and then ε(ṽ) = 2p |ṽ − v| =
2p |cũ− cu| = c · ε(ũ) < 2c · ε(ũ) + 3.
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Suppose instead that a > 22p (i.e., cũ /∈ C̃◦). We then compute b := da1/2e > 2p,
again in time O(p1+δ). Let z := 2pcũ/b = (x + iy)/b and ṽ := ρ(z). Note that
ṽ = 2−p(x′ + iy′) where x′ = ρ0(2px/b) and y′ = ρ0(2py/b), so we may compute ṽ
in time O(p1+δ). We have |ṽ| 6 |z| = 2p |cũ| /b 6 2p |cũ| /a1/2 = 1, so indeed

ṽ ∈ C̃◦. Moreover,

|ṽ − v| 6 |ṽ − z|+ |z − cũ|+ |cũ− v| = |ρ(z)− z|+ |z| |1− b
2p |+ c |ũ− u| ,

so ε(ṽ) <
√

2 + |2p − b|+ c · ε(ũ). We also have 2p < b < a1/2 + 1 = 2p |cũ|+ 1, so

0 < b− 2p < 2p |cũ| − 2p + 1 6 2p |cu| − 2p + 2p |cũ− cu|+ 1 6 c · ε(ũ) + 1.

We conclude that |2p − b| < c ·ε(ũ)+1, and therefore ε(ṽ) < 2c ·ε(ũ)+(1+
√

2). �

2.3. Coefficient rings. By a coefficient ring we mean a finite-dimensional com-
mutative C-algebra R with identity (together with a privileged basis BR). We are
chiefly interested in the following two examples:

(1) Complex case: C itself, with the basis {1}.
(2) Synthetic case: for a power of two r > 2, the ring R := C[y]/(yr + 1), with

the basis {1, y, . . . , yr−1}, so that ‖λ0 + λ1y + · · ·+ λr−1y
r−1‖ = maxj |λj |.

Let R be a coefficient ring of dimension r > 1 with basis BR, and let n > 1. Then
Rn is a vector space of dimension nr over C. We associate to Rn the “nested” basis
formed by concatenating n copies of BR. In particular, we have ‖u‖ = maxj ‖uj‖
for u = (u0, . . . , un−1) ∈ Rn. In place of the awkward expressions (Rn)◦ and

˜(Rn)◦, we write more compactly Rn◦ and R̃n◦ . In the Turing model, an element of

R̃n◦ occupies O(nrp) bits of storage.
Now let d > 1 and n1, . . . , nd > 1. We write ⊗di=1R

ni , or just ⊗iRni when d
is understood, for the tensor product Rn1 ⊗R · · · ⊗R Rnd . It is a free R-module of
rank n1 · · ·nd, and also a vector space over C of dimension n1 · · ·ndr. An element
u ∈ ⊗iRni may be regarded as a d-dimensional array of elements of R of size
n1 × · · · × nd. For indices j1, . . . , jd where 0 6 ji < ni, we write uj1,...,jd ∈ R for
the (j1, . . . , jd)-th component of u.

We associate to ⊗iRni the nested basis consisting of n1 · · ·nd copies of BR
arranged in lexicographical order, i.e., listing the coordinates of u in the order
(u0,...,0, u0,...,1, . . . , un1−1,...,nd−1). Observe then that ‖u‖ = maxj1,...,jd ‖uj1,...,jd‖.
Instead of (⊗iRni)◦ and (⊗i R̃ni)◦, we write ⊗iRni

◦ and ⊗i R̃ni
◦ . In the Turing

model, an element of ⊗i R̃ni
◦ occupies O(n1 · · ·ndrp) bits of storage.

Let u ∈ ⊗iRni . By an i-slice of u we mean a one-dimensional sub-array of u,
consisting of the entries uj1,...,jd where j1, . . . , ji−1, ji+1, . . . , jd are held fixed and
ji varies over {0, . . . , ni − 1}. We will occasionally wish to apply a given algorithm

separately to each of the n1 · · ·ni−1ni+1 · · ·nd distinct i-slices of some u ∈ ⊗i R̃ni
◦ .

To accomplish this in the Turing model, we must first rearrange the data so that
each i-slice is stored contiguously. In the lexicographical order specified above, this
amounts to performing n1 · · ·ni−1 matrix transpositions of size ni × (ni+1 · · ·nd).
This data rearrangement may be performed in time O(n1 · · ·ndrp log ni) (assuming
ni > 2) using a fast matrix transposition algorithm [4, Appendix].

2.4. DFTs and convolutions. Let R be a coefficient ring and let n > 1. Through-
out the paper we adopt the convention that for a vector u = (u0, . . . , un−1) ∈ Rn
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and an integer j, the expression uj always means uj mod n. For u, v ∈ Rn, we define
the pointwise product u · v ∈ Rn and the convolution product u ∗ v ∈ Rn by

(u · v)j := ujvj , (u ∗ v)j :=

n−1∑
k=0

ukvj−k, 0 6 j < n.

Then (Rn, ·) and (Rn, ∗) are both commutative rings, isomorphic respectively to
the direct sum of n copies of R, and the polynomial ring R[x]/(xn − 1).

A principal n-th root of unity in R is an element ω ∈ R such that ωn = 1,∑n−1
k=0(ωj)k = 0 for every integer j 6= 0 (mod n), and ‖ωu‖ = ‖u‖ for all u ∈ R.

(The last condition is not part of the standard definition, but it is natural in our
setting where R carries a norm, and essential for error estimates.) We define an
associated R-linear DFT map Fω : Rn → Rn by the formula

(Fωu)j :=
1

n

n−1∑
k=0

ω−jkuk, u ∈ Rn, 0 6 j < n.

It is immediate that ω−1 (= ωn−1) is also a principal n-th root of unity in R, and
that ‖Fωu‖ 6 ‖u‖ for all u ∈ Rn.

Lemma 2.3 (Convolution formula). For any u, v ∈ Rn we have

1

n
u ∗ v = nFω−1(Fωu · Fωv).

Proof. For each j, the product (Fωu)j(Fωv)j is equal to

1

n2

n−1∑
s=0

n−1∑
t=0

ω−j(s+t)usvt =
1

n2

n−1∑
k=0

ω−jk
∑

s+t=k (mod n)

usvt =
1

n
Fω(u ∗ v)j ,

so Fω(u ∗ v) = nFωu · Fωv. On the other hand, for any w ∈ Rn we have

(Fω−1(Fωw))j =
1

n2

n−1∑
s=0

ωsj
n−1∑
t=0

ω−stwt =
1

n2

n−1∑
t=0

( n−1∑
s=0

ωs(j−t)
)
wt =

1

n
wj ,

so Fω−1Fωw = 1
nw. Taking w := u ∗ v, we obtain the desired result. �

For the two coefficient rings mentioned earlier, we choose ω as follows:

(1) Complex case. For R = C, let n > 1 be any positive integer, and put
ω := e2πi/n. We denote Fω in this case by Fn : Cn → Cn. Explicitly,

(Fnu)j =
1

n

n−1∑
k=0

e−2πijk/nuk, u ∈ Cn, 0 6 j < n.

We also write F∗n : Cn → Cn for Fω−1 .

(2) Synthetic case. For R = R = C[y]/(yr + 1) where r > 2 is a power of two,
let n be any positive divisor of 2r. Then ω := y2r/n is a principal n-th root
of unity in R. We denote Fω in this case by Gn : Rn → Rn. Explicitly,

(Gnu)j =
1

n

n−1∑
k=0

y−2rjk/nuk, u ∈ Rn, 0 6 j < n.

We also write G∗n : Rn → Rn for Fω−1 .
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All of the concepts introduced above may be generalised to the multidimensional
setting as follows. For u, v ∈ ⊗iRni , we define the pointwise product u · v ∈ ⊗iRni

and the convolution product u ∗ v ∈ ⊗iRni by

(u · v)j1,...,jd := uj1,...,jdvj1,...,jd ,

(u ∗ v)j1,...,jd :=

n1−1∑
k1=0

· · ·
nd−1∑
kd=0

uk1,...,kdvj1−k1,...,jd−kd .

Then (⊗iRni , ·) is isomorphic to the direct sum of n1 · · ·nd copies of R, and
(⊗iRni , ∗) is isomorphic to R[x1, . . . , xd]/(x

n1
1 − 1, . . . , xnd

d − 1).
Let ω1, . . . , ωd ∈ R be principal roots of unity of orders n1, . . . , nd. We define an

associated R-linear d-dimensional DFT map by taking the tensor product (over R)
of the corresponding one-dimensional DFTs, that is,

Fω1,...,ωd
:= ⊗i Fωi : ⊗iRni → ⊗iRni .

Explicitly, for u ∈ ⊗iRni we have

(Fω1,...,ωd
u)j1,...,jd =

1

n1 · · ·nd

n1−1∑
k1=0

· · ·
nd−1∑
kd=0

ω−j1k11 · · ·ω−jdkdd uk1,...,kd .

The multidimensional analogue of Lemma 2.3 is

(2.1)
1

n1 · · ·nd
u ∗ v = n1 · · ·ndFω−1

1 ,...,ω−1
d

(Fω1,...,ωd
u · Fω1,...,ωd

v),

and is proved in exactly the same way.
In particular, in the “complex case” we obtain the d-dimensional transform

Fn1,...,nd
:= ⊗i Fni

: ⊗iCni → ⊗i Cni

(take ωi := e2πi/ni), and in the “synthetic case” the d-dimensional transform

Gn1,...,nd
:= ⊗i Gni

: ⊗i Rni → ⊗i Rni

(where each ni is a divisor of 2r, and ωi := y2r/ni). We define similarly F∗n1,...,nd
:=

⊗i F∗ni
and G∗n1,...,nd

:= ⊗i G∗ni
.

Any algorithm for computing Fn may easily be adapted to obtain an algorithm
for computing F∗n, by adjusting signs appropriately. A similar remark applies to Gn,
and to the multidimensional generalisations of these maps. For the rest of the paper,
we make use of these observations without further comment.

2.5. Fixed-point multiplication. We now consider the complexity of multipli-
cation in the coefficient rings R = C and R = R. In both cases we reduce the
problem to integer multiplication. For the case R = R (Lemma 2.5) we will ex-
press the complexity in terms of M(·) itself, as this eventually feeds into the main
recurrence inequality for M(·) that we prove in Section 5.3. For the case R = C
(Lemma 2.4) we do not need the best possible bound; to simplify the subsequent
complexity analysis, we prefer to use the crude estimate M(p) = O(p1+δ).

Lemma 2.4 (Multiplication in C). Given as input u, v ∈ C̃◦, in time O(p1+δ) we

may compute an approximation w̃ ∈ C̃◦ for w := uv ∈ C◦ such that ε(w̃) < 2.
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Proof. We take w̃ := ρ(w), so that ε(w̃) = 2p ‖ρ(w)− w‖ <
√

2 < 2. Writing u =
2−pa and v = 2−pb where a, b ∈ Z[i] and |a| , |b| 6 2p, we have w̃ = 2−pρ0(2−pab).
Thus w̃ may be computed in timeO(p1+δ) by multiplying out the real and imaginary
parts of a and b, and then summing and rounding appropriately. �

For the case R = R, observe first that for any u, v ∈ R we have ‖uv‖ 6 r ‖u‖ ‖v‖,
as each coefficient of uv = (u0 + · · · + ur−1y

r−1)(v0 + · · · + vr−1y
r−1) mod yr + 1

is a sum of exactly r terms of the form ±uivj . In particular, if u, v ∈ R◦, then
uv/r ∈ R◦.

Lemma 2.5 (Multiplication in R). Assume that r > 2 is a power of two and that

r < 2p−1. Given as input u, v ∈ R̃◦, in time 4M(3rp) +O(rp) we may compute an

approximation w̃ ∈ R̃◦ for w := uv/r ∈ R◦ such that ε(w̃) < 2.

Proof. Write 2pu = U0(y) + iU1(y) and 2pv = V0(y) + iV1(y) where Uj and Vj are
polynomials in Z[y] of degree less than r and whose coefficients lie in the interval
[−2p, 2p]. Then 22prw = W0(y) + iW1(y) where

W0 := (U0V0 − U1V1) mod yr + 1, W1 := (U0V1 + U1V0) mod yr + 1.

We use the following algorithm, which is based on the well-known Kronecker sub-
stitution technique [14, Corollary 8.27].

(1) Pack coefficients. Evaluate Uj(2
3p), Vj(2

3p) ∈ Z for j = 0, 1. As the input
coefficients have at most p bits, this amounts to concatenating the coefficients with
appropriate zero-padding (or one-padding in the case of negative coefficients), plus
some carry and sign handling. The cost of this step is O(rp).

(2) Multiply in Z. Let Wj,k := UjVk ∈ Z[y] for j, k ∈ {0, 1}. Compute the four
integer products Wj,k(23p) = Uj(2

3p)Vk(23p). The cost of this step is 4M(3rp).
(3) Unpack coefficients. For each pair (j, k), the coefficients of Wj,k ∈ Z[y] are

bounded in absolute value by r(2p)2 < 23p−1, so Wj,k may be recovered from the
integer Wj,k(23p) in time O(rp). (In more detail: the constant term of Wj,k lies in
the interval (−23p−1, 23p−1), so it is easily read off the last 3p bits ofWj,k(23p). After
stripping off this term, one proceeds to the linear term, and so on.) We then deduce
the polynomials W0 = (W0,0−W1,1) mod yr+1 and W1 = (W0,1+W1,0) mod yr+1
in time O(rp).

(4) Scale and round. Let c` := (W0)` + i(W1)` ∈ Z[i] for ` ∈ {0, . . . , r − 1}.
Then w = (22pr)−1(c0 + · · · + cr−1y

r−1), so, recalling that ‖w‖ = ‖uv‖ /r 6 1,
we have |c`| 6 22pr for each `. In time O(rp) we may compute w̃ := ρ(w) =

2−p
∑r−1
`=0 ρ0((2pr)−1c`)y

` (each division by 2pr amounts to a bit shift). Since

‖w‖ 6 1, we have w̃ ∈ R̃◦, and as usual, ε(w̃) = 2p ‖ρ(w)− w‖ <
√

2 < 2. �

2.6. Linear and bilinear maps. Let A : V → W be a C-linear map between
finite-dimensional vector spaces V and W . We define the operator norm of A to be

‖A‖ := sup
v∈V◦

‖Av‖ .

Example 2.6. For the normalised DFT map Fω defined in Section 2.4, we have
‖Fω‖ 6 1. The same therefore holds for Fn, F∗n, Gn, G∗n, and for the multivariate
generalisations of these maps. (In fact, all of these maps have norm exactly 1.)
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Assume now that ‖A‖ 6 1. By a numerical approximation for A we mean a

function Ã : Ṽ◦ → W̃◦ that is computed by some algorithm, typically via fixed-
point arithmetic. The error of the approximation is defined to be

ε(Ã) := max
v∈Ṽ◦

2p ‖Ãv −Av‖ .

We write C(Ã) for the time required to compute Ãv from v (taking the maximum

over all possible inputs v ∈ Ṽ◦).

Lemma 2.7 (Error propagation). Let A : V → W be a C-linear map such that

‖A‖ 6 1, and let v ∈ V◦. Let Ã : Ṽ◦ → W̃◦ be a numerical approximation for A,

and let ṽ ∈ Ṽ◦ be an approximation for v. Then w̃ := Ãṽ ∈ W̃◦ is an approximation
for w := Av ∈W◦ such that ε(w̃) 6 ε(Ã) + ε(ṽ).

Proof. We have

ε(w̃) = 2p ‖Ãṽ −Av‖ 6 2p ‖Ãṽ −Aṽ‖+ 2p ‖Aṽ −Av‖

6 ε(Ã) + 2p ‖A‖ ‖ṽ − v‖ 6 ε(Ã) + ε(ṽ). �

Lemma 2.7 yields the following estimate for compositions of linear maps.

Corollary 2.8 (Composition). Let A : U → V and B : V → W be C-linear maps

such that ‖A‖ , ‖B‖ 6 1. Let Ã : Ũ◦ → Ṽ◦ and B̃ : Ṽ◦ → W̃◦ be numerical ap-

proximations. Then C̃ := B̃Ã : Ũ◦ → W̃◦ is a numerical approximation for C :=
BA : U →W such that ε(C̃) 6 ε(B̃) + ε(Ã).

Proof. For any u ∈ Ũ◦, if we set v := Au ∈ V◦ and ṽ := Ãu ∈ Ṽ◦, then

2p ‖B̃Ãu− BAu‖ = 2p ‖B̃ṽ − Bv‖ 6 ε(B̃) + ε(ṽ) 6 ε(B̃) + ε(Ã). �

The above definitions and results may be adapted to the case of a C-bilinear
map A : U × V →W as follows. We define

‖A‖ := sup
u∈U◦, v∈V◦

‖A(u, v)‖ .

If ‖A‖ 6 1, then a numerical approximation for A is a function Ã : Ũ◦ × Ṽ◦ → W̃◦
that is computed by some algorithm. The error of the approximation is

ε(Ã) := max
u∈Ũ◦, v∈Ṽ◦

2p ‖Ã(u, v)−A(u, v)‖ ,

and C(Ã) denotes the time required to compute Ã(u, v) from u and v. Lemma 2.7
has the following analogue in the bilinear case.

Lemma 2.9 (Bilinear error propagation). Let A : U × V → W be a C-bilinear

map with ‖A‖ 6 1, and let u ∈ U◦, v ∈ V◦. Let Ã : Ũ◦ × Ṽ◦ → W̃◦, ũ ∈ Ũ◦,

ṽ ∈ Ṽ◦ be approximations. Then w̃ := Ã(ũ, ṽ) ∈ W̃◦ is an approximation for

w := A(u, v) ∈W◦ such that ε(w̃) 6 ε(Ã) + ε(ũ) + ε(ṽ).

Proof. We have

ε(w̃) 6 2p(‖Ã(ũ, ṽ)−A(ũ, ṽ)‖+ ‖A(ũ, ṽ)−A(u, ṽ)‖+ ‖A(u, ṽ)−A(u, v)‖)

= 2p(‖Ã(ũ, ṽ)−A(ũ, ṽ)‖+ ‖A(ũ− u, ṽ)‖+ ‖A(u, ṽ − v)‖)

6 ε(Ã) + 2p ‖A‖ ‖ũ− u‖ ‖ṽ‖+ 2p ‖A‖ ‖u‖ ‖ṽ − v‖

6 ε(Ã) + ε(ũ) + ε(ṽ). �
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The following application of Lemma 2.9 will frequently be useful.

Corollary 2.10. Let u, v ∈ C◦, and let w := uv ∈ C◦. Given as input approxima-
tions ũ, ṽ ∈ C̃◦, in time O(p1+δ) we may compute an approximation w̃ ∈ C̃◦ such
that ε(w̃) < ε(ũ) + ε(ṽ) + 2.

Proof. Define a bilinear map A : C× C→ C by A(u, v) := uv. Then ‖A‖ 6 1, and

Lemma 2.4 yields an approximation Ã : C̃◦ × C̃◦ → C̃◦ such that ε(Ã) < 2 and

C(Ã) = O(p1+δ). Applying Lemma 2.9 to A and Ã yields the desired result. �

2.7. Tensor products. The following result shows how to construct numerical
approximations for tensor products of linear maps over a coefficient ring.

Lemma 2.11 (Tensor products). Let R be a coefficient ring of dimension r > 1.
Let d > 1, let m1, . . . ,md, n1, . . . , nd > 2, and put M :=

∏
i max(mi, ni). For

i ∈ {1, . . . , d}, let Ai : Rmi → Rni be an R-linear map with ‖Ai‖ 6 1, and let

Ãi : R̃mi
◦ → R̃ni

◦ be a numerical approximation. Let A := ⊗iAi : ⊗iRmi → ⊗iRni

(note that automatically ‖A‖ 6 1).

Then we may construct a numerical approximation Ã : ⊗i R̃mi
◦ → ⊗i R̃ni

◦ such

that ε(Ã) 6
∑
i ε(Ãi) and

C(Ã) 6M
∑
i

C(Ãi)
max(mi, ni)

+O(Mrp logM).

Proof. For i ∈ {0, 1, . . . , d}, let

U i := Rn1 ⊗ · · · ⊗Rni−1 ⊗Rni ⊗Rmi+1 ⊗ · · · ⊗Rmd .

In particular, U0 = ⊗iRmi and Ud = ⊗iRni . The map A : U0 → Ud admits a
decomposition A = Bd · · · B1 where Bi : U i−1 → U i is given by

Bi := In1
⊗ · · · ⊗ Ini−1

⊗Ai ⊗ Imi+1
⊗ · · · ⊗ Imd

(here Ik denotes the identity map on Rk). In other words, Bi acts by applying
Ai separately on each i-slice. Explicitly, for any u ∈ U i−1 we have (Biu)j1,...,jd =
(Aiv)ji where v ∈ Rmi is the vector defined by vk := uj1,...,ji−1,k,ji+1,...,jd . In
particular, ‖vk‖ 6 1 whenever ‖u‖ 6 1, whence ‖Bi‖ 6 1.

We may define an approximation B̃i : Ũ i−1◦ → Ũ i◦ by mimicking the above formula

for Bi; i.e., for u ∈ Ũ i−1◦ we define (B̃iu)j1,...,jd := (Ãiv)ji , where v ∈ R̃mi
◦ is given

by vk := uj1,...,ji−1,k,ji+1,...,jd . We may evaluate B̃i by first rearranging the data so

that each i-slice is stored contiguously (see Section 2.3), then applying Ãi to each
i-slice, and finally rearranging the data back into the correct order. We then define
Ã := B̃d · · · B̃1.

We clearly have ε(B̃i) = ε(Ãi) for all i, so by Corollary 2.8 we obtain ε(Ã) 6∑
i ε(B̃i) =

∑
i ε(Ãi). The cost of the data rearrangement at stage i is

O(n1 · · ·ni−1nimi+1 · · ·mdrp log ni) +O(n1 · · ·ni−1mimi+1 · · ·mdrp logmi)

= O(Mrp (log ni + logmi)),

so the total over all i is O(Mrp logM). The total cost of the invocations of Ãi is∑
i

n1 · · ·ni−1mi+1 · · ·md C(Ãi) 6
∑
i

M

max(mi, ni)
C(Ãi). �
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2.8. Exponential functions. The next three results concern the approximation
of real and complex exponentials. We use the following facts:

• We may compute an n-bit approximation for π, i.e., an integer u such that
|2−nu− π| 6 2−n, in time O(n1+δ). Similarly for log 2.
• For z lying in a fixed bounded subset of C, we may compute an n-bit

approximation for ez in time O(n1+δ). More precisely, for any constant
C > 0, given integers x and y such that |2−n(x+iy)| 6 C, we may compute
integers u and v such that |2−n(u+ iv)− exp(2−n(x+ iy))| 6 2−n in time
O(n1+δ).

In fact these tasks may be performed in time O(M(n) log n); see [3, Ch. 6–7] or [5,
Ch. 4]).

Lemma 2.12 (Complex exponentials). Let k > 1 and j be integers such that
0 6 j < k, and let w := e2πij/k ∈ C◦. Given j and k as input, we may compute an
approximation w̃ ∈ C̃◦ such that ε(w̃) < 2 in time O(max(p, log k)1+δ).

Proof. Let p′ := p+ 3. We first compute a p′-bit approximation r̃ for r := 2πj/k ∈
[0, 2π], i.e., so that |r̃ − r| 6 2−p

′
, in time O(max(p, log k)1+δ). We then com-

pute a p′-bit approximation ũ for u := exp(−2 · 2−p
′

+ r̃i) ∈ C◦, i.e., so that

|ũ − u| 6 2−p
′
, in time O(p1+δ) (the 2 · 2−p′ term ensures that ũ lies within the

unit circle). Let η := (−2 · 2−p′ + r̃i) − ri; then |η| 6
√

5 · 2−p′ and |u− w| =

|exp(−2 · 2−p′ + r̃i)− exp(ri)| = |exp(η)− 1| 6 3 · 2−p′ , so |ũ − w| 6 4 · 2−p′ . We

finally round ũ towards zero to obtain the desired approximation w̃ ∈ C̃◦ for w at
the original precision p. This yields ε(w̃) 6 4 · 2p−p′ +

√
2 < 2. �

Lemma 2.13 (Real exponentials, negative case). Let k > 1 and j > 0 be inte-
gers, and let w := e−πj/k ∈ C◦. Given j and k as input, we may compute an
approximation w̃ ∈ C̃◦ such that ε(w̃) < 2 in time O(max(p, log(j + 1), log k)1+δ).

Proof. We first check whether j > kp in time O(max(log p, log(j + 1), log k)1+δ). If
so, then e−πj/k < e−πp < 2−p, so we may simply take w̃ := 0.

Otherwise, we may assume that 0 6 j/k 6 p. In this case, we first compute
an integer τ > 0 such that τ 6 π

log 2 j/k 6 τ + 2 in time O(max(log p, log k)1+δ)

(note that τ = O(p)). Let p′ := p + 2 and z := τ log 2 − πj/k ∈ [−2 log 2, 0].

We next compute a p′-bit approximation z̃ 6 0 for z, i.e., so that |z̃ − z| 6 2−p
′
,

in time O(max(p, log k)1+δ). We then compute a p′-bit approximation ũ 6 1 for

u := ez̃ 6 1, i.e., so that |ũ− u| 6 2−p
′
, in time O(p1+δ). Observe that |ez̃ − ez| 6

2−p
′
, so |ũ − ez| 6 2 · 2−p′ . We finally divide ũ by 2τ (a bit shift) and round the

result towards zero to obtain the desired approximation w̃ ∈ C̃◦ for w at the original
precision p. Since |2−τ ũ − w| = |2−τ ũ − 2−τez| 6 2 · 2−τ−p′ 6 2 · 2−p′ , we obtain

ε(w̃) 6 2 · 2p−p′ + 1 < 2. �

Lemma 2.14 (Real exponentials, positive case). Let k > 1, j > 0 and σ > 0 be
integers, and assume that eπj/k 6 2σ and σ 6 2p. Let w := 2−σeπj/k ∈ C◦. Given
j, k and σ as input, we may compute an approximation w̃ ∈ C̃◦ such that ε(w̃) < 2
in time O(max(p, log k)1+δ).

Proof. The hypotheses automatically ensure that j < kp. We now proceed along
similar lines to the proof of Lemma 2.13: we first compute an integer τ > 0 near
σ − π

log 2j/k (again with τ = O(p)), and then at suitably increased precision we
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approximate successively z := (τ − σ) log 2 + πj/k and ez = 2τ−σeπj/k, and finally
divide by 2τ and round towards zero to obtain an approximation for 2−σeπj/k at
the original precision p. We omit the details, which are similar to the proof of
Lemma 2.13. �

3. Complex transforms for power-of-two sizes

Let p > 100 be the working precision as defined in Section 2. The goal of this sec-
tion is to construct an efficiently computable approximation for the d-dimensional
complex transform Ft1,...,td : ⊗iCti → ⊗iCti (see Section 2.4) in the special case
that the ti are powers of two. The following theorem is proved at the end of the
section.

Theorem 3.1 (Power-of-two complex transforms). Let d > 2 and let t1, . . . , td be
powers of two such that td > · · · > t1 > 2. Let T := t1 · · · td and assume that T < 2p.
Then we may construct a numerical approximation F̃t1,...,td : ⊗i C̃ti◦ → ⊗i C̃ti◦ for

Ft1,...,td such that ε(F̃t1,...,td) < 8T log2 T and

C(F̃t1,...,td) <
4T

td
M(3tdp) +O(Tp log T + Tp1+δ).

Throughout this section we set

r := td, R := C[y]/(yr + 1).

The basic idea of the proof of Theorem 3.1 is to use Bluestein’s method [2] to reduce
the DFT to the problem of computing a (d − 1)-dimensional cyclic convolution of
size t1×· · ·×td−1 over R, and then to perform that convolution by taking advantage
of the synthetic roots of unity in R. The M(·) term in the complexity bound arises
from the pointwise multiplications in R. The O(Tp log T ) term covers the cost
of the synthetic FFTs over R, and the O(Tp1+δ) term covers various auxiliary
operations.

For the rest of this section, ⊗i Rti always means ⊗d−1i=1 Rti (with d− 1 factors),
and ⊗iCti always means ⊗di=1 Cti (with d factors). These are both vector spaces
of dimension T = t1 · · · td over C.

3.1. Transforms and convolutions over R. We begin with the one-dimensional
case. Recall that we have defined a synthetic transform Gt : Rt → Rt (see Section
2.4) for each positive divisor t of 2r, i.e., for t ∈ {1, 2, 4, 8, . . . , 2r}.
Lemma 3.2 (FFT over R). For t ∈ {2, 4, 8, . . . , 2r}, we may construct a nu-

merical approximation G̃t : R̃t
◦ → R̃t

◦ for Gt such that ε(G̃t) 6 log2 t and C(G̃t) =
O(trp log t).

Proof. First observe that G1 : R → R is the identity map, and admits the trivial
approximation G̃1 : R̃◦ → R̃◦ given by G̃1u := u. This satisfies ε(G̃1) = 0 and

C(G̃1) = O(rp).
Now let t ∈ {2, 4, 8, . . . , 2r}, and assume that we have already constructed

G̃t/2 : R̃
t/2
◦ → R̃

t/2
◦ such that ε(G̃t/2) 6 log2(t/2). Given as input u ∈ R̃t

◦, we
will use the well-known Cooley–Tukey algorithm [7] to approximate Gtu ∈ Rt

◦.
For any j ∈ {0, . . . , t− 1}, observe that

(Gtu)j =
1

t

t−1∑
k=0

y−2rjk/tuk =
1

t

t
2−1∑
k=0

y−2rjk/tuk +
1

t

t
2−1∑
k=0

y−2rj(k+
t
2 )/tuk+ t

2
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=
1

t/2

t
2−1∑
k=0

y−2rjk/t
uk + (−1)juk+ t

2

2
,

where we have used the fact that yr = −1. For ` ∈ {0, . . . , t2 − 1} this implies that

(Gtu)2` = (Gt/2v)` and (Gtu)2`+1 = (Gt/2w)`, where v, w ∈ R
t/2
◦ are given by

vk := 1
2 (uk + uk+ t

2
), wk := 1

2y
−2rk/t(uk − uk+ t

2
), 0 6 k < t/2.

We may therefore use the following algorithm.
(1) Butterflies. For k ∈ {0, . . . , t2 − 1}, we use Lemma 2.1 to compute approx-

imations ṽk, w̃
′
k ∈ R̃◦ for vk and w′k := 1

2 (uk − uk+ t
2
) such that ε(ṽk), ε(w̃′k) < 1.

We then compute an approximation w̃k ∈ R̃◦ for wk = y−2rk/tw′k; as yr = −1, this
amounts to cyclically permuting the coefficients of w̃′k (and adjusting signs), and
clearly ε(w̃k) = ε(w̃′k) < 1. The cost of this step is O(trp).

(2) Recurse. We compute G̃t/2ṽ and G̃t/2w̃ using the previously constructed

map G̃t/2, and interleave the results (at a further cost of O(trp)) to obtain the

output vector G̃tu ∈ R̃t
◦ defined by (G̃tu)2` := (G̃t/2ṽ)` and (G̃tu)2`+1 := (G̃t/2w̃)`

for ` ∈ {0, . . . , t2 − 1}.
Recall from Example 2.6 that ‖Gn‖ 6 1 for all n. Applying Lemma 2.7 for

A = Gt/2 and using the induction hypothesis, we obtain

2p ‖(G̃tu)2` − (Gtu)2`‖ = 2p ‖(G̃t/2ṽ)` − (Gt/2v)`‖

6 ε(G̃t/2) + ε(ṽ) 6 log2(t/2) + 1 = log2 t.

A similar argument applies for (G̃tu)2`+1. Therefore ε(G̃t) 6 log2 t.

As for the complexity, the above discussion shows that C(G̃t) < 2C(G̃t/2) +

O(trp). Together with the base case C(G̃1) = O(rp), this immediately yields the

bound C(G̃t) = O(trp log t) for t > 2. �

Combining Lemmas 3.2 and 2.11, we obtain the following approximation for the
multidimensional transform Gt1,...,td−1

: ⊗i Rti → ⊗i Rti (defined in Section 2.4).

Proposition 3.3 (Multivariate FFT over R). Let t1, . . . , td and T be as in Theorem

3.1. We may construct a numerical approximation G̃t1,...,td−1
: ⊗i R̃ti

◦ → ⊗i R̃ti
◦ for

Gt1,...,td−1
such that ε(G̃t1,...,td−1

) < log2 T and C(G̃t1,...,td−1
) = O(Tp log T ).

Proof. Since ti > 2, Lemma 3.2 yields approximations G̃ti for i = 1, . . . , d− 1. We
apply Lemma 2.11 (with d replaced by d−1), taking R := R, mi := ti, ni := ti and
Ai := Gti for i ∈ {1, . . . , d− 1}. The quantity M defined in Lemma 2.11 is given by
M = t1 · · · td−1 = T/r (recall that r = td throughout Section 3). We obtain

ε(G̃t1,...,td−1
) 6

d−1∑
i=1

ε(G̃ti) 6
d−1∑
i=1

log2 ti = log2(T/r) < log2 T

and

C(G̃t1,...,td−1
) 6

T

r

d−1∑
i=1

C(G̃ti)
ti

+O

(
T

r
rp log

T

r

)

6
T

r

d−1∑
i=1

O(rp log ti) +O(Tp log T )
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= O

(
T

r
rp log

T

r

)
+O(Tp log T ) = O(Tp log T ). �

Next we will use the above result to approximate the normalised (d− 1)-dimen-
sional convolution map MR : ⊗i Rti ×⊗i Rti → ⊗i Rti defined by

MR(u, v) :=
1

T
u ∗ v, u, v ∈ ⊗i Rti ,

where ∗ is the convolution operator defined in Section 2.4. Note that ‖MR‖ 6 1;
indeed, each component of u ∗ v is a sum of t1 · · · td−1 = T/r terms of the form
uj1,...,jd−1

vk1,...,kd−1
, and we saw just before Lemma 2.5 that ‖ab‖ 6 r ‖a‖ ‖b‖ for

all a, b ∈ R.

Proposition 3.4 (Convolution over R). Let t1, . . . , td and T be as in Theorem 3.1.

We may construct a numerical approximation M̃R : ⊗i R̃ti
◦ ×⊗i R̃ti

◦ → ⊗i R̃ti
◦ for

MR such that ε(M̃R) < 3T log2 T + 2T + 3 and

C(M̃R) <
4T

r
M(3rp) +O(Tp log T + Tp1+δ).

Proof. We are given as input u, v ∈ ⊗i R̃ti
◦ . Let w :=MR(u, v) = 1

T u ∗ v ∈ ⊗i R
ti
◦

be the exact (normalised) convolution. According to (2.1) we have

rw =
1

t1 · · · td−1
u ∗ v = (t1 · · · td−1)G∗t1,...,td−1

((Gt1,...,td−1
u) · (Gt1,...,td−1

v)).

Dividing both sides by r = td, we obtain w = (T/r)w′ where

w′ := G∗t1,...,td−1

(
1

r
(Gt1,...,td−1

u) · (Gt1,...,td−1
v)

)
∈ ⊗i Rti

◦ .

We now use the following algorithm to approximate w.
(1) Forward transforms. We invoke Proposition 3.3 to compute approximations

ũ′, ṽ′ ∈ ⊗i R̃ti
◦ for u′ := Gt1,...,td−1

u ∈ ⊗i Rti
◦ and v′ := Gt1,...,td−1

v ∈ ⊗i Rti
◦ , with

ε(ũ′), ε(ṽ′) < log2 T . The cost of this step (and step (3) below) is O(Tp log T ).
(2) Pointwise multiplications. Let A : R × R → R be the normalised multi-

plication map defined by A(a, b) := ab/r; the bound ‖ab‖ 6 r ‖a‖ ‖b‖ implies that

‖A‖ 6 1. Lemma 2.5 yields an approximation Ã : R̃◦×R̃◦ → R̃◦ such that ε(Ã) < 2

(note that r = td 6 T/2 < 2p−1). Applying Ã to each component of ũ′ and ṽ′, we

obtain an approximation z̃ ∈ ⊗i R̃ti
◦ for z := 1

ru
′ · v′ ∈ ⊗i Rti

◦ . This step requires
time

T

r
(4M(3rp) +O(rp)) =

4T

r
M(3rp) +O(Tp),

and by Lemma 2.9 we have

ε(z̃) 6 ε(Ã) + ε(ũ′) + ε(ṽ′) < 2 + log2 T + log2 T = 2 log2 T + 2.

(3) Inverse transform. We use Proposition 3.3 again to compute an approxi-

mation w̃′ ∈ ⊗i R̃ti
◦ for w′ = G∗t1,...,td−1

z ∈ ⊗i Rti
◦ . Recall from Example 2.6 that

‖G∗t1,...,td−1
‖ 6 1. By Lemma 2.7, we obtain

ε(w̃′) 6 ε(G̃∗t1,...,td−1
) + ε(z̃) < log2 T + (2 log2 T + 2) = 3 log2 T + 2.

(4) Scaling. Recall that w = (T/r)w′ and that ‖w‖ 6 1. We may therefore apply

Lemma 2.2 (with c := T/r 6 2p) to compute an approximation w̃ ∈ ⊗i R̃ti
◦ such

that
ε(w̃) < 2(T/r)ε(w̃′) + 3 6 T (3 log2 T + 2) + 3
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(here we have used the hypothesis that r = td > 2). The cost of this scaling step is

O(Tp1+δ). Finally we take M̃R(u, v) := w̃. �

3.2. Transforms and convolutions over C. We now transfer the results of the
previous section from R to C. Consider the normalised d-dimensional convolution
map MC : ⊗iCti ×⊗i Cti → ⊗iCti defined by

MC(u, v) :=
1

T
u ∗ v, u, v ∈ ⊗iCti .

As before we have ‖MC‖ 6 1.

Proposition 3.5 (Convolution over C). Let t1, . . . , td and T be as in Theorem 3.1.

We may construct a numerical approximation M̃C : ⊗i C̃ti◦ × ⊗i C̃ti◦ → ⊗i C̃ti◦ for

MC such that ε(M̃C) < 3T log2 T + 2T + 15 and

C(M̃C) <
4T

r
M(3rp) +O(Tp log T + Tp1+δ).

Proof. Let ζ := eπi/r and consider the C-linear map S : Cr → R defined by

S(w0, . . . , wr−1) := w0 + ζw1y + · · ·+ ζr−1wr−1y
r−1.

Then S is a isomorphism of rings between (Cr, ∗) and R = C[y]/(yr + 1); in fact,
recalling that (Cr, ∗) ∼= C[x]/(xr−1), we may regard S as the map sending x to ζy.
Moreover, S induces an isomorphism of rings

T : (⊗di=1 Cti , ∗)→ (⊗d−1i=1 Rti , ∗).

Indeed, identifying these rings respectively as C[x1, . . . , xd]/(x
t1
1 − 1, . . . , xtdd − 1)

and C[x1, . . . , xd−1, y]/(xt11 − 1, . . . , x
td−1

d−1 − 1, yr + 1), the isomorphism T sends

u(x1, . . . , xd−1, xd) to u(x1, . . . , xd−1, ζy). Writing U := T −1 for the inverse iso-
morphism, we obtain

MC(u, v) = U(MR(T u, T v)), u, v ∈ ⊗i Cti .
Now we construct numerical approximations for the maps just introduced. We

may construct an approximation S̃ : C̃r◦ → R̃◦ by first using Lemma 2.12 to compute

an approximation ζ̃j ∈ C̃◦ for each ζj := ζj = eπij/r ∈ C◦, and then using Corol-

lary 2.10 to compute an approximation w̃′j ∈ C̃◦ for each product w′j := ζjwj ∈ C◦.
We obtain ε(ζ̃j) < 2 and then ε(w̃′j) < ε(ζ̃j)+2 < 4, whence ε(S̃) < 4. We also have

C(S̃) = O(rmax(p, log r)1+δ) = O(rp1+δ), since log r = O(p) (recall from the proof

of Proposition 3.4 that r < 2p−1). Then, applying S̃ separately to the coefficient

of each xj11 · · ·x
jd−1

d−1 , we obtain an approximation T̃ : ⊗di=1 C̃ti◦ → ⊗
d−1
i=1 R̃ti

◦ such

that ε(T̃ ) < 4 and C(T̃ ) = O((T/r)rp1+δ) = O(Tp1+δ). The inverse is handled

similarly; we obtain an approximation Ũ : ⊗d−1i=1 R̃ti
◦ → ⊗di=1 C̃ti◦ such that ε(Ũ) < 4

and C(Ũ) = O(Tp1+δ).

Finally, given as input u, v ∈ ⊗i C̃ti◦ , we define M̃C(u, v) := Ũ(M̃R(T̃ u, T̃ v)).
We already observed that ‖MR‖ 6 1, and clearly ‖T ‖ , ‖U‖ 6 1, so Lemma 2.7,
Lemma 2.9 and Proposition 3.4 together imply that

ε(M̃C) 6 ε(Ũ) + ε(M̃R) + ε(T̃ ) + ε(T̃ ) < (3T log2 T + 2T + 3) + 4 + 4 + 4.

The estimate for C(M̃C) follows immediately from Proposition 3.4. �

Finally we use Bluestein’s trick [2] to prove the main result of this section.
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Proof of Theorem 3.1. We are given as input u ∈ ⊗i C̃ti◦ . We wish to approximate
its transform v := Ft1,...,tdu ∈ ⊗iCti◦ , which is given explicitly by

vj1,...,jd =
1

T

t1−1∑
k1=0

· · ·
td−1∑
kd=0

e−2πi(j1k1/t1+···+jdkd/td)uk1,...,kd , 0 6 ji < ti.

For any j1, . . . , jd ∈ Z set

(3.1) aj1,...,jd := eπi(j
2
1/t1+···+j

2
d/td) ∈ C◦.

The identity −2jk = (j − k)2 − j2 − k2 implies that

(3.2) vj1,...,jd = āj1,...,jd
1

T

t1−1∑
k1=0

· · ·
td−1∑
kd=0

aj1−k1,...,jd−kd(āk1,...,kduk1,...,kd),

where ·̄ denotes complex conjugation. Moreover, we observe that aj1,...,jd is periodic

in each ji with period ti, as eπi(ji+ti)
2/ti = eπij

2
i /ti(eπi)2ji+ti = eπij

2
i /ti (using the

fact that ti is even). Therefore, regarding (3.1) as defining a vector a ∈ ⊗iCti◦ , we
may rewrite (3.2) in the form

v = ā · ( 1
T a ∗ (ā · u)).

We now use the following algorithm.
(1) Compute a. Recalling that each ti divides r = td, we may write

aj1,...,jd = e2πiηj1,...,jd
/2r, ηj1,...,jd :=

r

t1
j21 + · · ·+ r

td
j2d (mod 2r).

Iterating over the tuples (j1, . . . , jd) in lexicographical order, we may compute
ηj1,...,jd in amortised time O(log r) = O(p) per tuple (for example by repeatedly
using the identity (j + 1)2 = j2 + (2j + 1), and the fact that each multiplication
by r/ti is a bit shift), and then use Lemma 2.12 to compute an approximation

ãj1,...,jd ∈ C̃◦ such that ε(ãj1,...,jd) < 2 in time O(p1+δ). We thus obtain ã ∈ ⊗i C̃ti◦
with ε(ã) < 2 in time O(Tp1+δ).

(2) Pre-multiply. We use Corollary 2.10 to compute an approximation b̃ ∈ ⊗i C̃ti◦
for b := ā · u with ε(b̃) < ε(ã) + 2 < 4 in time O(Tp1+δ).

(3) Convolution. We use Proposition 3.5 to compute an approximation c̃ ∈ ⊗i C̃ti◦
for c := 1

T a ∗ b. This requires time (4T/r)M(3rp) + O(Tp log T + Tp1+δ), and by
Lemma 2.9 we have

ε(c̃) 6 ε(M̃C) + ε(ã) + ε(b̃) < 3T log2 T + 2T + 21.

(4) Post-multiply. We invoke Corollary 2.10 again to compute an approximation

ṽ ∈ ⊗i C̃ti◦ for v = ā · c such that

ε(ṽ) 6 ε(ã) + ε(c̃) + 2 < 3T log2 T + 2T + 25

in time O(Tp1+δ). We have 2T + 25 < 5T log2 T (because T > t1t2 > 4), so

ε(ṽ) < 8T log2 T . Finally we take F̃t1,...,tdu := ṽ. �

Remark 3.6. In the algorithm developed in this section, it is essential that the mul-
tidimensional complex transform be performed “all at once”. If instead we decom-
pose it into one-dimensional transforms in the usual way, and then use Bluestein’s
method to convert each of these to a one-dimensional convolution, this would lead
to an extraneous factor of O(d) on the right hand side of (1.3).
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Remark 3.7. An alternative method for reducing multidimensional complex trans-
forms to synthetic transforms was described in [34]. Briefly, given as input u ∈
C[x1, . . . , xd−1, y]/(xt11 − 1, . . . , x

td−1

d−1 − 1, yr + 1), assume that we wish to evaluate
each xi at the complex ti-th roots of unity, and y at the “odd” complex 2r-th roots
of unity (i.e., roots of yr + 1). We first use (d − 1)-dimensional synthetic trans-
forms to compute the polynomials ui1,...,id−1

(y) := u(y2ri1/t1 , . . . , y2rid−1/td−1 , y) ∈
C[y]/(yr + 1), for all ik ∈ {0, . . . , tk − 1}. It then suffices to compute the one-
dimensional complex DFT of each ui1,...,id−1

(y), which could be done for example
by Bluestein’s method. This alternative method has the same complexity (up to a
constant factor) as the method presented in this section.

4. Gaussian resampling

Let p > 100 be the working precision as defined in Section 2. The aim of this
section is to show how to reduce the problem of approximating a multidimensional
complex transform Fs1,...,sd : ⊗iCsi → ⊗iCsi (defined in Section 2.4), for a given
“source” size s1 × · · · × sd, to the problem of approximating another transform
Ft1,...,td : ⊗iCti → ⊗iCti for a somewhat larger “target” size t1 × · · · × td. (In
Section 5 we will specialise to the case that the si are primes and the ti are powers
of two.) The following theorem is proved at the end of Section 4.3. It may be
strengthened in various ways; see the discussion in Section 4.4.

Theorem 4.1 (Gaussian resampling). Let d > 1, let s1, . . . , sd and t1, . . . , td be
integers such that 2 6 si < ti < 2p and gcd(si, ti) = 1, and let T := t1 · · · td. Let α
be an integer in the interval 2 6 α < p1/2. For each i, let θi := ti/si − 1, and
assume that θi > p/α4.

Then there exist linear maps A : ⊗iCsi → ⊗iCti and B : ⊗i Cti → ⊗iCsi , with
‖A‖ , ‖B‖ 6 1, such that

Fs1,...,sd = 2γBFt1,...,tdA, γ := 2dα2.

Moreover, we may construct numerical approximations Ã : ⊗i C̃si◦ → ⊗i C̃ti◦ and

B̃ : ⊗i C̃ti◦ → ⊗i C̃si◦ such that ε(Ã), ε(B̃) < dp2 and

C(Ã),C(B̃) = O(dTp3/2+δα+ Tp log T ).

This theorem shows that to approximate a transform of size s1 × · · · × sd, one
may first apply Ã, then compute a transform of size t1×· · ·× td, then apply B̃, and
finally multiply by 2γ . The dTp3/2+δα term in the complexity bound arises from
the numerical computations at the heart of the “Gaussian resampling” method.
The Tp log T term covers the cost of various data rearrangements in the Turing
model (this term would not appear if we worked in the Boolean circuit model). In
the application in Section 5, the parameters will be chosen so that the first term is
negligible compared to the O(Tp log T ) cost of evaluating F̃t1,...,td .

Throughout this section we use the notation

[x] := bx+ 1
2c, 〈x〉 := x− [x], x ∈ R.

Thus [x] is the nearest integer to x, rounding upwards in case of a tie, and 〈x〉 is the
corresponding fractional part with − 1

2 6 〈x〉 <
1
2 . For convenience of the reader,

we provide in Table 2 a list of the linear maps appearing in this section and where
they are defined.



24 DAVID HARVEY AND JORIS VAN DER HOEVEN

Fn complex DFT of length n (§2.4)
Fn1,...,nd

complex multidimensional DFT of size n1 × · · · × nd (§2.4)
A, B the main maps we want to construct in Theorem 4.1
S, T resampling maps (§4.1)
Ps, Pt permutation maps (§4.1)
C row-deleting map (§4.2)
T ′ CT (a certain square submatrix of T ) (§4.2)
D a diagonal map (§4.2)
N normalised version of T (§4.2)
E N − I (a map with small norm) (§4.2)
J inverse of N (§4.3)
S ′, J ′, D′ normalised versions of S, J , D (§4.3)

Table 2. Glossary of linear maps appearing in Section 4

4.1. The resampling identity. Throughout Sections 4.1 and 4.2, let s and t > s
be positive integers such that gcd(s, t) = 1, and let α ∈ (0,∞). Recall from
Section 2.4 that uj always means uj mod s if u ∈ Cs, whereas uk always means
uk mod t if u ∈ Ct.

Define “resampling maps” S : Cs → Ct and T : Cs → Ct by

(Su)k := α−1
∑
j∈Z

e−πα
−2s2

(
k
t −

j
s

)2
uj , u ∈ Cs, 0 6 k < t,

(T u)k :=
∑
j∈Z

e−πα
2t2
(
k
t −

j
s

)2
uj , u ∈ Cs, 0 6 k < t.

These sums certainly converge due to the rapid decay of the function e−x
2

. Each
entry (Su)k and (T u)k is a weighted linear combination of u0, . . . , us−1, with the
largest weightings given to those uj for which j/s is closest to k/tmodulo 1. Figure 2
shows examples of the matrices of S and T . They have relatively large entries near
the “diagonal” of slope t/s, and the entries decay rapidly away from the diagonal
according to a Gaussian law. The parameter α controls the rate of decay.

We also define permutation maps Ps : Cs → Cs and Pt : Ct → Ct by

(Psu)j := utj , u ∈ Cs, 0 6 j < s,

(Ptu)k := u−sk, u ∈ Ct, 0 6 k < t.

Then we have the following fundamental identity, which uses S and T to transform
Fs into Ft.

Theorem 4.2 (Resampling identity). We have T PsFs = PtFtS. In other words,
the following diagram commutes:

Cs Cs Cs

Ct Ct Ct

S T

Fs Ps

Ft Pt
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0.5000 0.2280 0.0216 4.3e-4 1.7e-6 3.0e-9 1.7e-6 4.3e-4 0.0216 0.2280
0.3142 0.4795 0.1522 0.0100 1.4e-4 3.9e-7 9.0e-9 7.1e-6 0.0012 0.0428
0.0779 0.3982 0.4230 0.0934 0.0043 4.1e-5 8.1e-8 4.7e-8 2.7e-5 0.0032
0.0076 0.1305 0.4642 0.3432 0.0527 0.0017 1.1e-5 1.6e-8 2.3e-7 9.3e-5
2.9e-4 0.0169 0.2011 0.4977 0.2561 0.0274 6.1e-4 2.8e-6 3.5e-9 1.1e-6
4.5e-6 8.6e-4 0.0344 0.2849 0.4908 0.1757 0.0131 2.0e-4 6.5e-7 5.3e-9
2.7e-8 1.7e-5 0.0023 0.0644 0.3714 0.4452 0.1109 0.0057 6.2e-5 1.4e-7
2.7e-8 1.4e-7 6.2e-5 0.0057 0.1109 0.4452 0.3714 0.0644 0.0023 1.7e-5
4.5e-6 5.3e-9 6.5e-7 2.0e-4 0.0131 0.1757 0.4908 0.2849 0.0344 8.6e-4
2.9e-4 1.1e-6 3.5e-9 2.8e-6 6.1e-4 0.0274 0.2561 0.4977 0.2011 0.0169
0.0076 9.3e-5 2.3e-7 1.6e-8 1.1e-5 0.0017 0.0527 0.3432 0.4642 0.1305
0.0779 0.0032 2.7e-5 4.7e-8 8.1e-8 4.1e-5 0.0043 0.0934 0.4230 0.3982
0.3142 0.0428 0.0012 7.1e-6 9.0e-9 3.9e-7 1.4e-4 0.0100 0.1522 0.4795




1.0000 6.0e-10 1.3e-37 9.8e-84 2.7e-148 5.3e-231 2.7e-148 9.8e-84 1.3e-37 6.0e-10
3.5e-6 0.3227 1.1e-14 1.3e-46 5.4e-97 8.1e-166 1.6e-210 9.2e-132 1.9e-71 1.3e-29
1.5e-22 0.0021 0.0108 2.0e-20 1.3e-56 3.1e-111 2.6e-184 1.1e-190 3.3e-116 3.7e-60
7.6e-50 1.7e-16 0.1339 3.8e-5 3.9e-27 1.4e-67 1.8e-126 8.4e-204 7.1e-172 1.2e-101
4.8e-88 1.6e-40 2.0e-11 0.8819 1.4e-8 7.8e-35 1.6e-79 1.1e-142 2.9e-224 5.0e-154
3.7e-137 1.9e-75 3.7e-32 2.5e-7 0.6049 5.3e-13 1.6e-43 1.8e-92 7.2e-160 2.5e-217
3.4e-197 2.8e-121 8.2e-64 8.6e-25 3.2e-4 0.0432 2.1e-18 3.6e-53 2.2e-106 4.8e-178
3.4e-197 4.8e-178 2.2e-106 3.6e-53 2.1e-18 0.0432 3.2e-4 8.6e-25 8.2e-64 2.8e-121
3.7e-137 2.5e-217 7.2e-160 1.8e-92 1.6e-43 5.3e-13 0.6049 2.5e-7 3.7e-32 1.9e-75
4.8e-88 5.0e-154 2.9e-224 1.1e-142 1.6e-79 7.8e-35 1.4e-8 0.8819 2.0e-11 1.6e-40
7.6e-50 1.2e-101 7.1e-172 8.4e-204 1.8e-126 1.4e-67 3.9e-27 3.8e-5 0.1339 1.7e-16
1.5e-22 3.7e-60 3.3e-116 1.1e-190 2.6e-184 3.1e-111 1.3e-56 2.0e-20 0.0108 0.0021
3.5e-6 1.3e-29 1.9e-71 9.2e-132 1.6e-210 8.1e-166 5.4e-97 1.3e-46 1.1e-14 0.3227



Figure 2. Matrices of S and T for s = 10, t = 13, α = 2. Maximal
entries in each column are shown in bold. All entries are rounded
to the number of significant figures shown.

Proof. Given u ∈ Cs, define a smooth, 1-periodic function fu : R→ C by

fu(x) :=
∑
m∈Z

umg(x− m
s ), g(x) := e−πα

−2s2x2

.

It has an absolutely and uniformly convergent Fourier expansion

fu(x) =
∑
r∈Z

f̂u(r)e2πirx,

where the Fourier coefficients are given by

f̂u(r) =

∫ 1

0

e−2πirxfu(x) dx

=

∫ 1

0

∑
m∈Z

ume
−2πirxg(x− m

s ) dx

=

∫ 1

0

s−1∑
j=0

∑
q∈Z

uje
−2πirxg(x− q − j

s ) dx

=

s−1∑
j=0

uj

∫ ∞
−∞

e−2πirxg(x− j
s ) dx

=

s−1∑
j=0

uje
−2πirj/s

∫ ∞
−∞

e−2πirxg(x) dx.

Using the well-known fact that the Fourier transform of g(x) on R is given by∫ ∞
−∞

e−2πiyxg(x) dx = αs−1e−πα
2s−2y2 , y ∈ R,
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we obtain

f̂u(r) = αe−πα
2s−2r2(Fsu)r, r ∈ Z.

By definition (Su)` = α−1fu(`/t) for any ` ∈ Z, so for any k ∈ {0, . . . , t − 1} we
have

(PtFtSu)k = (FtSu)−sk

= α−1t−1
t−1∑
`=0

e2πisk`/tfu(`/t)

= α−1t−1
t−1∑
`=0

e2πisk`/t
∑
r∈Z

f̂u(r)e2πir`/t

= α−1
∑

r=−sk mod t

f̂u(r)

=
∑

r=−sk mod t

e−πα
2s−2r2(Fsu)r

=
∑
j∈Z

e−πα
2s−2(tj−sk)2(Fsu)tj−sk

=
∑
j∈Z

e−πα
2t2
(
j
s−

k
t

)2
(PsFsu)j

= (T PsFsu)k. �

Remark 4.3. Another interpretation of the above proof is that the measure fu(x) dx

is the convolution of the measures
∑s−1
j=0 ujδj/s and

∑
j∈Z g(x − j) dx on R/Z,

where δx means a unit mass concentrated at x. The key point is that the Fourier
transform maps convolution of measures to pointwise multiplication of their Fourier
coefficients.

Remark 4.4. If the hypothesis gcd(s, t) = 1 is not satisfied, then the results of
Sections 4.1–4.2 still hold as stated. However, in this situation Theorem 4.2 is of no
use, as the map Ps fails to be invertible. For further discussion, see Section 4.4.1.

We conclude this section with a straightforward bound for ‖S‖.

Lemma 4.5. We have ‖S‖ < 1 + α−1.

Proof. For any u ∈ Cs◦ and k ∈ {0, . . . , t− 1}, we have

|(Su)k| 6 α−1
∑
j∈Z

e−πα
−2s2

(
k
t −

j
s

)2
= α−1

∑
j∈Z

e−πα
−2
(
j− skt

)2
= α−1

∑
j∈Z

G(η + j),

where η := 〈−skt 〉 ∈ [− 1
2 ,

1
2 ] and G(x) := e−πα

−2x2

.

First suppose that η ∈ [− 1
2 , 0]. Then G(x) is increasing on (−∞, η) and decreas-

ing on (η + 1,∞), so∫ η

−∞
G(x) dx >

−1∑
j=−∞

G(η + j),

∫ ∞
η+1

G(x) dx >

∞∑
j=2

G(η + j).

For the remaining interval (η, η + 1), we observe that G(x) > G(η + 1) for x ∈
(0, η+1) and G(x) > G(η) for x ∈ (η, 0); but we have additionally G(η) > G(η+1)
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because |η| 6 1
2 6 |η + 1|, so in fact G(x) > G(η+1) on the whole interval (η, η+1).

This implies that
∫ η+1

η
G(x) dx > G(η + 1), and adding the three integrals yields∑

j∈Z
G(η + j) = G(η) +

∑
j 6=0

G(η + j) < 1 +

∫ ∞
−∞

G(x) dx = 1 + α.

A symmetrical argument yields the same bound for the case η ∈ [0, 12 ]. We conclude

that |(Su)k| < α−1(1 + α) = 1 + α−1, and hence ‖S‖ < 1 + α−1. �

4.2. Solving the system. We wish to use Theorem 4.2 to express Fs in terms
of Ft. To do this, we must show how to solve a system of the form T x = y. This
system is overdetermined, as t > s. For fixed α, it turns out that the system
is numerically unstable if t/s is too close to 1, or in other words, if the quantity
θ := t/s − 1 is too close to zero. On the other hand, we will show that imposing
the condition θ > 1/α2 is enough to ensure that the system becomes numerically
tractable, and in this case we may even construct an explicit left inverse for T .

We begin by reducing from a rectangular to a square system. Consider the
function ` 7→ [t`/s], which maps {0, . . . , s− 1} (injectively) into {0, . . . , t− 1}. We
use this to define a map C : Ct → Cs by the formula

(Cu)` := u[t`/s], u ∈ Ct, 0 6 ` < s.

We then set

T ′ := CT : Cs → Cs.
Note that the matrix of T ′ is obtained by deleting t− s rows from the matrix of T .
If we can show that T ′ is invertible, then a left inverse for T is given by (T ′)−1C.

The entries of T ′u are given explicitly by

(T ′u)` = (T u)[t`/s] =
∑
j∈Z

e−πα
2t2
(
1
t

[
t`
s

]
− js
)2
uj =

∑
j∈Z

e−πα
2
(
tj
s −
[
t`
s

])2
uj

=
∑
h∈Z

e−πα
2
(
th
s +β`

)2
u`+h,

where

β` := t`
s −

[
t`
s

]
=
〈
t`
s

〉
, ` ∈ Z.

Observe that β` is periodic in `, i.e., β` = β`′ if ` ≡ `′ (mod s), and that |β`| 6 1
2

for all `.
We normalise T ′ as follows. Let D : Cs → Cs be the diagonal map defined by

(Du)` := d`u`, where d` := eπα
2β2

` for ` ∈ Z. Since β2
` 6

1
4 we have 1 6 d` 6 eπα

2/4,
and in particular

(4.1) ‖D‖ 6 eπα
2/4.

Define

N := T ′D : Cs → Cs.
In other words, the matrix of N is obtained by multiplying the `-th column of the
matrix of T ′ by d`. Explicitly,

(Nu)` =
∑
h∈Z

e−πα
2
(
th
s +β`

)2
d`+hu`+h =

∑
h∈Z

e−πα
2
((
th
s +β`

)2
−β2

`+h

)
u`+h.
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9.6e-923 1.9e-9 9.6e-37 1.1e-83 4.4e-148 1.2e-229 4.4e-148 1.1e-83 9.6e-37 1.9e-9
3.5e-6 1.8e-880 8.0e-14 1.4e-46 8.9e-97 1.9e-164 2.7e-210 1.0e-131 1.4e-70 4.2e-29
7.6e-50 5.2e-16 2.8e-866 4.3e-5 6.4e-27 3.2e-66 3.0e-126 9.6e-204 5.3e-171 3.8e-101
4.8e-88 5.1e-40 1.5e-10 7.4e-909 2.3e-8 1.8e-33 2.6e-79 1.3e-142 2.2e-223 1.5e-153
3.7e-137 6.0e-75 2.7e-31 2.8e-7 1.1e-894 1.2e-11 2.7e-43 2.1e-92 5.4e-159 7.6e-217
3.4e-197 1.5e-177 1.6e-105 4.1e-53 3.4e-18 4.3e-852 5.3e-4 9.7e-25 6.1e-63 8.6e-121
3.7e-137 7.6e-217 5.4e-159 2.1e-92 2.7e-43 1.2e-11 1.1e-894 2.8e-7 2.7e-31 6.0e-75
4.8e-88 1.5e-153 2.2e-223 1.3e-142 2.6e-79 1.8e-33 2.3e-8 7.4e-909 1.5e-10 5.1e-40
7.6e-50 3.8e-101 5.3e-171 9.6e-204 3.0e-126 3.2e-66 6.4e-27 4.3e-5 2.8e-866 5.2e-16
3.5e-6 4.2e-29 1.4e-70 1.0e-131 2.7e-210 1.9e-164 8.9e-97 1.4e-46 8.0e-14 1.8e-880



Figure 3. Matrix of E for s = 10, t = 13, α = 2.

In this last expression, the h = 0 term is simply u`. Therefore, setting E := N −I,
where I : Cs → Cs is the identity map, we have

(Eu)` =
∑

h∈Z\{0}

e−πα
2
((
th
s +β`

)2
−β2

`+h

)
u`+h, u ∈ Cs, 0 6 ` < s.

An example of the matrix of E is shown in Figure 3.
The following estimate is crucial for establishing left-invertibility of T and for

obtaining a fast algorithm for solving the system T x = y.

Lemma 4.6. Assume that α2θ > 1. Then

‖E‖ < 2.01 · e−πα
2θ/2 < 2−α

2θ.

Proof. For any u ∈ Cs◦, the above formula for (Eu)` implies that

|(Eu)`| 6
∑

h∈Z\{0}

e−πα
2
((
th
s +β`

)2
−β2

`+h

)
, 0 6 ` < s.

Since |β`| 6 1
2 <

t
2s , we have | ths + β`| > | ths | − |β`| >

t
s (|h| − 1

2 ). For h 6= 0 we

have |h| − 1
2 >

1
2 > 0, so

( ths + β`)
2 − β2

`+h > (t/s)2(|h| − 1
2 )2 − 1

4

= (1 + θ)2(|h| − 1
2 )2 − 1

4

> (1 + 2θ)(|h| − 1
2 )2 − 1

4

= (|h| − 1
2 )2 − 1

4 + 2θ(|h| − 1
2 )2

> 2θ(|h| − 1
2 )2.

Therefore

|(Eu)`| <
∑

h∈Z\{0}

e−2πα
2θ(|h|− 1

2 )
2

= 2(w1/4 + w9/4 + w25/4 + · · · )

where w := e−2πα
2θ. Since α2θ > 1 we have w 6 e−2π < 0.002, so

|(Eu)`| < 2w1/4(1 + w2 + w6 + · · · ) < 2.01 · w1/4 = 2.01 · e−πα
2θ/2 < 2−α

2θ,

where we have used the fact that 2.01 · e−πx/2 < 2−x for all x > 1. �

Under the hypothesis of Lemma 4.6, we see that ‖E‖ < 1
2 , so N = I + E is

invertible, with inverse given by N−1 = I −E + E2− · · · . Moreover, DN−1C is the
promised left inverse for T , as

(4.2) (DN−1C)T = DN−1T ′ = D(T ′D)−1T ′ = I.
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4.3. Proof of the theorem. We may now prove the following special case of
Theorem 4.1.

Proposition 4.7 (Gaussian resampling in one dimension). Let s and t be integers
such that 2 6 s < t < 2p and gcd(s, t) = 1. Let α be an integer in the interval
2 6 α < p1/2. Let θ := t/s− 1 > 0, and assume that θ > p/α4. Then:

(i) There exist linear maps A : Cs → Ct and B : Ct → Cs with ‖A‖ , ‖B‖ 6 1

such that Fs = 22α
2BFtA.

(ii) We may construct numerical approximations Ã : C̃s◦ → C̃t◦ and B̃ : C̃t◦ → C̃s◦
such that ε(Ã), ε(B̃) < p2 and C(Ã),C(B̃) = O(tp3/2+δα+ tp log t).

Proof of (i). We apply the results of Sections 4.1–4.2 with the given s, t and α.
Lemma 4.5 implies that ‖S‖ < 3

2 . The hypotheses α < p1/2 and θ > p/α4 imply

that α2θ > 1, so Lemma 4.6 yields ‖E‖ < 2.01 · e−π/2 < 0.42. In particular,
N = I + E is invertible and ‖N−1‖ < 1 + 0.42 + (0.42)2 + · · · < 7

4 .

Let J := N−1, and define normalised maps

S ′ := S/2, J ′ := J /2, D′ := D/22α
2−2.

Then ‖S ′‖ < 3
4 < 1 and ‖J ′‖ < 7

8 < 1. By (4.1) we have ‖D‖ 6 eπα2/4 < 21.14α
2

<

22α
2−2, as 1.14x < 2x− 2 for all x > 4; hence also ‖D′‖ < 1.
Now define

A := S ′, B := P−1s D′J ′CPt,
where Ps and Pt are as in Theorem 4.2, and C is as in Section 4.2. Note that Ps is
invertible thanks to the hypothesis gcd(s, t) = 1. It is clear that ‖Pt‖ = ‖P−1s ‖ =
‖C‖ = 1, so ‖A‖ < 1 and ‖B‖ < 1. Moreover, by (4.2) and Theorem 4.2 we have

22α
2

BFtA = P−1s (22α
2−2D′)(2J ′)CPtFt(2S ′)

= P−1s (DN−1C)(PtFtS)

= P−1s (DN−1C)(T PsFs) = P−1s PsFs = Fs. �

We break up the proof of (ii) into several lemmas. We begin with a straightfor-
ward algorithm for approximating D′ (Lemma 4.8). Next we give algorithms for
approximating S ′ = S/2 and E (Lemmas 4.9 and 4.11); these amount to merely
evaluating sufficiently many terms of the defining series, which converge quickly
thanks to the rapid decay of the Gaussian weights. We then give an algorithm for
approximating J ′ = N−1/2, using the series N−1 = I−E+E2−· · · (Lemma 4.12);
here the fast convergence is guaranteed by the bound on ‖E‖ given in Lemma 4.6.

Lemma 4.8. Assume the hypotheses of Proposition 4.7. We may construct a
numerical approximation D̃′ : C̃s◦ → C̃s◦ for D′ such that ε(D̃′) < 4 and C(D̃′) =
O(tp1+δ).

Proof. We are given as input u ∈ C̃s◦. For each ` ∈ {0, . . . , s − 1}, by definition
(D′u)` = d′`u` where

d′` := d`/2
2α2−2 = eπα

2β2
` /22α

2−2 < 1

(the last inequality follows from the estimate ‖D′‖ < 1 in the proof of part (i)
of Proposition 4.7). We may rewrite the rational part of the exponent of d′` as

α2β2
` = α2〈 t`s 〉

2 = α2k`/s
2 for some non-negative integer k` 6 s2/4. As α, s, t

and ` are all integers with O(p) bits (here we have used the hypotheses s, t < 2p
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and α < p1/2), we may compute α2k` and s2 in O(p1+δ) bit operations. Feeding
this as input to Lemma 2.14 (with σ := 2α2− 2 < 2p), we obtain an approximation

d̃′` ∈ C̃◦ such that ε(d̃′`) < 2 in time O(p1+δ). We then use Corollary 2.10 to

compute an approximation z̃` ∈ C̃◦ for z` := d′`u` such that ε(z̃`) < ε(d̃′`) +2 < 4 in

time O(p1+δ). Finally we set (D̃′u)` := z̃`. The total cost over all ` is O(sp1+δ) =
O(tp1+δ). �

Lemma 4.9. Assume the hypotheses of Proposition 4.7. We may construct a
numerical approximation S̃ ′ : C̃s◦ → C̃t◦ for S ′ such that ε(S̃ ′) < 16p and C(S̃ ′) =
O(tp3/2+δα).

Proof. We are given as input u ∈ C̃s◦. For each k = 0, . . . , t − 1 in turn, we
approximate (S ′u)k as follows. By definition

(S ′u)k = ( 1
2Su)k =

∑
j∈Z

1

2
α−1e−πα

−2
(
j− skt

)2
uj .

Let m := dp1/2eα and consider the truncated sum

(4.3) Tk :=
∑∣∣j− skt ∣∣<m

1

2
α−1e−πα

−2
(
j− skt

)2
uj .

Since ‖u‖ 6 1 and α > 2 we have

|(S ′u)k − Tk| 6
∑∣∣j− skt ∣∣>m

1

2
α−1e−πα

−2
(
j− skt

)2
|uj | 6

1

4

∑∣∣j− skt ∣∣>m
e−πα

−2
(
j− skt

)2
.

Let w := e−πα
−2

< 1; then

|(S ′u)k − Tk| 6 1
2 (wm

2

+ w(m+1)2 + w(m+2)2 + · · · )

= 1
2w

m2

(1 + w2m+1 + w4m+4 + · · · ).

Since α < p1/2 we have

wm = e−πdp
1/2e/α 6 e−πp

1/2/α < e−π < 0.05,

so certainly 1 + w2m+1 + w4m+4 + · · · < 2. We conclude that

|(S ′u)k − Tk| < wm
2

6 e−πdp
1/2e2 6 e−πp < 2−p.

Now we explain how to compute a suitable fixed-point approximation for Tk.
There are at most 2m terms in the sum (4.3). Let β := 1

2α
−1, and for each

j appearing in (4.3), let xj := e−πα
−2(j−sk/t)2 , yj := βxj , zj := yjuj , so that

Tk =
∑
j zj . We first compute β̃ := ρ(β) = 2−pρ0(2p−1/α) ∈ C̃◦ in time O(p1+δ);

clearly ε(β̃) = 2p |ρ(β)− β| < 1 (as β is real). Then for each j we perform the
following steps. As s, t, j, k and α are all integers with O(p) bits, the same holds
for the numerator and the denominator of the rational number α−2(j − sk/t)2, so

we may use Lemma 2.13 to compute an approximation x̃j ∈ C̃◦ with ε(x̃j) < 2 in

time O(p1+δ). We then use Corollary 2.10 to compute an approximation ỹj ∈ C̃◦
such that ε(ỹj) < ε(β̃) + ε(x̃j) + 2 < 5, and again to obtain z̃j ∈ C̃◦ such that

ε(z̃j) < ε(ỹj) + 2 < 7, in time O(p1+δ). Finally, we form the sum T̃k :=
∑
j z̃j ; that

is, writing z̃j = 2−paj for integers aj , we compute
∑
j aj and set T̃k := 2−p

∑
j aj .
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Defining (S̃ ′u)k := T̃k, we must check that |T̃k| 6 1 (so that T̃k ∈ C̃◦) and that

2p |T̃k − (S ′u)k| < 16p. For the latter, observe that

2p |T̃k − (S ′u)k| 6 2p |T̃k − Tk|+ 2p |Tk − (S ′u)k|
< (
∑
j 2p |z̃j − zj |) + 1 < (2m) · 7 + 1 = 14m+ 1.

As m < dp1/2ep1/2 6 p+ p1/2 and p > 100, we find that

2p |T̃k − (S ′u)k| 6 14p+ 14p1/2 + 1 < 16p,

as desired. Recalling from the proof of Proposition 4.7(i) that ‖S ′‖ < 3
4 , we also

have

|T̃k| 6 |T̃k − (S ′u)k|+ |(S ′u)k| < 16p · 2−p + ‖S ′‖ ‖u‖ 6 10−26 + 3
4 · 1 < 1.

The cost of the above procedure for each k is O(mp1+δ) = O(p3/2+δα), so the
total over all k is O(tp3/2+δα). �

Remark 4.10. The algorithm in the proof of Lemma 4.9 amounts to multiplying
a vector by a matrix of the type shown in Figure 2, including only those entries
that are numerically significant, which form a strip of width roughly 2m around the
diagonal. In the Turing model we must account for the cost of moving the tape head
to access the input data needed to process each row, i.e., for row k we must access
those uj mod s such that |j − sk

t | < m. For most rows this is straightforward, as the
relevant uj ’s lie in a contiguous interval, and the (k + 1)-th interval is obtained by
shifting the k-th interval O(1) cells to the right. However, for the rows near the top
and bottom of the matrix, namely for k < (t/s)(m− 1) and k > (t/s)(s−m), the
relevant uj actually lie in two intervals separated by a gap of about s−2m cells. For
example, when k = 0, the relevant values are u0, . . . , um−1 and us−m+1, . . . , us−1.
As there are O(mt/s) exceptional rows, the extra cost of jumping over these gaps is
O(mtp) = O(tp3/2α), which still fits within the target time bound. Similar remarks
apply to the proof of Lemma 4.11 below.

Lemma 4.11. Assume the hypotheses of Proposition 4.7. We may construct a
numerical approximation Ẽ : C̃s◦ → C̃s◦ for E such that ε(Ẽ) < 1

3p and C(Ẽ) =

O(tp3/2+δα−1).

Proof. The argument is similar to the proof of Lemma 4.9. Given as input u ∈ C̃s◦,
for each ` = 0, . . . , s− 1 we approximate (Eu)` as follows. By definition

(Eu)` =
∑

h∈Z\{0}

e−πα
2
((
th
s +β`

)2
−β2

`+h

)
u`+h.

As in the proof of Lemma 4.6, for h 6= 0 we have

( ths + β`)
2 − β2

`+h > (t/s)2(|h| − 1
2 )2 − 1

4

> (|h| − 1
2 )2 − 1

4 = |h| (|h| − 1) > (|h| − 1)2.

Let m := d(p/4α2)1/2e = dp1/2/2αe > 1, and consider the truncated sum

(4.4) T` :=
∑

h∈Z\{0}
|h|6m

e−πα
2
((
th
s +β`

)2
−β2

`+h

)
u`+h.
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As ‖u‖ 6 1 we have

|(Eu)` − T`| 6
∑
|h|>m

e−πα
2
((
th
s +β`

)2
−β2

`+h

)
|u`+h| <

∑
|h|>m

e−πα
2(|h|−1)2 .

Let w := e−πα
2

6 e−4π < 10−5; then wm < 10−5 and

|(Eu)` − T`| 6 2(wm
2

+ w(m+1)2 + w(m+2)2 + · · · )

= 2wm
2

(1 + w2m+1 + w4m+4 + · · · )

< 3wm
2

6 3e−πα
2(p/4α2) = 3e−πp/4 < 3 · 2−p.

Now we explain how to approximate T`. The sum (4.4) has exactly 2m terms.

For each h appearing in (4.4), let xh := e−πα
2((th/s+β`)

2−β2
`+h) and zh := xhu`+h,

so that T` =
∑
h zh. As in the proof of Lemma 4.9, we may use Lemma 2.13 to

compute an approximation x̃h ∈ C̃◦ such that ε(x̃h) < 2 in time O(p1+δ). Using

Corollary 2.10, we then compute z̃h ∈ C̃◦ such that ε(z̃h) < ε(x̃h) + 2 < 4. Finally

we set T̃` :=
∑
h z̃h. We have

2p |T̃` − (Eu)`| 6 2p |T̃` − T`|+ 2p |T` − (Eu)`|
< (
∑
h 2p |z̃h − zh|) + 3 < (2m) · 4 + 3 = 8m+ 3.

As m 6 (p1/2/2α) + 1 6 1
4p

1/2 + 1 and p > 100, we find that

2p |T̃` − (Eu)`| < 2p1/2 + 11 < 1
3p.

Recalling that ‖E‖ < 0.42 (see the proof of Proposition 4.7(i)), it follows that

|T̃`| 6 |T̃` − (Eu)`|+ |(Eu)`| < 1
3p · 2

−p + ‖E‖ ‖u‖ < 10−28 + 0.42 · 1 < 1,

so we may define (Ẽu)` := T̃` ∈ C̃◦. The cost of the above procedure for each ` is
O(mp1+δ). The hypothesis α < p1/2 implies that m 6 1

2p
1/2α−1 +1 = O(p1/2α−1),

so the total cost over all ` is O(tp3/2+δα−1). �

Lemma 4.12. Assume the hypotheses of Proposition 4.7. We may construct a
numerical approximation J̃ ′ : C̃s◦ → C̃s◦ for J ′ such that ε(J̃ ′) < 3

4p
2 and C(J̃ ′) =

O(tp3/2+δα).

Proof. We are given as input u ∈ C̃s◦. Let v := u/2 ∈ Cs◦, and define v(j) := Ejv ∈
Cs◦ for j > 0 (recall that ‖E‖ < 0.42). We wish to approximate

J ′u = (N−1/2)u = N−1v = v − Ev + E2v − · · · = v(0) − v(1) + v(2) − · · · .

Let n := dp/α2θe = dps/α2(t − s)e > 1. We compute a sequence of approxima-

tions ṽ(0), . . . , ṽ(n−1) ∈ C̃s◦ as follows. First set ṽ(0) := ρ(v(0)) = 2−pρ0(2p−1u) ∈
C̃s◦, so that ε(ṽ(0)) < 2. Then compute in sequence ṽ(j) := Ẽ ṽ(j−1) ∈ C̃s◦ for
j = 1, . . . , n− 1, using Lemma 4.11. We claim that ε(ṽ(j)) < 2

3p for each j. This is
clear for j = 0. For j > 1 it follows by induction, as

ε(ṽ(j)) = 2p ‖ṽ(j) − v(j)‖ = 2p ‖Ẽ ṽ(j−1) − Ev(j−1)‖

6 2p ‖Ẽ ṽ(j−1) − E ṽ(j−1)‖+ 2p ‖E ṽ(j−1) − Ev(j−1)‖

6 ε(Ẽ) + ‖E‖ ε(ṽ(j−1)) < 1
3p+ 1

2 ·
2
3p = 2

3p.
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Finally, define J̃ ′u := ṽ(0)− ṽ(1)+· · ·± ṽ(n−1). Then, as ‖v(j)‖ 6 ‖Ej‖ ‖v‖ 6 1
2 ‖E‖

j

for all j, we have

2p ‖J̃ ′u− J ′u‖ 6
n−1∑
j=0

2p ‖ṽ(j) − v(j)‖+ 2p
∞∑
j=n

‖v(j)‖ < 2
3np+

2p ‖E‖n

2(1− ‖E‖)
.

< 2
3np+ 2p ‖E‖n .

We already saw in the proof of Proposition 4.7(i) that α2θ > 1; this implies that

n 6 p, and also (via Lemma 4.6) that ‖E‖n < 2−α
2θn 6 2−p. Thus

2p ‖J̃ ′u− J ′u‖ < 2
3p

2 + 1 < 3
4p

2

(since p > 100). This also shows that J̃ ′u ∈ C̃s◦, as

‖J̃ ′u‖ 6 ‖J ′u‖+ ‖J̃ ′u− J ′u‖ < ‖J ′‖ ‖u‖+ 3
4p

2 · 2−p < 7
8 · 1 + 10−26 < 1,

where the estimate ‖J ′‖ < 7
8 again comes from the proof of Proposition 4.7(i).

In the above algorithm, the bulk of the work consists of n− 1 invocations of Ẽ .
The hypothesis θ > p/α4 implies that

n 6
p

α2θ
+ 1 6 α2 + 1,

so the total cost is O(tnp3/2+δα−1) = O(tp3/2+δα). �

Now we may complete the proof of Proposition 4.7.

Proof of Proposition 4.7 (ii). For Ã we simply take Ã := S̃ ′ where S̃ ′ is as described

in Lemma 4.9; then ε(Ã) < 16p < p2 (as p > 100), and C(Ã) = O(tp3/2+δα).

For B̃ we take B̃ := P̃−1s D̃′J̃ ′C̃P̃t, where D̃′ and J̃ ′ are as described in Lem-

mas 4.8 and 4.12, and where C̃ : C̃t◦ → C̃s◦, P̃−1s : C̃s◦ → C̃s◦ and P̃t : C̃t◦ → C̃t◦ are the
maps performing the obvious data rearrangements corresponding to C, P−1s and Pt,
namely

(C̃u)` := u[t`/s], u ∈ C̃t◦, 0 6 ` < s,

(P̃−1s u)j := u(t−1 mod s)j , u ∈ C̃s◦, 0 6 j < s,

(P̃tu)k := u−sk, u ∈ C̃t◦, 0 6 k < t.

These do not perform any arithmetic in C̃◦ so ε(C̃) = ε(P̃−1s ) = ε(P̃t) = 0. By

Corollary 2.8 we obtain ε(B̃) 6 ε(D̃′) + ε(J̃ ′) < 4 + 3
4p

2 < p2.

As for the complexity, first observe that C̃ simply copies its input in order,
skipping t − s unwanted entries, so C(C̃) = O(tp). To compute P̃−1s u for u ∈ C̃s◦,
we use a “label-and-sort” algorithm: we first construct the list of ordered pairs
(tj mod s, uj) for j = 0, . . . , s − 1 in time O(tp) (each label occupies O(p) bits as
s < 2p), then sort the list by the first entry using merge sort in time O(tp log t) [31],
and finally extract the second entries to obtain the desired output in time O(tp).

Thus C(P̃−1s ) = O(tp log t), and similarly C(P̃t) = O(tp log t). Altogether we have

C(B̃) = C(D̃′) + C(J̃ ′) +O(tp log t) = O(tp1+δ + tp3/2+δα+ tp log t). �

Finally we show how to deduce the general case from the one-dimensional case.
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Proof of Theorem 4.1. Let s1, . . . , sd and t1, . . . , td be as in the statement of the
theorem. Applying Proposition 4.7 for each i, we obtain maps Ai : Csi → Cti
and Bi : Cti → Csi with ‖Ai‖ , ‖Bi‖ 6 1 such that Fsi = 22α

2BiFtiAi, and ap-

proximations Ãi : C̃si◦ → C̃ti◦ and B̃i : C̃ti◦ → C̃si◦ such that ε(Ãi), ε(B̃i) < p2 and

C(Ãi),C(B̃i) = O(tip
3/2+δα+ tip log ti).

Now observe that

Fs1,...,sd = ⊗i Fsi = 22dα
2

(⊗i Bi)(⊗i Fti)(⊗iAi) = 22dα
2

BFt1,...,tdA,
where A := ⊗iAi : ⊗iCsi → ⊗i Cti and B := ⊗i Bi : ⊗iCti → ⊗i Csi . Applying
Lemma 2.11 (with R := C, r := 1, mi := si, ni := ti), we may construct an

approximation Ã : ⊗i C̃si◦ → ⊗i C̃ti◦ such that ε(Ã) 6
∑
i ε(Ãi) < dp2. Moreover,

let M be as in Lemma 2.11; then M =
∏
i max(si, ti) = t1 · · · td = T , so

C(Ã) < T
∑
i

C(Ãi)
ti

+O(Tp log T )

< T
∑
i

O(p3/2+δα+ p log ti) +O(Tp log T )

= O(dTp3/2+δα+ Tp log T ).

We may similarly construct an approximation B̃ satisfying exactly the same error
and cost bounds, and this completes the proof. �

4.4. Further remarks. Our presentation of the Gaussian resampling technique
has been optimised in favour of giving the simplest possible proof of the main
M(n) = O(n log n) bound. In this section we outline several ways in which these
results may be improved and generalised, with an eye towards practical applications.

4.4.1. Minor technical issues. In our presentation we insisted that α be an integer
and that α > 2. Neither of these restrictions are essential; they were made for
technical reasons to simplify certain proofs.

Similarly, the assumption gcd(s, t) = 1 is not necessary. We briefly outline what
modifications must be made to handle the case g := gcd(s, t) > 1. For 0 6 h < g,
define maps Ps,h : Cs → Cs/g, Pt,h : Ct → Ct/g and Th : Cs/g → Ct/g by

(Ps,hu)j := utj+h, u ∈ Cs, 0 6 j < s/g,

(Pt,hu)k := u−sk+h, u ∈ Ct, 0 6 k < t/g,

(Thu)k :=
∑
j∈Z

e−πα
2t2
(
k
t −

j
s−

h
st

)2
uj , u ∈ Cs/g, 0 6 k < t/g.

Then one may prove (analogously to Theorem 4.2) that ThPs,hFs = Pt,hFtS for
each h. In other words, for u ∈ Cs, the matrix Th gives a system of linear equations
that relate the coefficients (FtSu)j and (Fsu)j for those j congruent to h modulo g.
One may use this to prove an analogue of Theorem 4.1, by first constructing a left
inverse for each Th along the lines of Section 4.2.

4.4.2. Faster system solving. The iterative method used in Lemma 4.12 to approx-
imate J = N−1 (i.e., to solve the system T x = y) has complexity O(tp5/2+δ/α3θ).
To ensure that this step does not dominate the O(tp3/2+δα) complexity of approx-
imating S (Lemma 4.9), we were compelled to introduce the hypothesis θ > p/α4.
On the other hand, to make the target DFT of length t as cheap as possible, it
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is desirable for θ to be as close to zero as possible. Together, these considerations
imply that we cannot take α smaller than about p1/4. (Indeed, in Section 5, for
fixed d, we do take α = Θ(p1/4) for this very reason.) For the choice α = Θ(p1/4),
the overall complexity in Proposition 4.7 is O(tp7/4+δ).

A better complexity bound may be obtained by precomputing an LU decom-
position for N , and then solving the system directly. The cost of the precompu-
tation is O(tp2+δ/α2) (assuming classical matrix arithmetic, while exploiting the
circular banded structure), and then the cost of each application of J becomes
O(tp3/2+δ/α). This allows us to relax the condition θ > p/α4 to merely θ > 1/α2.
Taking α = Θ(1), the overall complexity in Proposition 4.7 (discounting the pre-
computation) falls to O(tp3/2+δ). We did not use this method in our presenta-
tion because the error analysis is considerably more intricate than for the iterative
method.

After making this modification, it would be interesting to investigate whether
this method is competitive for practical computations of complex DFTs of length s
when s is a large prime. One would choose a smooth transform length t somewhat
larger than s, say 1.25s < t < 1.5s, and use the algorithm to reduce the desired
DFT of length s to a DFT of length t; the latter could be handled via existing
software libraries implementing the Cooley–Tukey algorithm. For large enough s,
perhaps around 220 or 230, we expect that the invocations of S̃ and J̃ would be
quite cheap compared to the FFT of length t. Indeed, S̃ can be computed in a
single pass over the input vector, and J̃ in two passes (one for each of the L and U
matrices), so they have excellent locality. It is conceivable that a highly optimised
implementation could outperform existing software libraries, which handle trans-
forms of prime length by techniques such as Rader’s algorithm [38]. Such techniques
introduce a large constant factor overhead that does not arise in the method just
sketched.

4.4.3. Comparison with the Dutt–Rokhlin method. There is an enormous literature
on “non-uniform FFTs” (sometimes called “non-equispaced FFTs”), going back to
the seminal paper of Dutt and Rokhlin [11]. They consider transforms of the type

(4.5) vj :=

t−1∑
k=0

e2πiωkyjuk, 0 6 j < t.

The ordinary “uniform” DFT may be regarded as the special case where ωk := k
and yj := j/t, but the Dutt–Rokhlin algorithms may be applied in cases where
the frequencies ωk are not necessarily integers, and/or the sample points yj are
not necessarily integer multiples of 1/t. In these cases the algorithms reduce the
problem to an ordinary FFT of length t (or in some variants, a small multiple of t).
The complexity, counting floating-point operations, is O(t log t+ tp), where p is the
desired precision in bits.

If we now take instead ωk := k and yj := j/s, where s is the “source” transform
length, we see that (4.5) is exactly a DFT of length s (apart from some inconse-
quential zero-padding), so the Dutt–Rokhlin algorithms may be used to compute a
DFT of length s by means of an FFT of length t. Inspection of their algorithms in
this case reveals them to be essentially equivalent to our method in the special case
that α = Θ(p1/2).



36 DAVID HARVEY AND JORIS VAN DER HOEVEN

For example, consider [11, Algorithm 2], which corresponds roughly to a “trans-
posed” version of our algorithm. Step 3 of that algorithm is analogous to approx-
imating S (see Lemma 4.9). For the choice α = Θ(p1/2), the complexity for this
step is O(tp2+δ) bit operations, corresponding to the O(tp) term in their complex-
ity bound. Step 2 corresponds to our Ft, and yields the O(t log t) term. The most
interesting point of comparison is Step 1, which corresponds roughly to solving the
system T x = y. The choice α = Θ(p1/2) implies that this system is essentially diag-
onal, i.e., the off-diagonal entries of T decay so rapidly that for numerical purposes
they may be discarded. Solving the system is therefore trivial: their Step 1 consists
of simply dividing each coefficient by the corresponding diagonal entry of T (in the
literature these are often called “scale factors”). This step contributes only O(t)
floating-point operations.

The reason that Dutt and Rokhlin are (in effect) unable to take α smaller than
about p1/2 is essentially due to the approximation error committed when they
truncate the Gaussian, for example in [11, Theorem 2.7]. Our Theorem 4.1 may
be viewed as an “exact” replacement for that theorem. Rather than truncate the
Gaussian, we take into account the effect of the Gaussian tail, which manifests as
the off-diagonal entries of our T matrix. For α considerably smaller than p1/2,
these entries are numerically significant and cannot be ignored.

In our algorithm, assuming that we use the LU decomposition method mentioned
in Section 4.4.2, as α decreases from Θ(p1/2) to Θ(1) we see that the complexity of
approximating S decreases from O(tp) to O(tp1/2) floating-point operations, and
the complexity of approximating J (i.e., solving the T system) increases from O(t)
to O(tp1/2) floating-point operations. When α = Θ(1) they are balanced, and the
overall complexity drops to O(t log t+ tp1/2); the last term improves on the Dutt–
Rokhlin bound by a factor of p1/2. Note that the Dutt–Rokhlin bound is not strong
enough for our application to integer multiplication; using their bound, the error
term in Proposition 5.2 would grow to O(n(log n)1+δ) which is unacceptably large.

Of course, our discussion has only considered the case corresponding to the DFT
of length s, i.e., the choice yj := j/s. An interesting question is whether the bound

O(t log t + tp1/2) can be proved for the general non-equispaced case, and if so,
whether this method outperforms the Dutt–Rokhlin algorithm in practice.

5. The main algorithm

In this section we present the main integer multiplication algorithm. We actually
give a family of algorithms, parameterised by a dimension parameter d > 2. Let

n0 := 2d
12

> 24096,

and suppose that we wish to multiply integers with n bits. For n < n0, we may
use any convenient base-case multiplication algorithm, such as the classical O(n2)
algorithm. For n > n0 we will describe a recursive algorithm that reduces the
problem to a collection of multiplication problems of size roughly n1/d. We will
show that this algorithm achieves M(n) = O(n log n), provided that d > 1729.

5.1. Parameter selection. Henceforth we assume that n > n0. We first discuss
the computation of several parameters depending on n that will be needed later.

Let

(5.1) b := dlog2 ne > d12 > 4096
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be the “chunk size”, and let the working precision be

(5.2) p := 6b = 6dlog2 ne > 6d12 > 24576 > 100.

Define

(5.3) α := d(12d2b)1/4e.

Clearly α > 2, and as d 6 b1/12 and b > 4096, we also have

(5.4) α 6 d121/4b7/24e 6 1.87 · b7/24 + 1 < 2b7/24 < p1/2.

As in Theorem 4.1, set

(5.5) γ := 2dα2 < 2b1/12 · 4b7/12 = 8b2/3.

Let T be the unique power of two lying in the interval

(5.6) 4n/b 6 T < 8n/b,

and let r be the unique power of two in the interval

(5.7) T 1/d 6 r < 2T 1/d.

We certainly have b 6 4n1/2, so

(5.8) r > T 1/d > (4n/b)1/d > (n1/2)1/d > n1/d
2

> n1/d
2

0 > 2d
10

.

We now construct a factorisation T = t1 · · · td satisfying the hypotheses of The-
orem 3.1. Let d′ := log2(rd/T ). As T 6 rd < 2dT we have 1 6 rd/T < 2d and
hence 0 6 d′ < d. Define

t1, . . . , td′ :=
r

2
, td′+1, . . . , td := r.

Then td > · · · > t1 > 2 and

t1 · · · td = (r/2)d
′
rd−d

′
= rd/2d

′
= T.

Also

(5.9) T < 8n/b < n 6 2b < 2p,

so the hypotheses of Theorem 3.1 are indeed satisfied. The parameters b, p, α, γ,
T , r and t1, . . . , td may all be computed in time (log n)O(1).

Our next task is to choose distinct primes s1, . . . , sd that are slightly smaller
than the corresponding t1, . . . , td. In a moment we will use Theorem 4.1 to reduce
a transform of size s1×· · ·×sd to a transform of size t1×· · ·× td; to avoid excessive
data expansion in this reduction, we must ensure that the ratio t1 · · · td/s1 · · · sd is
not too large. On the other hand, to satisfy the requirements of the theorem, we
must also ensure that the individual ratios ti/si are not too close to 1. We will
achieve this by means of the following result.

Lemma 5.1. Let η ∈ (0, 14 ) and let x > e2/η. Then there are at least 1
2ηx/ log x

primes q in the interval (1− 2η)x < q 6 (1− η)x.

Proof. Let ϑ(y) :=
∑
q6y log q (sum taken over primes) denote the usual Chebyshev

function. According to [39, Thm. 4], for all y > 563 we have

y − y

2 log y
< ϑ(y) < y +

y

2 log y
.
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As the function y/ log y is increasing for y > 563, we see that

y − x

2 log x
< ϑ(y) < y +

x

2 log x
, 563 6 y 6 x.

Applying this result for y0 := (1 − 2η)x > x/2 > e8/2 > 563, and then again for
y1 := (1− η)x > 3x/4 > 563, we obtain

ϑ(y1)− ϑ(y0) > y1 −
x

2 log x
− y0 −

x

2 log x
= ηx− x

log x
> ηx− x

2/η
=
ηx

2

and hence ∑
y0<q6y1

1 >
1

log x

∑
y0<q6y1

log q =
ϑ(y1)− ϑ(y0)

log x
>

ηx

2 log x
. �

Let us apply Lemma 5.1 with

(5.10) η :=
1

4d
6

1

8

and x := r/2, noting that (5.8) implies that r/2 > 2d
10−1 > e8d = e2/η. We find

that there are at least

1

8d
· r/2

log(r/2)
>

1

16d
· r

log r
>

1

16d
· 2d

10

log(2d10)
=

2d
10

(16 log 2)d11
> d > d′

primes q in the interval

(1− 2η)
r

2
< q 6 (1− η)

r

2
.

Using Eratosthenes’ sieve, we may find d′ such primes s1, . . . , sd′ in time r1+o(1) =
o(n). Applying Lemma 5.1 again, with the same η but now with x := r > e2/η, we
find that there are at least d > d− d′ primes q in the interval

(1− 2η)r < q 6 (1− η)r.

Again, we may find d− d′ such primes sd′+1, . . . , sd in time o(n). These two collec-
tions of primes are disjoint, as

(1− η)
r

2
<
r

2
<

3r

4
6 (1− 2η)r.

In summary, we have found d distinct primes s1, . . . , sd such that

(5.11) (1− 2η)ti < si 6 (1− η)ti, i ∈ {1, . . . , d}.

Setting S := s1 · · · sd < T , we see that

(5.12)
S

T
> (1− 2η)d =

(
1− 1

2d

)d
>

1

2
,

as (1− x)d > 1− dx for all x ∈ (0, 1).
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5.2. DFTs and convolutions for coprime sizes. The following result com-
bines Theorems 3.1 and 4.1 to obtain an approximation for the complex transform
Fs1,...,sd : ⊗i Csi → ⊗i Csi (defined in Section 2.4). Recall that the working preci-
sion was chosen to be p := 6b = 6dlog2 ne.

Proposition 5.2. We may construct a numerical approximation F̃s1,...,sd : ⊗i C̃si◦ →
⊗i C̃si◦ for Fs1,...,sd such that ε(F̃s1,...,sd) < 2γ+5T log2 T and

C(F̃s1,...,sd) <
4T

r
M(3rp) +O(n log n).

Proof. Let us verify the hypotheses of Theorem 4.1. We have already shown that
2 6 si < ti < 2p for all i (see (5.9) and (5.11)) and that 2 6 α < p1/2 (see (5.4)).
We certainly have gcd(si, ti) = 1, as si is an odd prime and ti is a power of two.
Let θi := ti/si − 1; then by (5.10) and (5.11) we have

θi >
1

1− η
− 1 =

η

1− η
> η =

1

4d
.

¿From (5.3) and (5.2) we see that

α4θi >
12d2b

4d
= 3db =

d

2
· p > p,

so θi > p/α4 as required.
Theorem 4.1 thus produces maps A : ⊗iCsi → ⊗iCti and B : ⊗iCti → ⊗iCsi

such that Fs1,...,sd = 2γBFt1,...,tdA (where γ is given by (5.5)), and approxima-

tions Ã : ⊗i C̃si◦ → ⊗i C̃ti◦ and B̃ : ⊗i C̃ti◦ → ⊗i C̃si◦ . Applying Theorem 3.1 (whose
hypotheses were verified in Section 5.1), we obtain furthermore an approximation

F̃t1,...,td for Ft1,...,td . Now consider the scaled transform

F ′s1,...,sd := 2−γFs1,...,sd = BFt1,...,tdA,

and the approximation F̃ ′s1,...,sd := B̃F̃t1,...,tdÃ. The maps A, B and Ft1,...,td all
have norm at most 1 (by Theorem 4.1 and Example 2.6), so Corollary 2.8 implies
that

ε(F̃ ′s1,...,sd) 6 ε(B̃) + ε(F̃t1,...,td) + ε(Ã) < 2dp2 + 8T log2 T.

As ‖Fs1,...,sd‖ 6 1, we obtain the desired approximation F̃s1,...,sd by applying

Lemma 2.2 with c := 2γ to the output of F̃ ′s1,...,sd (the condition c 6 2p holds

as γ < 8b2/3 < p; see (5.5)). We therefore obtain

ε(F̃s1,...,sd) < 2γ+1ε(F̃ ′s1,...,sd) + 3

< 2γ+1(2dp2 + 8T log2 T ) + 3

< 2γ+1(3dp2 + 8T log2 T ).

Moreover, by (5.1), (5.2) and (5.6) we have

3dp2 6 108b1/12b2 = 108dlog2 ne25/12 < n1/2 < T < 8T log2 T,

so we conclude that ε(F̃s1,...,sd) < 2γ+5T log2 T .
The cost of the scaling step is O(Sp1+δ) = O(Tp1+δ), so by Theorem 3.1 and

Theorem 4.1 the overall complexity is

C(F̃s1,...,sd) = C(Ã) + C(F̃t1,...,td) + C(B̃) +O(Tp1+δ)

=
4T

r
M(3rp) +O(dTp3/2+δα+ Tp log T + Tp1+δ).
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Recalling (5.4) and the assumption δ < 1
8 from Section 2.1, we see that

dp3/2+δα = O(p1/12p3/2p1/8p7/24) = O(p2).

By definition p = O(log n), and (5.6) yields T = O(n/ log n). The bound for

C(F̃s1,...,sd) thus simplifies to (4T/r)M(3rp) +O(n log n). �

Next we construct an approximation for the scaled convolution mapM : ⊗i Csi×
⊗i Csi → ⊗iCsi given by M(u, v) := 1

Su ∗ v, where ∗ is the convolution operator
defined in Section 2.4. Note that ‖M‖ 6 1.

Proposition 5.3. We may construct a numerical approximation M̃ : ⊗i C̃si◦ ×
⊗i C̃si◦ → ⊗i C̃si◦ for M such that ε(M̃) < 2γ+8T 2 log2 T and

(5.13) C(M̃) <
12T

r
M(3rp) +O(n log n).

Proof. We are given as input u, v ∈ ⊗i C̃si◦ . Let w := M(u, v) = 1
Su ∗ v ∈ ⊗iC

si .
According to (2.1) we have w = Sw′ where w′ := F∗s1,...,sd(Fs1,...,sdu · Fs1,...,sdv).
We use the following algorithm (essentially the same as in the proof of Proposition
3.4, but working over C instead of R). We first compute an approximation w̃′ ∈
⊗i C̃si◦ by using Proposition 5.2 to handle the forward and inverse transforms, and
Corollary 2.10 to handle the pointwise multiplications. Applying Lemma 2.7 in the
usual way, we obtain

ε(w̃′) 6 ε(F̃s1,...,sd) + ε(F̃s1,...,sd) + ε(F̃∗s1,...,sd) + 2

< 3 · 2γ+5T log2 T + 2 < 7
2 · 2

γ+5T log2 T.

Then we apply Lemma 2.2 (with c := S 6 T 6 2p, thanks to (5.9)) to obtain an

approximation w̃ ∈ ⊗i C̃si◦ such that

ε(w̃) < 2Sε(w̃′) + 3 < 7S · 2γ+5T log2 T + 3 < 2γ+8T 2 log2 T.

The cost of the pointwise multiplications and scalings is O(Sp1+δ) = O(n log n),
and the constant 12 accounts for the three invocations of Proposition 5.2. �

5.3. Integer multiplication. We are now in a position to describe the recursive
step of the main integer multiplication algorithm.

Proposition 5.4. For n > n0 we have

(5.14) M(n) <
12T

r
M(3rp) +O(n log n).

Proof. We are given as input integers 0 6 f, g < 2n. The algorithm consists of the
following series of reductions.

(1) Reduce to one-dimensional convolution over Z. Let N := dn/be where b :=
dlog2 ne as in (5.1). We split f and g into N chunks of b bits, i.e., we write f = F (2b)
and g = G(2b) where

F (x) =

N−1∑
j=0

Fjx
j ∈ Z[x], G(x) =

N−1∑
j=0

Gjx
j ∈ Z[x], 0 6 Fj , Gj < 2b.

We have fg = (FG)(2b), so it suffices to compute the polynomial product H(x) :=
F (x)G(x) and then evaluate at x = 2b. The coefficients of H(x) lie in the interval
0 6 Hj < 22bN < 23b; in particular, they have at most 3b = O(log n) bits, so the
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evaluation may be achieved via a straightforward overlap-add algorithm in time
O(N log n) = O(n). By (5.6) and (5.12) we have

degH 6 2N − 2 6
2n

b
6
T

2
< S,

so it suffices to compute F (x)G(x) (mod xS − 1).
(2) Reduce to d-dimensional convolution over Z. We now use the Agarwal–

Cooley method [1] to reduce to a multidimensional convolution. Consider the ring

A := Z[x1, . . . , xd]/(x
s1
1 − 1, . . . , xsdd − 1).

As the integers s1, . . . , sd are pairwise relatively prime, there is an isomorphism of
rings Z[x]/(xS − 1) ∼= A induced by the Chinese remainder theorem, namely by
sending x to x1 · · ·xd. Let F ′, G′, H ′ ∈ A be the images of F , G and H, so that
H ′ = F ′G′. In the Turing model, F ′, G′ and H ′ are represented as d-dimensional
arrays of integers of 3b = O(log n) bits, using a similar layout to the tensor products
in Section 2.3. The isomorphism amounts to a data rearrangement, and may be
computed by attaching labels and sorting, as in the proof of Proposition 4.7(ii). The
label (i1 mod s1, . . . , id mod sd) occupies O(

∑
i log si) = O(log n) bits, and may be

incremented to (i1 + 1 mod s1, . . . , id + 1 mod sd) in time O(log n). Therefore the
isomorphism may be computed in either direction in time

O(S log n logS) = O(T log2 n) = O(n log n).

(For an alternative algorithm that does not rely on sorting, see [23, Sec. 2.3].) We
have thus reduced to the problem of computing H ′ = F ′G′ in A .

(3) Reduce to approximate d-dimensional convolution over C. Regarding A as
a subring of

C[x1, . . . , xd]/(x
s1
1 − 1, . . . , xsdd − 1) ∼= (⊗iCsi , ∗),

let F ′′, G′′, H ′′ ∈ ⊗i Csi be the elements corresponding to F ′, G′ and H ′, so that
H ′′ = F ′′ ∗ G′′. Let u := 2−bF ′′, v := 2−bG′′ and w := M(u, v) = 1

Su ∗ v. Then

‖u‖ , ‖v‖ , ‖w‖ 6 1, and H ′′ = 22bSw. Recalling our choice of working precision
p := 6b = 6dlog2 ne, we may use Proposition 5.3 to compute an approximation

w̃ := M̃(u, v) ∈ ⊗i C̃si◦ such that ε(w̃) < 2γ+8T 2 log2 T in time (12T/r)M(3rp) +
O(n log n).

Now observe that

‖H ′′ − 22bSw̃‖ = 22bS ‖w − w̃‖ 6 22bT · 2−pε(w̃) < 22b+γ+8−pT 3 log2 T.

Since T < n 6 2b and T log2 T 6 T log2 n 6 Tb < 8n 6 2b+3 (by (5.6)), this yields

‖H ′′ − 22bSw̃‖ < 22b+γ+8−p · 22b · 2b+3 = 25b+γ+11−p = 2−b+γ+11.

But (5.5) yields γ < 8b2/3 < b− 13 (as b > 4096), so

‖H ′′ − 22bSw̃‖ < 1
4 .

In particular, we may recover H ′′ in time O(Sp1+δ) = O(n log n) by multiplying
each coefficient of w̃ by 22bS and then rounding to the nearest integer. �

Corollary 5.5. Define T(n) := M(n)/(n log n) for n > 2. For n > n0 we have

T(n) <
1728

d− 1
2

T(3rp) +O(1).
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Proof. Dividing (5.14) by n log n yields

T(n) <
36Tp

n
· log(3rp)

log n
· T(3rp) +O(1).

By (5.2) and (5.6) we have 36Tp/n = 216Tb/n < 1728. Moreover, (5.7) implies
that r < 2T 1/d < 2n1/d, so

log(3rp)

log n
=

log(r/2) + log(36b)

log n
<

1

d
+

log(36b)

log n
=

1

d
+

log2(36b)

log2 n
6

1

d
+

log2(36b)

b− 1
.

Since b > 4096 and d 6 b1/12 (see (5.1)) we have

log2(36b)

b− 1
<

1

2b1/6
6

1

2d2
,

and the result follows from the observation that

1

d
+

1

2d2
<

1

d

(
1− 1

2d

)−1
=

1

d− 1
2

. �

Finally we may prove the main result of the paper.

Proof of Theorem 1.1. According to Corollary 5.5, there is an absolute constant
A > 0 such that

T(n) <
1728

d− 1
2

· T(3rp) +A

for all n > n0. We now take d := 1729. Then for all n > n0 = 21729
12

we have

T(n) < 0.9998 · T(3rp) +A.

Define

B := max
26n<n0

T(n), C := max(B, 5000A).

(Recall that for n < n0, we use any convenient base-case multiplication algorithm
to define M(n), and hence T(n).)

We prove by induction that T(n) 6 C for all n > 2. The choice of B ensures
that the statement holds for n < n0. Now assume that n > n0. By (5.7), (5.1) and
(5.6) we have

3rp < 6T 1/dp < 36n1/db = 36n1/1729dlog2 ne < n.

By induction,

T(n) < 0.9998C +A 6 0.9998C + 0.0002C = C.

Hence T(n) = O(1) and M(n) = O(n log n). �

5.4. Optimising the dimension threshold. It is possible to improve the factor
K = 1728 appearing in Corollary 5.5, at the expense of introducing various technical
complications into the algorithm. In this section we outline a number of such
modifications that together reduce the constant to K = 8 + ε, so that the modified
algorithm achieves M(n) = O(n log n) for any d > 9 (rather than d > 1729). The
techniques described here are similar to those used in [25] to optimise the value
of K in the Fürer-type bound M(n) = O(n log nK log∗ n).
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(1) We may increase the chunk size from b = Θ(log n) to b = Θ(log n log log n),
and then take the working precision to be p = 2b+ O(log n) = (2 + o(1))b
rather than 6b. This improves K by a factor of 3. Note that the O(log n)
term must be chosen large enough to ensure correct rounding at the end of
the proof of Proposition 5.4. (We cannot take b as large as (log n)2, as is
done in [25], because then the Gaussian resampling becomes too expensive.)

(2) The choice of b in the previous item allows us to improve the term 3rp in
Lemma 2.5 to (2+o(1))rp, by packing the coefficients together more tightly
in the Kronecker substitution step (the hypothesis r < 2p−1 must also be
tightened somewhat). This improves K by a factor of 3/2.

(3) In Bluestein’s algorithm (see proof of Proposition 3.1), the multiplicand a
is invariant, i.e., does not depend on the input vector u. To take advantage
of this, we change the basic problem from multiplication of two arbitrary
integers to multiplication of an arbitrary integer by a fixed integer. Con-
sequently we save one forward transform in the proof of Proposition 5.3,
reducing the factor 12 in (5.13) to 8. This improves K by a factor of 3/2.

(4) We may choose the primes si closer to ti, so that instead of T < 2S (see
(5.12)) we have T < (1 + o(1))S. This improves K by a factor of 2. Some
care is needed to avoid excessive precision loss in the Gaussian resampling
step, due to the larger values of α and γ.

(5) By allowing T to contain small odd prime factors, or alternatively by in-
troducing flexibility into the choice of b, we may improve the choice of T
to (4 + o(1))n/b (see (5.6)). This improves K by a factor of 2.

(6) We may change the basic problem from multiplication in Z to multiplication
in Z[i]. In step (1) of the proof of Proposition 5.4, the chunks Fj and Gj
are taken in Z[i] instead of Z, and in step (1) of the proof of Lemma 2.5,
the evaluations lie in Z[i] instead of Z. This improves K by a factor of 4,
essentially by eliminating the factor 4 appearing in Lemma 2.5.

(7) We may change the basic problem from multiplication in Z[i] to multiplica-
tion in Z[i]/(2n+1)Z[i]. Note that the Kronecker substitution in Lemma 2.5
maps the multiplication modulo yr + 1 naturally onto this problem. This
improves K by a factor of 2, because it avoids the degree growth in step (1)
in the proof of Proposition 5.4. It also introduces a technical difficulty into
that step: to reduce a multiplication modulo 2n + 1 to a polynomial multi-
plication modulo xS − 1 (or xS + 1), we must split an n-bit integer into S
chunks, even though n will not in general be divisible by S. This may be
addressed by means of the Crandall–Fagin algorithm [9].

References

1. R. Agarwal and J. Cooley, New algorithms for digital convolution, IEEE Transactions on
Acoustics, Speech, and Signal Processing 25 (1977), no. 5, 392–410.

2. L. I. Bluestein, A linear filtering approach to the computation of discrete Fourier transform,

IEEE Transactions on Audio and Electroacoustics 18 (1970), no. 4, 451–455.
3. J. M. Borwein and P. B. Borwein, Pi and the AGM, Canadian Mathematical Society Series

of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1987, A study

in analytic number theory and computational complexity, A Wiley-Interscience Publication.
MR 877728
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