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Abstract

The mechanical behavior of granular materials is widely governed by mi-
crostructure reorganizations. This constant evolution of the microscale ge-
ometry is often taken into account directly at the macroscale within the
plasticity context, and more particularly non-associated plasticity. In this
paper we propose to revisit the non-associated plastic behavior of granular
materials with respect to material instability assessment in terms of the loss
of positiveness of the second-order work. It is shown that large incremental
plastic strain is a necessary condition for the existence of mechanical instabil-
ity. The ability of a material to develop substantial plastic incremental strain
is then related to the existence of rattlers, i.e., free particles that get jammed
into force chains when existing contact networks fail to adapt to incremental
loadings. This link between rattlers, plastic deformation and the vanishing
of the second-order work is explicitly derived i) from the micro-formulation
of the second-order work and ii) directly from discrete element simulations.
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1. Introduction

From a microscopic point of view, a wide variety of materials fall within
the family of granular materials. However, for most practical applications,
their discrete nature is not accounted for directly but is hidden behind a
macroscopic continuum description of their mechanical behavior. It is in-
conceivable, for instance, to model atoms in a metal beam or sand grains in
earth dams and dikes. This change in paradigm between discrete and contin-
uum frameworks is firmly based on the notion of scale separation, i.e., on the
fact that the macroscale of interest is very large compared to the size of the
grains. At the macroscale, irreversible microscale grain rearrangements are
therefore usually accounted for by plastic theory as long as they remain rate-
independent. For frictional granular materials such as soils or rocks, it is well
established that the normality of the flow rule as proposed by Drucker and
Prager (1952) does not hold, and the plastic behavior is non-associated. For
such materials, the volume change predicted by an associated flow rule is in-
deed significantly larger than that observed in experiments with soils or rocks.
To account for these observations, the choice of a potential surface different
from the yield surface is often used to accommodate a much smaller volume
change. Even if recent phenomenological models incorporate microstructure
features through choices in the modeling functions and the state variables
(see for instance Tashman et al. (2005); Lai et al. (2009); Yuanming et al.
(2010); Zhu et al. (2016c)), the validation of these models is mostly based on
macroscopic results. Surprisingly, the underlying microscopic hypotheses are
hardly ever validated directly from grain scale simulations or measurements,
making this an issue that today remains open to debate. In this respect,
discrete element simulations performed on a representative elementary vol-
ume of granular material offer a possibility to investigate the effect of certain
micro-mechanisms on macroscopic features of non-associated plastic models
such as the flow rule direction and plastic strain intensity.
As reviewed by Darve and Laouafa (2000) for instance, the non-associated
character of the flow rule imposes that the tangent constitutive tensor does
not respect the so-called major symmetry. Therefore, the tangent elasto-
plastic matrix linking incremental stress and strain (in vector notations) is
no longer symmetric (Griffiths and Willson, 1986). Since the existence of
material instability is strongly related to the singularities of this matrix, the
classes of bifurcations that can be expected are much more diverse than in as-
sociated plasticity. This non-symmetry explains why instability in frictional
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granular materials can be observed before reaching the plastic limit surface,
provided that materials are loaded along ”wedge paths” (Li and Richmond,
1997; Li and Karr, 2009). One criticism sometimes alleged to discourage the
use of non-associated flow rules is that they sometimes result in indetermi-
nate unstable solutions (Sandler and Rubin, 1987) for a number of particular
loading cases (Stoughton and Yoon, 2008) or for particular elastic parame-
ters such as large Poisson ratios (Yang et al., 2005). If we limit analyses to
divergence instabilities (setting aside flutter instabilities), the second-order
work criterion as introduced by Hill (1958) provides an energy interpretation
for the occurrence of such instabilities. For a monotonously increasing load-
ing, it is the first instability criterion to be encountered (Challamel et al.,
2010), and other instability criteria are simply particular cases associated
with specific failure mechanisms. In an updated Lagrangian formalism, the
second-order work W2 is computed from incremental variations of stress dσ
and strain dε as W2 = dσ : dε where ”:” stands for the double contrac-
tion product. The existence of incremental loading programs leading to the
vanishing of W2 is a signature of underlying instability, because in this case
at least one incremental load (including the types of boundary conditions)
will result in a transition from a quasi-static to dynamic regime through a
sudden release of kinetic energy (Nicot et al., 2009; Daouadji et al., 2011;
Nicot et al., 2012; Wan et al., 2013, 2016; Zhang et al., 2016b; Nicot et al.,
2017).
By assuming an additive decomposition of the incremental strain into an
elastic part dεe and a plastic part dεp, and by recalling the positive definite
character of the elastic part of the second-order work dσ : dεe (Bigoni and
Hueckel, 1991), it is well known that plastic strain plays a fundamental role
in the vanishing of the second-order work as W2 = dσ : dεe + dσ : dεp.
At the microscale, irreversible deformations are a consequence of particle re-
arrangements under the control of the local contact law and local geometry.
Following the introduction of the force chain concept (Liu et al., 1995; Rad-
jai et al., 1998), it is now well established that granular materials can be
regarded as two-phase materials with only 20-30 % of the particles transmit-
ting stresses (Peters et al., 2005; Wautier et al., 2017). The remaining loose
grain fraction is not directly involved in stress transmission but plays an im-
portant role in supporting existing force chains (Zhu et al., 2016a; Tordesillas
et al., 2010; Zhu et al., 2016b). More generally, the structure of granular ma-
terials may be seen as a collection of mesostructures or patterns interacting
with each other and responsible for the macroscopic behavior (Dean, 2005).
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As the boundary conditions change, the population of heavily stressed grains
is renewed and a phase exchange between chained and loose grains occurs.
The easier this phase exchange the more versatile the granular assembly.
The aim of this paper is to provide an understanding of the relation be-
tween plastic deformation, mechanical instability and this phase exchange
phenomenon with i) phenomenological macroscopic modeling, ii) micro- to
macro-analytical relations and iii) three dimensional discrete element simu-
lations. In particular we aim to investigate the role played by rattlers (i.e.
particles with no contacts in the absence of gravity forces) with respect to
the development of plastic strain and instability.
This paper is organized as follows. In section 2, a representative elementary
volume (REV) of an idealized loose granular material is generated and sub-
jected to a drained triaxial test. For particular stress states, the incremental
constitutive behavior is modeled within non-associated elasto-plasticity. This
continuum mechanics model is used to relate plastic strain development and
mechanical stability from analytical considerations. From physical consider-
ations, a conjecture on the particular role of rattlers is eventually formulated.
In section 3, the relation between mechanical stability and plastic strain ob-
tained at the macroscale is derived directly from contact scale considerations.
In the last section, the conjecture on the stabilizing role of rattlers is assessed
numerically using DEM simulations.

2. Phenomenological relation between plastic strain and mechani-
cal stability in granular materials

In this section, the link between discrete and continuum modeling of gran-
ular materials is investigated at the representative elementary volume. The
mechanical behavior of a specific numerical sample is simulated using a dis-
crete element method (DEM), and a non-associated elasto-plastic model is
proposed to account for the incremental behavior. The resulting fitted phe-
nomenological model is then used to exhibit the specific role of plasticity with
respect to the existence of mechanical instability (vanishing of the second-
order work).

2.1. Numerical modeling

Down to the microscale, granular materials considered throughout this pa-
per are modeled as poly-disperse assemblies of spheres interacting through
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Figure 1: Elasto-frictional contact law used in DEM simulations.

the elasto-frictional contact law proposed by Cundall and Strack (1979) and
illustrated in Figure 1.
Two spherical particles are said to be in contact if they overlap. A normal
force Fn is defined as proportional to the overlapping distance ∆un between
the two particles where the contact normal stiffness kn is proportional to the
material’s Young modulus E and to the harmonic average of the two particles
radii r1 and r2 (see Fig. 1). In addition to the normal force, a tangential force
Ft is introduced. Contrary to its normal counterpart, this tangential force
is defined in an incremental form by computing the tangential component of
the incremental relative displacement ∆ut at the contact point between two
contacting grains (translation and rotation). Ft is then updated according
to the tangential stiffness kt = αkn expressed as a fraction α of its normal
counterpart (see Fig. 1). The third parameter of the implemented contact
law is the internal friction angle φ, which defines the largest accessible ratio
Ft/Fn according to Mohr Coulomb theory (see Fig. 1). The input parameters
used in this elasto-frictional contact law are reported in Table 1 and are
similar to those used in Wautier et al. (2018).
After computing all inter-particle contact forces, the induced particle dis-
placements are integrated based on Newton’s second law of motion using
the DEM open source code YADE (Šmilauer et al., 2015). In all presented
simulations, gravity forces are neglected.

2.2. Sample preparation and mechanical testing

The sample preparation presented here is similar to Wautier et al. (2018).
A cubic assembly of spheres is generated randomly with a uniform radius
distribution between rmin and rmax = 3.5 rmin. After generating a cloud
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Table 1: Mechanical parameters used in the elasto-frictional contact law implemented in
YADE. The normal (kn) and tangential (kt) stiffnesses are computed as recalled in Figure
1

Parameters Value
Density 3,000 kg.m−3

Young modulus (E) 356 MPa
Stiffness ratio (α) 0.42
Inter-particle friction angle (φ) 35◦

Particle-wall friction angle 0◦

Number of particles 10,000

of 10,000 non-overlapping spheres, the particles are gradually inflated while
retaining the bounding walls. This radius expansion procedure is stopped
when a confining pressure of 20 kPa is reached. During this process, the
inter-particle friction angle is maintained at 35◦ in order to prepare a loose
granular material with a void ratio e = 0.73. Associated with the generated
cubic grain assembly, a Cartesian coordinate system (ex, ey, ez) is defined
such that the axis directions coincide with the edges of the cube.
From the equilibrium state obtained, a drained triaxial loading is then im-
posed on the sample by i) moving the bounding walls until an isotropic
confining stress of σ0 = 100 kPa is reached and then ii) imposing a vertical
compression strain rate ε̇zz = 0.01 s−1. According to earlier numerical stud-
ies, this strain rate should be sufficiently small so that the loading can be
considered as quasi-static (Hadda et al., 2013; Nicot et al., 2012).
Throughout this paper the classical soil mechanics conventions are adopted
with compressions counted as positive. The homogeneous Cauchy stress ten-
sor σ is defined at the representative elementary volume (REV) scale by
computing the surface average of the forces applied to the bounding walls.
The sample stress state is then characterized using the stress ratio η com-
puted as the ratio between the deviatoric stress q and the mean pressure
p: 

η =
q

p

q =
√

3
2
σdev : σdev

σdev = σ − p 1
p = 1

3
Tr(σ)

. (1)

where 1 stands for the identity tensor.
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Figure 2: Drained triaxial test response similar to (Wautier et al., 2018). The diamonds
correspond to the two mechanical states considered for the stability analysis in Section 4.

Based on the relative variations of the size of the whole sample, a macroscopic
homogeneous strain tensor ε is defined from the bounding wall displacements.
To be consistent with the second-order work definition W2 = dσ : dε, com-
paction is counted positive. The volumetric strain is defined as:

εv = Tr(ε) (2)

In Figure 2, the stress ratio and volumetric strain responses are shown. A typ-
ical contractive behavior is observed given that both η and εv monotonously
increase with the vertical compaction (εzz > 0). This behavior is typical of
non-compacted granular material.

2.3. Fitting a phenomenological non-associated elastoplastic model

Throughout this subsection the sample saved at a stress ratio η = 0.45 during
the triaxial loading path shown in Figure 2 is considered. The incremental
response of the sample is assumed to obey a classical non-associated elasto-
plastic relation. In this case an incremental strain dε corresponding to an
incremental stress dσ can be additively broken down into an elastic part
dεe and a plastic part dεp such that dε = dεe + dεp. This is indeed an
approximation as rigorously speaking this additive decomposition does not
hold (Nicot and Darve, 2006b).
To extract the elastic part dεe of the total incremental strain, one of the
following two approaches found in the literature can be used:
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- by successively imposing an incremental stress loading and unloading in
the same direction. The residual strain is then considered to be equal to
the plastic strain (Bardet, 1994; Kishino, 2003). This method is based
on the hypothesis that only reversible deformations occur during the
unloading and that no elastic unloading is prevented because of grain
rearrangements during the loading phase.

- by performing the same incremental stress loading twice with two dif-
ferent contact friction angles: the material friction angle φ and a non-
dissipative friction angle of 90◦. This method prevents any plastic
dissipation through friction when φ = 90◦ but does not prevent con-
tact gain and loss which could result in non-reversible microstructure
changes (kinetic energy released form these events is partly dissipated
through numerical damping). However, these irreversible changes do
not impact the macroscopic behavior significantly as long as the ampli-
tude of the loading increment remains small. Under this condition the
observed strain can be considered to be fully elastic (Nicot and Darve,
2007a; Sibille et al., 2009; Calvetti, 2003).

Following the work of Nicot et al. (2007) and Calvetti (2003), the second
method was used since no hysteresis was observed while performing incre-
mental loading and unloading with a friction angle of 90◦.
A systematic way to track the incremental behavior of a given material con-
sists in performing a directional analysis as introduced by Gudehus (1979).
By imposing, for instance, stress probes in different directions in the stress
space and recording the corresponding strain responses, the incremental be-
havior is then given by the implicit relation between incremental stress and
incremental strain. As previously shown by Nicot and Darve (2007a), the
existence of a flow rule in granular materials is limited to axisymmetric load-
ing conditions. As a result, the directional analyses performed in this paper
are restricted to the Rendulic plane (

√
2dσxx, dσzz) (this corresponds to the

plane dσxx = dσyy in the stress space). By considering
√

2dσxx instead of
dσxx, scalar products in the Rendulic plane correspond to scalar products
computed directly in the three dimensional stress space (dσxx, dσyy, dσzz).
In the inset of Figure 3, incremental elastic strains are plotted in the axisym-
metric plane (

√
2dεexx, dε

e
zz) while incremental stress probes describe a circle

in the Rendulic plane (
√

2dσxx, dσzz).
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
√

2dσxx =
√

2dσyy = ||dσ|| cos θ
dσzz = ||dσ|| sin θ

||dσ|| =
√

dσ2
zz + 2 dσ2

xx

, (3)

where ||dσ|| = 5 kPa and θ ∈ [0, 2π].
Extending Bardet’s 2D work (Bardet, 1994), the incremental elastic strain
envelope shown in Figure 3 is typical of an incremental anisotropic elastic
behavior. Let us assume that the sample behaves as a transverse isotropic
material. This hypothesis is based on the following two points: i) the sam-
ple preparation procedure results in an isotropic sample and ii) the triaxial
loading introduces an anisotropy in the vertical direction (see autocorrela-
tion distances in Wautier et al. (2017), for instance). Thus, in the Rendulic
plane, the constitutive matrix relating the incremental strain to the imposed
incremental stress reads as:( √

2dεexx
dεezz

)
=

(
1−νh
Eh

−
√

2νhv
Eh

−
√

2νhv
Eh

1
Ev

)
·
( √

2dσxx
dσzz

)
(4)

where Eh and Ev are the Young modulus in the horizontal and vertical direc-
tions respectively and νh and νhv are the Poisson ratios between the horizontal
directions and between the horizontal and vertical directions, respectively.
While dσ describes a circle in the Rendulic plane (Equation (3)), dε describes
a tilted ellipse in the axisymmetric plane (

√
2dεexx, dε

e
zz) with the following

parametric equation:
√

2dεexx =
√

2dεeyy = ||dσ||
[

1−νh
Eh

cos θ −
√

2νhv
Eh

sin θ
]

dεezz = ||dσ||
[
−
√

2νhv
Eh

cos θ + 1
Ev

sin θ
] . (5)

By minimizing the quadratic error between the numerical points and Equa-
tion (5), a very good prediction of the numerical results is achieved by choos-
ing Eh = 25.2 MPa, Ev = 32.5 MPa and νh = νhv = ν = 0.31. The resulting
fitted model is shown in Figure 3.
As summarized in Figure 6, the elastic incremental behavior is accounted
for in the Rendulic plane through three material constants Eh, Ev and ν. It
must be underlined here that the choice νh = νhv is arbitrary and has no
reason to hold outside of the Rendulic plane. Indeed, the three independent
material constants at stake in Equation (4) are 1−νh

Eh
, νhv
Eh

and Ev. However,
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Figure 3: Incremental strain responses in the axisymmetric plane for the sample corre-
sponding to η = 0.45 while incremental stress probes describe a circle in the Rendulic
plane (Equation (3)). The total incremental strain (dotted line) is broken down into its
elastic (dashed line) and plastic parts (solid line). The point corresponding to θ = 0 is
shown with a diamond in the inset plot. Fitted elastic and plastic models for incremental
strains are shown with thin solid lines.
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Figure 4: Evolution of the norm of the incremental plastic strain ||dεp|| with respect to
the loading angle θ. Numerical results are shown as a solid line while the fitted truncated
cosine function is shown as a dashed line.

assuming νh = νhv is though convenient to benchmark the present material
parameters to the classical Young modulus obtained for uniformly distributed
loose sands that range from 10 to 30 MPa. Based on the load history, the
vertical compaction induced the building of force chains mainly aligned in
this direction (Wautier et al., 2017). As a result, the sample is expected to be
stiffer in the vertical direction than in the horizontal one which is consistent
with Ev > Eh.
As discussed in Bardet (1994) in 2D, the inclination of the ellipse is linked to
the ratio between Eh and Ev. For an isotropic material, the inclination angle
should be of −54.7◦ (instead of 45◦ in 2D) whereas in our case an inclination
of −50.4◦ is measured (the derivations of these angles are not given here but
are simply consequences of Equation (5)).
By subtracting the incremental elastic strain from the total strain, the plastic
contribution is then recovered. In Figure 3, dεp is plotted in the axisymmetric
plane, whereas the norm ||dεp|| is plotted against the stress probe angle θ in
Figure 4.
In Figure 3, the plastic strain concentrates in a single direction ϕ in the
strain axisymmetric plane whatever the loading direction θ. This indicates
a typical flow rule the direction of which is ϕ in the plane (

√
2dεxx, dεxx).

In Figure 4, the plastic flow intensity may be approximated by a truncated
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Figure 5: (a) Illustration of an associated and non-associated flow rule in the Rendulic
plane. Starting from a state σ, an incremental load dσ is applied. If the plastic limit is
crossed, a plastic increment exists and the plastic limit may move if hardening occurs. (b)
Illustration of the distance d to the Morh-Coulomb plastic limit using Mohr circle.

cosine function with a maximum intensity εp in the stress loading direction
θ = ϕ+ ∆ϕ normal to the plastic yield surface:{ √

2dεpxx =
√

2dεpyy = εp max (0, cos(θ − ϕ−∆ϕ)) cos(ϕ)
dεzz

p = εp max (0, cos(θ − ϕ−∆ϕ)) sin(ϕ)
. (6)

By minimizing the quadratic error between the numerical points and Equa-
tion (6), a reasonable prediction of the numerical results is achieved by choos-
ing ϕ = 113.8◦, ∆ϕ = 25.9◦ and εp = 4.69 10−2. The resulting fitted model
is included in Figure 3.
The non-zero value for ∆ϕ is a signature of the non-associated character of
the flow rule (Nicot and Darve, 2007b; Sibille et al., 2009). Indeed, in the
case of associated plasticity, the direction of the plastic flow rule is given
by the perpendicular direction to the yield surface in the stress space, as
illustrated in Figure 5 (a). If the reference stress state is close enough to the
plastic limit, the angular range of incremental loadings dσ able to activate
plasticity is close to 180◦ (see Figure 5 (a)). In Figure 4, the loading angles
for which ||dεp|| 6= 0 are such that θ ∈ [49.7◦, 229.7◦]. The reference state
η = 0.45 therefore belongs to the yield surface. As a result, in our case
ϕ+ ∆ϕ corresponds to the normal to the plastic limit surface, which is equal
to 139.7◦. The observed flow direction in Figure 3 is equal to ϕ = 113.8◦ and
not 139.7◦, however, which is incompatible with the existence of an associated
flow rule.
If a Mohr-Coulomb plastic limit is assumed, the half-plastic plane (θ ∈ [ϕ+
∆ϕ− π

2
, ϕ+ ∆ϕ+ π

2
] can be linked to the material friction angle φm (at the

12



continuum scale). Indeed, for stress states in the Rendulic plane, the distance
d between the Mohr-Coulomb straight line and the Mohr circle representing
the stress state (see Figure 5 (b)) reads

d =
σIII + σI

2
sinφm −

σI − σIII
2

. (7)

where σI = σzz and σII = σIII = σxx and σIII are the principal stresses in
decreasing order.
Remembering the fact that initially the stress state is given by a horizontal
confinement σ0 and a vertical stress characterized by the stress ratio η, the
total stress components to be considered during the directional analysis given
in Equation (3) are {

σxx = σ0 + ||dσ||√
2

cos θ

σzz = 2η+1
1−η σ0 + ||dσ|| sin θ

, (8)

which leads to

d(θ) = σ0
(2+η) sinφm−3η

2(1−η)
+ ||dσ||

√
3−2 sinφm+3 sin2 φm

2
cos(θ+θ0) (9)

with θ0 defined such that cos θ0 = 1+sinφm√
3−2 sinφm+3 sin2 φm

cos θ0 =
√

2(1−sinφm)√
3−2 sinφm+3 sin2 φm

. (10)

As a result, directions corresponding to non-zero plastic increments are given
by d(θ) < 0. When the initial state belongs to the yield surface (d = 0 for
||dσ|| = 0) the suitable range for θ is [π

2
− θ0,

3π
2
− θ0], whose amplitude is

180◦. In our case, this assumption is likely to hold true as the amplitude of
non-zero values for the plastic incremental strain in Figure 4 is 180◦ which is
a consequence of the hardening observed during the drained triaxial loading
in Figure 2. As a result, the vanishing of d for ||dσ|| = 0 corresponds to a
material friction angle φm = 33.4◦. For such a material friction angle, the
half-plastic plane predicted by Equation (9) is [π

2
− θ0,

3π
2
− θ0] = [68◦, 248◦],

which is slightly different from the one observed in Figure 4 [ϕ+∆ϕ− π
2
, ϕ+

∆ϕ + π
2
] = [50◦, 230◦]. The difference observed might stem from the fact

that the material does not follow a perfect Mohr-Coulomb plastic criterion
as assumed to derive Equation (9).
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Figure 6: Non-associated elastoplastic fitted response in the incremental strain space cor-
responding to stress probes describing a circle in the Rendulic plane. The strain response
is broken down into an elastic part characterized by three parameters and a plastic part
described with three parameters.

Table 2: Fitted parameters for the incremental non-associated elastoplastic behavior of
the sample saved in the mechanical state η = 0.45.

Elastic behavior Plastic behavior
Eh = 25.2 MPa ϕ = 113.8◦

Ev = 32.5 MPa ∆ϕ = 25.9◦

ν = 0.31 εp = 4.69 10−2

In the end, the fitting procedure described in this subsection and summarized
in Figure 6 is based on the identification of six parameters. For the sample
prepared in the mechanical state η = 0.45 the fitted parameters are given in
Table 2.

2.4. Plastic strain intensity influence on the vanishing of the second-order
work

The phenomenological model introduced in the previous subsection and fitted
in the Rendulic plane is convenient to interpret the vanishing of the second-
order work in terms of macro variables such as the maximum level of plastic
strain εp. Indeed, based on Equations (3), (5) and (6), in the plastic domain
θ ∈ [ϕ+ ∆ϕ− π

2
;ϕ+ ∆ϕ+ π

2
], the second-order work reads
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W2 = dσ : (dεe + dεp)

= ||dσ||
√
β2 + γ2

(
α√
β2+γ2

+ cos(2θ − ϕ0)

)
(11)

with 

α = 1
2
||dσ||

(
1−ν
Eh

+ 1
Ev

)
+ εp

2
cos(∆ϕ)

β = 1
2
||dσ||

(
1−ν
Eh
− 1

Ev

)
+ εp

2
cos(2ϕ+ ∆ϕ)

γ = −||dσ||
√

2ν
Eh

+ εp
2

sin(2ϕ+ ∆ϕ)

cosϕ0 = β√
β2+γ2

and sinϕ0 = γ√
β2+γ2

. (12)

In Figure 7 the analytical expression (11) (parameters from Table 2) is com-
pared with the DEM results for the sample corresponding to η = 0.45. A
circular representation is used. This representation consists in a polar plot of

1 + W̄2(θ), with W̄2 =
dε : dσ

||dε|| ||dσ||
the normalized form of the second-order

work. The vanishing of the second-order is then observed graphically as the
polar curve 1 + W̄2(θ) intersects the disk of unit radius.
In Figure 7, the fitted model is shown to account nearly perfectly for the shape
of the circular envelopes obtained numerically. The relative contribution of
the elastic and plastic strains to the normalized second-order work are shown
with dashed lines (W2 = W e

2 +W p
2 ). For the set of parameters in Table 2, two

half-planes can be defined in which W2 ' W e
2 or W2 ' W p

2 . The second-order
work is observed to vanish in the half-plastic plane [ϕ+ ∆ϕ− π

2
;ϕ+ ∆ϕ+ π

2
]

which is a signature of material instability by divergence. The non-associated
character of the flow rule is visible because the normal direction ϕ+∆ϕ to the
half-plastic plane (dashed line) differs from the direction of plastic increment
in the axisymmetric plane ϕ (solid line).
As a result of Equation (11), a necessary condition for having a loading
direction leading to the vanishing of the second-order work reads

If ∃θ such that W2(θ) < 0, then α2 ≤ β2 + γ2. (13)

If this condition is satisfied and if the directions θ giving W2 < 0 lie in
the plastic half-plane [ϕ + ∆ϕ − π

2
;ϕ + ∆ϕ + π

2
] (otherwise Equation (11)

is not valid), the granular material considered is at a bifurcation point. In
other words, even if the material considered is at equilibrium in the current
state (defined by the geometry of its microstructure and its stress state),
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Figure 7: Comparison between analytical (solid lines) and numerical (dots) normalized
second-order work envelopes for the initial sample corresponding to η = 0.45. The model
parameters are taken from Table 2. The relative contribution of the elastic and plastic
incremental strain in the computation of W2 are shown in dashed lines. The plastic half-
plane [ϕ+ ∆ϕ− π

2 ;ϕ+ ∆ϕ+ π
2 ] corresponds to the grey domain. The maximum plastic

intensity direction ϕ+ ∆ϕ (black dashed line) and the plastic flow direction ϕ (black solid
line) are also shown.
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incremental loading programs exist that will lead to material failure through
an abrupt increase in kinetic energy.
If we assume that the material behavior is fully elastic (εp = 0), then condi-
tion (13) can be written in terms of material constants ν and Ev/Eh as

ν ≤ −
1 +

√
1 + 8Ev

Eh

4Ev

Eh

or ν ≥
−1 +

√
1 + 8Ev

Eh

4Ev

Eh

(14)

and is illustrated in Figure 8.
Even for a purely elastic material behavior, the vanishing of the second-
order work is possible for exotic materials for which the anisotropy Ev/Eh
is very large (Nicot et al., 2016) or equivalently for sufficiently large Poisson
ratios (Yang et al., 2005). In our case and for usual materials for which
ν ∈ [0.2, 0.4] and Ev/Eh < 2, no vanishing of the second-order work is
expected if εp = 0. As a result, the size of the plastic increment is expected
to play an important role with respect to the vanishing of the second-order
work. This sensitivity to εp is explored in Figure 9 in which normalized
circular envelopes of the second-order work are shown for different εp values
while keeping other parameters of Table 2 constant.
As expected, the value of εp has a great influence on the existence and the
width of the cone of instability resulting from Equations (11) and (12). The
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Figure 9: Analytical normalized second-order work envelopes for different plastic intensi-
ties εp ∈ {ε◦p, ε◦p/20, ε◦p/50, ε◦p/100} where ε◦p = 4.69 10−2. The six other parameters of the
model are selected from Table 2.
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Figure 10: Schematic diagram of the particular role played by rattlers with respect to
plastic strain development. Comparison between a microstructure with rattlers (a) and
the same microstructure without rattlers (b).

larger εp, the larger the instability cone. This close relationship between the
vanishing of the second-order work and the size of the plastic increments
was also recently accounted for by Zhang et al. (2016a) while considering the
occurrence of ”strain bursts”.

2.5. A conjecture on the particular role played by rattlers

From the results illustrated in Figure 9 combined with the schematic diagram
in Figure 10, we conjecture that rattlers (particles with no contacts in absence
of gravity) play the particular role of limiting the development of plastic
strain when the existing contact network fails to adapt to the newly imposed
mechanical loading and induces microstructure rearrangements. Given that
large incremental plastic strain development is a necessary condition for the
onset of macroscopic instability, rattlers play a fundamental role in mitigating
material instability by divergence.
This issue will be discussed from micromechanical considerations in the fol-
lowing two sections.
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3. A contact scale explanation for the stabilizing role played by
rattlers

Complementary to the previous section, the particular role played by rat-
tlers in mitigating plastic strain development can be examined analytically
and qualitatively using the micro-formulation of the second-order work intro-
duced for granular materials (Nicot et al., 2007; Hadda et al., 2013). In this
section the contact scale necessary condition to observe the vanishing of the
second-order work (Nicot and Darve, 2006a; Nicot et al., 2013) is revisited
in terms of rattlers influence to provide an analytical proof of the conjecture
formulated in Section 2.5. This section is kept qualitative on purpose but a
quantitative assessment of the role played by rattlers directly at the contact
scale is proposed in Appendix A through DEM simulations.
Let `c be the branch vector connecting the centers of two contacting spherical
particles at contact c, F c the inter-particle contact force, F p the resultant
contact force on particle p and xp the position of its mass center. Then the
volume integral of the second-order work on a sample of domain Ω can be
computed from micro-quantities as∫

Ω

W2dV =
∑
c

∆F c ·∆`c +
∑
p

∆F p ·∆xp (15)

where ∆ correspond to incremental variations and · to the scalar product.
Provided that only inertial terms can be ignored (∀p,∆F p = 0), the second
term vanishes and the second-order work computed at the REV scale reads:

W2 =
1

|Ω|
∑
c

∆F c ·∆`c. (16)

Consequently a microscopic second-order work can be defined at the contact
scale as wc2 = ∆F c ·∆`c (Nicot and Darve, 2006a).
By further breaking down ∆F c and ∆`c into normal and tangential compo-
nents, wc2 can be expressed as

wc2 = ∆F c
n ·∆`cn + ∆F c

t ·∆`ct . (17)

The definition of the different vectors at stake in this equation appears more
clearly in Figure 11.
Using the contact law recalled in Figure 1, the first term reads kn||∆`cn||2 and
is always positive, as is the second one as long as ||F c

t ||/||F c
n|| < tanφ. As a
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Figure 11: Two incremental loadings leading to contact sliding with different consequences
on the sign of wc2. While configuration (a) results in wc2 > 0, configuration (b) may result
in wc2 < 0 depending on ||∆`ct ||.

result, wc2 ≥ 0 if the contact behaves elastically. If sliding occurs, the sign of
wc2 is difficult to predict and two cases should be considered (see Figure 11
and Nicot and Darve (2006a); Nicot et al. (2013)).

(a) F c
n remains constant and ∆F c

t is such that F c
n + F c

t + ∆F c
t reaches

the Mohr-Coulomb limit cone. In this case the tangential relative dis-
placement ∆`ct is positively collinear to F c

t +∆F c
t and for a sufficiently

small increment ∆F c
t , ∆F c

t ·∆`ct ≥ 0. As a result wc2 ≥ 0.

(b) ||F c
n|| decreases such that F c

n + ∆F c
n +F c

t violates the Mohr-Coulomb
limit cone as ||F c

t || > (||F c
n||− ||∆F c

n||) tanφ. In this case, the tangen-
tial force decreases as:

∆F c
t = −

[
||F c

t || − (||F c
n|| − ||∆F c

n||) tanφ
] F c

t

||F c
t ||

(18)

whereas the relative displacement ∆`ct is positively collinear to F c
t . In

this case, the tangential term in wc2 is negative and:

wc2 =
1

kn
||∆F c

n||2−
[
||F c

t ||
||F c

n||
−
(

1− ||∆F
c
n||

||F c
n||

)
tanφ

]
||F c

n||||∆`ct || (19)

As a result, it should be underlined that the occurrence of contact sliding
is not a sufficient condition to observe the vanishing of wc2. If a contact
slides under an ”increase” in the tangential force, for instance, the scalar
product ∆ut ·∆F t is positive. Contact sliding through normal unloading is
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Figure 12: Schematic diagram of the particular role played by rattlers with respect to the
size of the tangential increment ||∆`ct || for the incremental loading of Figure 11 (b).

thus a necessary condition to observe the vanishing of the local second-order
work wc2. Then the vanishing of the second-order work W2 at the scale of a
representative elementary volume requires the following two conditions:

- A sufficient number of contacts have to slide through normal unloading;

- A large proportion of these contacts has to exhibit a sufficiently large
tangential displacement ∆`ct such that the local second-order work wc2
vanishes.

By imposing internal geometrical constraints on a granular material, rattlers
may contribute to limiting the size of the tangential increment ||∆`ct || when
contact sliding occurs, as illustrated in Figure 12. Consequently, the presence
of rattlers will result in a decrease in the number of contacts with wc2 < 0
and an increase in W2, which imposes mechanical stability at the macroscopic
scale. This constitutes a micromechanical proof of the conjecture formulated
in Section 2.5.
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4. A numerical inspection of the stabilizing role played by rattlers

During the triaxial loading shown in Figure 2, two samples are saved for
η = 0.35 and η = 0.45 (these states are marked with diamonds in Figure 2).
As in Wautier et al. (2018) the mechanical stability of these two samples can
be assessed with a stress-controlled directional analysis with stress probes
describing a circle in the Rendulic plane (

√
2dσxx, dσzz) as follows (see also

Equation (3)): 
√

2dσxx =
√

2dσyy = ||dσ|| cos θ
dσzz = ||dσ|| sin θ

||dσ|| =
√

dσ2
zz + 2 dσ2

xx

,

where ||dσ|| = 5 kPa and θ ∈ [0, 2π].
To each stress probe dσ corresponds an incremental strain response dε. As

a result, the normalized second-order work W̄2 =
dε : dσ

||dε|| ||dσ||
is a function

of the loading direction θ. In Figure 14, circular representations of W̄2 are
shown for η ∈ {0.35, 0.45}. As reviewed in the introduction, the vanishing
of the second-order work is a signature of an underlying instability. As a
result, the first state η = 0.35 is identified as stable (at least in the Rendulic
plane as ∀θ ∈ [0, 2π], W̄2 > 0) whereas the second one η = 0.45 corresponds
to an unstable state with some incremental loading directions leading to the
vanishing of the second-order work (∀θ ∈ [205◦, 230◦], W̄2 < 0).
Based on these two samples, in this section we focus on the role played by
the loose phase (i.e., the least stressed grains of the assembly) with respect to
the mechanical stability of granular materials. In particular we focus on the
role played by rattlers, i.e. particles with no contacts with their neighbors.
Given that these particles do not carry any load, they can be easily removed
from the samples saved, without decaying their bearing capacity. Similarly,
rattlers can be artificially added to existing interstitial voids. These two
artificial microstructure modifications will be considered in the following two
subsections and may be representative of massive erosion or clogging induced
by an internal flow.

4.1. Mechanical stability assessment with no rattlers

In Figure 13 (a) the sample saved in the mechanical state η = 0.45 is shown
with the free particles highlighted in white. In this case, artificial removal of
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Figure 13: Microstructure evolution induced by removing free particles for the sample
saved in the mechanical state η = 0.45. Free particles are shown in the initial sample (a)
in grey. After these 3480 particles are removed, the resulting microstructure is shown in
(b) without rattlers.

rattlers concerns 3,480 particles out of 10,000 and the resulting microstruc-
ture is shown in Figure 13 (b). A similar extraction procedure was performed
on the sample saved in the mechanical state η = 0.35 in which 3,458 particles
are found to be rattlers.
As for the virgin microstructure, a stress-controlled directional analysis (see
Equation (3)) with 5-kPa stress probes is performed with artificially eroded
microstructures. In Figure 14, circular representations of the resulting nor-
malized second-order work are shown for the two samples saved and compared
with those obtained before any particle are removed.
In the case corresponding to η = 0.35, the sample initially identified as sta-
ble with respect to the second-order work criterion (∀θ, W2 > 0) becomes
unstable when rattlers are removed (∃θ, such that W2 < 0). In the case
corresponding to η = 0.45, both samples are in the bifurcation domain.
Removing rattlers results in a wider cone of instability (the set of loading
directions leading to W2 < 0). These observations show that rattlers play
an important role with respect to mechanical stability even though they did
not initially contribute to supporting the mechanical load. Indeed, if the ex-
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Figure 14: Circular envelopes of the normalized second-order work for η = 0.35 (a) and
η = 0.45 (b). The initial microstructure containing rattlers corresponds to the solid lines
while the microstructure without rattlers corresponds to the dashed lines.

isting contact network fails to transmit the imposed incremental stress, the
microstructure is forced to rearrange until a more robust contact network is
built, possibly by mobilizing free particles. As a result, free particle removal
reduces the rearrangement possibilities, which is consistent with an increase
in the number of unstable loading directions. At the macroscale, this re-
sults in larger plastic increments. For instance, in the case of η = 0.45, the
maximum plastic intensity εp introduced in section 2.3 rises from 4% to 21%
when rattlers are removed. The corresponding incremental strain envelopes
observed during the directional analysis performed are shown in Figure 17.
These observations are consistent with previous studies in which particle
removal is considered (including particles involved in stress transmission).
For instance, Scholtès et al. (2010) showed that granular samples loaded
in a drained triaxial state with a sufficiently high η value cannot adapt to
substantial particle removal. In some cases, removing some stressed particles
is sufficient to induce the collapse. Indeed, destabilized contact networks
cannot find any new stable configurations by incorporating new particles into
force chains. Even if particle removal does not lead to instantaneous failure,
Scholtès et al. (2010) and Hosn et al. (2018) observed considerable reduction
of the peak stress in drained triaxial tests resulting from the decrease in the
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number of accessible microstructure configurations.

4.2. Mechanical stability assessment with more rattlers

Following the pore network analysis shown in Wautier et al. (2017), an arti-
ficial increase in the number of rattlers is achieved as follows:

- define a pore network using a regular Delaunay triangulation of the
media (Chareyre et al., 2012);

- for every pore defined as a tetrahedron linking the center of four par-
ticles, compute the radius of the inscribed sphere together with the
position of its center;

- check whether such a sphere intersects any other existing particles not
belonging to the tetrahedron considered. If yes, decrease the computed
inscribed sphere radius until no intersection exists;

- include a particle inside every pore where the inscribed radius is larger
than a threshold value rth.

The result of the above procedure with rth = rmin

2
is shown for the sample

corresponding to η = 0.45 in Figure 15 (b). A total of 12,805 particles have
been added to existing voids (in addition to pre-existing rattlers).
As in the previous subsection, a stress-controlled directional analysis was
performed with this artificially enriched microstructure. In Figure 16, circu-
lar representations of the normalized second-order work are shown for (i) the
initial sample with η = 0.45, (ii) this sample deprived from rattlers and (iii)
this same sample in which additional rattlers are incorporated.
In Figure 16, the role played by rattlers with respect to mechanical stability
is clearly shown and confirms the conjecture proposed in Section 2.5. Indeed,
adding new rattlers offers new possibilities in rebuilding contact networks.
In the case of η = 0.45, the maximum plastic intensity εp is reduced from 4%
to 0.8% when additional rattlers are considered, as shown in Figure 17. As
a result, fewer incremental loading directions are associated with a negative
value of the second-order work as observed in Figure 16. However, despite
the large number of newly incorporated rattlers, a cone of instability persists
for the sample considered. These additional rattlers do not get jammed into a
new contact network quickly enough to prevent the existence of macroscopic
instability.
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Figure 15: Microstructure evolution induced by inclusion of free particles for the sample
saved in the mechanical state η = 0.45. Free particles are shown in the initial sample (a)
in white. The 12,805 particles added are shown in blue in the enriched sample (b).

4.3. Impact of rattlers on the non-associated character of the flow rule

As shown in the previous subsection, rattlers have a significant impact on the
mechanical stability of the samples considered. For the sample corresponding
to η = 0.45 it is interesting to reconsider the model parameters of Table
2 while updating the plastic flow intensity εp to account for the removal
or addition of rattlers considered in this section (εp = 21 10−2 and εp =
8 10−3 respectively). The comparison between the resulting envelopes and
the numerical data is given in Figure 18.
As shown in Figure 18, the change in the plastic intensity explains most of
the change in the W2 circular envelope in the case with additional rattlers
but does not account for the modification induced by the removal of rattlers.
Indeed, the presence or absence of rattlers may have an other impact on the
plastic behavior at the continuum scale through the plastic flow direction as
illustrated in the schematic diagram of Figure 19. The macroscopic activa-
tion of the plastic behavior corresponds locally to substantial grain rearrange-
ments following the collapse of pre-existing force chains. Initially these force
chains are oriented in the principal stress direction along the z axis. Once
they fail, the sample contracts in this direction while slightly dilating in the
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Figure 16: Circular envelopes of normalized second-order work for η = 0.45. Three mi-
crostructures are considered: the initial microstructure (solid line), the initial microstruc-
ture without its rattlers (dashed line) and the initial microstructure enriched with more
rattlers (dotted-dashed line).
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Figure 17: Incremental strain envelopes associated with directional analyses in the case
of η = 0.45. The three microstructures shown in Figures 13 and 15 are considered: virgin
(solid line), with rattlers removed (large dashed line), with rattlers added (small dashed
line). Two levels of zoom are provided in the inset plots.
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Figure 18: Circular envelopes of normalized second-order work for η = 0.45 corresponding
to the sample deprived from rattlers (a) and in which additional rattlers are incorporated
(b). The phenomenological fits coming from the elastoplastic model presented in Section
2.3 are shown with a dashed line with parameters from Table 2 and updated εp values,
and as a solid line for the updated plastic parameters from Table3. The maximum plastic
intensity direction ϕ+ ∆ϕ (the black dashed line segment) and the plastic flow direction
ϕ (the two black solid line segments) are also shown for both fits.
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Figure 19: Illustration of the plastic flow rotation induced by rattler removal with
anisotropically oriented force chains in the z direction.

horizontal directions x and y as a consequence of vertical to lateral force
transmission. When rattlers are removed, the vertical contraction is stopped
later while the horizontal dilation is less influenced. Since incremental plas-
tic strains result from the collapse of mesostructures mostly oriented along
the z axis, the impact of rattlers is expected to be greater along dεzz than
along dεxx and dεyy. This asymmetric influence results in a clockwise rota-
tion of the plastic flow in the axisymmetric plane (

√
2dεxx, dεzz) as observed

numerically in Figure 17. However, since the onset of the plastic behavior is
governed by the primary fabric, the plastic half-plane is not affected by the
modification of the population of rattlers.
As shown in Figure 18, a decrease in the plastic flow direction ϕ while keeping
ϕ + ∆ϕ constant precisely accounts for the new circular envelopes when
rattlers are removed from the sample. On the contrary, when adding rattlers,
a small increase in the plastic flow direction ϕ provides a better fit of the
numerical data. The modified plastic parameters are given in Table 3
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Table 3: Updated plastic parameters for the incremental non-associated elastoplastic be-
havior for the mechanical state η = 0.45 when rattlers are removed or added.

No rattlers More rattlers
ϕ = 113.8◦ − 10◦ ϕ = 113.8◦ + 3◦

∆ϕ = 25.9◦ + 10◦ ∆ϕ = 25.9◦ − 3◦

εp = 21 10−2 εp = 8 10−3

5. Conclusion and outlook

The combination of phenomenological modeling at the continuum scale, micro-
to macro-analytical relations and discrete element simulations was used in
this paper to elucidate the micro-mechanisms responsible for the macroscopic
concepts of plasticity and material instability. In this respect, particular at-
tention was paid to provide physical interpretations of the phenomenological
parameters used in non-associated elasto-plastic constitutive modeling. In
particular, the role played by free particles in granular materials has been
investigated in detail.
A necessary condition for the occurrence of material instability within gran-
ular materials (detected by the second-order work criterion) lies in the devel-
opment of large plastic strains. Provided that the current contact network
fails to withstand an incremental load, the mechanical stability of a granular
material at the macroscale is closely related to the ability of free particles to
get jammed into new force chains. Indeed, removing free particles results in
an increase in incremental plastic strain. When the loading history induces
microstructure anisotropy, local microstructure rearrangements occur in a
privileged direction, which macroscopically affects the direction of the flow
rule. As a consequence of these two microstructure effects, removing rattlers
leads to an increase in the number of loading directions associated with a
vanishing second-order work. On the other hand, adding free particles inside
the pores of an unstable granular assembly is shown to have a stabilizing
effect.
The understanding of such micromechanisms is of paramount importance
while considering the development of micromechanical models (Chang and
Hicher, 2005; Zhu et al., 2006; La Ragione et al., 2008; Zhu et al., 2010;
Nicot and Darve, 2011; Xiong et al., 2017). In these ”bottom-up” models,
and contrary to macroscopic phenomenological models, no assumptions are
made a priori on the form of the overall constitutive behavior, which will sim-

32



ply result from the micromechanisms captured in a simplified manner at the
micro or mesoscale. As a result, micromechanical models in which mesostruc-
tures are rich enough to build anisotropic microstructures will easily capture
the anisotropic elastic behavior visible at the representative elementary vol-
ume in this paper. If these mesostructures can account for the collapse and
rebuilding of force chains incorporating free particles (the phase exchange
between strong and weak contact networks), the resulting models will cer-
tainly be able to account for plastic strain intensity and capture the resulting
mechanical instability. In addition, if these mesostructures can evolve under
external couplings (fluid/grain couplings, chemical deposition or dissolution,
etc.), the micromechanical models considered will be able to account for the
induced evolutions in terms of the mechanical stability of a great diversity
of processes at stake inside granular materials.
In this respect, the results of this paper have a particular significance related
to internal erosion processes, and in particular the selective erosion of the fine
particles of a soil also known as suffusion. If candidate particles to erosion
are too large to be transported through the pore space, they remain trapped
inside the soil and ensure mechanical stability. In contrast, if the soil loses
rattlers, mechanical instability is more likely to appear. The development
of enriched versions of micromechanical models such as the one proposed
by Nicot and Darve (2011) and recently extended in 3D by Xiong et al.
(2017) could therefore lead to advanced constitutive modeling of internal
processes in soils for engineering applications in which detecting underlying
mechanical instability is of paramount importance. To pave the way for
developing such models, a closer perspective lies in the numerical modeling
of fluid/grain interactions at the microscale to provide a more precise picture
of flow-induced microstructure modifications.
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Figure A.20: Second-order work circular envelopes for different size reduction of rattlers.
The used sample corresponds to the stress state η = 0.45. Four size reduction factors are
considered (1, 0.95, 0.8 and 0).

Appendix A. DEM inspection of contact scale influence of rattlers

The objective of Section 3 was to exhibit the contact scale mechanisms re-
sponsible for material instability in order to prove the conjecture formulated
in Section 2.5. In this section, complementary DEM simulations are con-
sidered to back the qualitative results of Section 3 with some quantitative
analyses. In these DEM simulations, the sample corresponding to the stress
state η = 0.45 is considered, and rattlers are not removed but shrunk by
a factor of 0.95 or 0.8. The circular envelopes corresponding to these new
microstructures are shown in Figure A.20 together with those of Figure 14
(b).
In Figure A.20, the size influence of rattlers is visible as the instability cone
progressively widens when rattlers are shrunk which is consistent with the
schematic diagrams of Figures 10, 12 and 19.
If grain rotations are neglected for the sake of simplicity, the incremental
relative displacements between grains can be recovered by comparing the
branch vectors in the final (after the application of an incremental loading)
and initial configurations for every couple of particles initially in contact. By
taking the initial branch vector as reference, the final branch vector can be
decomposed into a normal displacement ∆un and a tangential displacement

34



∆ut. For each vector ∆un, a scalar quantity ∆un is defined with ∆un <
0 corresponding to a decrease in the normal inter-penetration and ∆un >
0 corresponding to an increase in the normal inter-penetration. In Figure
A.21, the observed incremental displacements between all particles initially
in contact are shown for the sample corresponding to the stress state η = 0.45
when rattlers are not shrunk, when rattlers are shrunk by a factor 0.95 and
when rattlers are shrunk by a factor 0.8.
In Figure A.21, a lot of relative displacements correspond to normal unload-
ing (∆un < 0) which is the contact scale necessary condition recalled in Sec-
tion 3 to observe the macroscopic vanishing of the second-order work. While
rattlers are shrunk, ||∆ut|| tends to increases. This tendency is confirmed
in Figure A.22 in which the tangential displacements of contacts undergoing
normal unloading in the reference case (for which rattlers are not shrunk) are
compared before and after rattlers are shrunk by 5 %. Results are normalized
by the mean particle radius rmean corresponding to the reference sample in
which particles are not shrunk.
In Figure A.22, the mechanism detailed in Figure 12 is observed in DEM
simulations. The majority of contacts subjected to normal unloading when
rattlers are not shrunk continue to experience normal unloading when rat-
tlers are shrunk by 5 %. In addition, for these contacts, the tangential
displacements increase as rattlers are shrunk. These quantitative results are
in agreement with the analytical findings of Section 3.
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Figure A.21: Incremental displacements ∆un and ||∆ut|| between all particles initially
in contact for the sample corresponding to the stress state η = 0.45 subjected to an
incremental stress load leading to the vanishing of the second-order work criterion (see
Figure A.20). Three size reduction factors are considered (1, 0.95 and 0.8). Results are
normalized by the mean particle radius rmean corresponding to the reference sample in
which particles are not shrunk.
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Figure A.22: Incremental displacements ∆ushrunkn and ||∆ushrunk
t || − ||∆uref

t || between all
particles initially in contact for the sample corresponding to the stress state η = 0.45
subjected to an incremental stress load leading to the vanishing of the second-order work
criterion (see Figure A.20). Three size reduction factors are considered (1, 0.95 and 0.8).
Results are normalized by the mean particle radius rmean corresponding to the reference
sample in which particles are not shrunk.
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