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Abstract

In a paper, recently published in Mechanical Systems and Signal Processing,

we have proposed a full Bayesian inference for reconstructing mechanical

sources acting on a linear and time invariant structure. The main interest

of this approach is to propose an estimation of all the parameters of the

model and quantify the posterior uncertainty associated to each parameter.

Since all the necessary information about the problem is available, statistical

measures, such as the mean, the median and the mode of the solution, can

be easily estimated. In many practical situations, however, one only wants

to determine the most probable parameters given the available data. Con-

sequently, it is not relevant to implement a full Bayesian inference to only

extract a point estimate. To overcome this potential issue, this paper intro-

duces an optimal Bayesian regularization aiming at computing the Maximum

a Posteriori estimate of the Bayesian formulation previously introduced by

the authors. In doing so, the most probable parameters are obtained with-

out heavy computations. The validity of the proposed method is assessed

numerically and experimentally. In particular, obtained results highlight the
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ability of the proposed regularization strategy in computing solutions with a

minimal amount of prior information on the sources to identify.

Keywords: Linear inverse problem, Force reconstruction, Bayesian

regularization, Generalized Gaussian priors.

1. Introduction

In structural dynamics, force identification is a special class of inverse

problem aiming at reconstructing the excitation sources acting on a mechan-

ical structure from the knowledge of the vibration field measured over its

surface. Unfortunately, this problem is known to be ill-posed, meaning that

the existence of a unique stable solution is not guaranteed. A classical solu-

tion to bypass this difficulty is to apply regularization strategies, which allows

constraining the space of solutions by using some prior information on the

noise corrupting the data and the sources to identify. The most widespread

and, certainly, the most popular technique is the Tikhonov regularization

(a.k.a. `2-regularization) [1, 2, 3, 4, 5, 6, 7]. Although widely used, it is

theoretically mainly applicable to the identification of rather smooth exci-

tation fields or excitation signals [8], which is not a desirable effect when a

localized source or an impulsive excitation signal have to be identified. To

remedy this problem, LASSO regularization (a.k.a. `1-regularization) has

been developed to promote the sparsity of the regularized solutions, while

keeping the inverse problem convex. For this particular reason, it has fo-

cused many of the research efforts in the recent years [9, 10, 11, 12]. To unify

all these approaches, Aucejo introduced the `q-regularization in the context

of force reconstruction, which includes Tikhonov and LASSO regularization
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as special cases [13]. However, because the norm parameter q can take any

value in R+∗, it can lead to more accurate solutions than those obtained from

standard regularization strategies [13]. In the procedures described above,

the a priori on the sources to identify is global, meaning that poor recon-

structions can be obtained, if, for instance, a structure is excited by several

sources having different spatial distributions, since the a priori has to re-

flect a compromise between contradictory distributions. That is why, Aucejo

and De Smet extend the `q-regularization to take advantage of prior local

information available on the sources to identify [14]. More specifically, the

proposed formulation relies on the definition of several identification regions,

in which the norm parameters q can be set independently for each region.

Although they have proved their efficiency, all these techniques requires a

proper tuning of the parameters of the considered formulation, namely the

regularization parameter and, potentially, the norm parameters q. For the

regularization parameter, this can be done using external, but expensive,

automatic selection procedures [15, 16], while the choice of the norm param-

eters relies more on the user’s skills or experience. Fortunately, because all

these regularization strategies derive from the Bayesian statistics, a possible

solution is to implement a full Bayesian inference to estimate the value of

each parameters of the problem as well as the related posterior uncertainty

using either MCMC techniques [17, 18, 19, 20, 21] or variational Bayes-like

approaches [22, 23, 24, 25]. Since all the necessary information about the

problem is then available, statistical measures, such as the mean, the median

and the mode of the solution, can be easily estimated. In many practical

situations, however, one only wants to determine the most probable param-
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eters given the available data. In this respect, implementing a full Bayesian

inference appears to be irrelevant, since it is generally time-consuming and

computationally expensive. It results that it seems wiser and more efficient,

in this case, to calculate directly the Maximum a Posteriori (MAP) estimate

of the considered Bayesian formulation. This idea has given rise to the aug-

mented Tikhonov regularization [26, 27, 28, 29], to the sparse Bayesian blind

deconvolution [30] or to the adaptive `q-regularization [31].

The present paper introduces an optimal Bayesian regularization corre-

sponding to the MAP estimate of the Bayesian formulation proposed by the

authors in Ref. [20]. More specifically, the considered regularization strat-

egy allows assessing within a single iterative process the most probable pa-

rameters of the problem given the measured vibration field. To avoid any

misunderstanding, it is important to note that the proposed Bayesian regu-

larization is optimal in the sense of the underlying Bayesian formulation. In

other words, the optimality statement should not be regarded as a statement

of superiority over the other existing strategies. To properly highlight the

main features of the proposed approach, this article is divided into four parts.

For the sake of completeness, the Bayesian formulation behind the proposed

regularization strategy is first recalled in section 2 to make the paper self-

contained. This section allows clarifying the assumptions made to derive the

formulation and allows defining the main parameters of the corresponding

probability distributions. Then, section 3 details the optimal Bayesian reg-

ularization by thoroughly introducing its mathematical formulation as well

as the algorithm used to solve the problem. Finally, the ability of the pro-
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posed approach in optimally identifying all the parameters of the problem is

illustrated using synthetic and experimental data in sections 4 and 5, where

locally sparse sources are reconstructed in the frequency domain. In particu-

lar, the proposed validations reveal that the optimal Bayesian regularization

is an efficient tool to obtain consistent reconstructions, while avoiding the

user to determine an accurate initial solution. In other words, only a rough

knowledge of the excitation field to identify is required.

2. Bayesian formulation of the reconstruction problem

Let us consider the practical situation where the vibration field X, mea-

sured over the surface of a structure, is caused by an unknown excitation

field F. If the structure is linear and time invariant, its dynamic behavior

is completely determined by the transfer functions matrix H, relating the

vibration field X to the excitation field F, so that:

X = HF + N, (1)

where N is the noise vector related to the measurement errors as well as

modeling errors (provided the latter are small enough).

Because the force reconstruction problem consists in estimating the un-

known excitation field F acting on a structure from the knowledge of the mea-

sured vibration field X and the transfer functions matrix H, the noise vector

N is another unknown of the reconstruction problem. To solve this prob-

lem efficiently, the Bayesian framework is adopted. Formally, the Bayesian

paradigm consists in considering all the parameters of the problem as random

5



variables. Consequently, the uncertainty about each parameter is modeled

by a probability distribution, describing the state of knowledge or the prior

on this parameter. From a mathematical standpoint, the standard Bayesian

formulation of the reconstruction problem relies on the Bayes’ rule:

p(F|X) ∝ p(X|F) p(F), (2)

where:

• p(F|X) is the posterior probability distribution, representing the proba-

bility of observing F given a vibration field X. In other words, it defines

what it is known about the excitation field F after making vibration

measurements;

• p(X|F) is the likelihood function, representing the probability of mea-

suring X given an excitation field F. It reflects the uncertainty related

to the measurement of the vibration field X;

• p(F) is the prior probability distribution, representing our knowledge

of the unknown excitation field F before measuring the vibration field

X.

Generally, the quality of the force reconstruction strongly depends on the

choice of the likelihood function and the prior probability distribution. That

is why, the probability distributions have to be carefully chosen.

As mentioned previously, the likelihood function reflects the uncertainty

related to the measurement of the vibrations field X. By definition, this

uncertainty is mainly related to the noise vector N. If the noise is supposed
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spatially white and due to multiple independent causes, then the likelihood

function can be represented by a complex multivariate normal distribution

with zero mean and precision parameter τn, namely:

p(X|F, τn) =
[τn
π

]N
exp

[
−τn‖X−HF‖22

]
. (3)

where ‖ • ‖2 is the `2-norm and N is the number of measurement points.

Regarding now the prior probability distribution, it reflects the uncer-

tainty related to the unknown excitation field F. If one supposes that the

structure is excited in R different regions by uncorrelated excitations of var-

ious types (localized or distributed), then local excitation fields Fr can be

considered as independent random vectors. As a result, the prior proba-

bility distribution can be written as the product of local prior probability

distributions p(Fr), that is:

p(F) =
R∏
r=1

p(Fr), (4)

where p(Fr) reflects the prior knowledge of the nature of the sources in the

region r.

In the present formulation, it is assumed, for practical reasons, that the

local excitation vectors Fr are real random vectors, whose components are

supposed to be independent and identically distributed random variables

following a generalized Gaussian distribution with zero mean [32]. As a

consequence, each local excitation field follows a multivariate generalized

Gaussian distribution with zero mean. From the mathematical standpoint,
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the local prior probability distributions are thus written:

p(Fr|τsr, qr) =

[
qr

2 Γ(1/qr)

]Mr

τ
Mr
qr
sr exp

[
−τsr‖Fr‖qrqr

]
, (5)

where:

• qr is the shape parameter of the distribution in the region r. Its value

is defined in the interval ]0,+∞[;

• ‖ • ‖qr is the `qr
-norm or quasi-norm, if qr ≥ 1 and qr < 1 respectively;

• τsr is the scale parameter of the distribution, which can be viewed as a

generalized measure of the precision of the distribution;

• Mr is the number of reconstruction points in the region r;

• Γ(x) =
∫ +∞
0

tx−1 e−t dt is the gamma function.

It should be noted that the choice of a multivariate generalized Gaus-

sian distribution offers a high flexibility for describing prior knowledge of the

sources to identify, since it is allows defining either a sparse (or localized)

prior for qr ≤ 1 or a smooth (or distributed) prior for qr = 2.

From the explanations given above, the Bayesian formulation of the re-

construction problem finally writes:

p(F|X, τn, τsr, qr) ∝ p(X|F, τn)
R∏
r=1

p(Fr|τsr, qr). (6)

At this stage, it is clear that the main shortcoming of the standard

Bayesian formulation is the choice of the associated parameters, since the
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quality of the identification is conditioned to the knowledge of the shape and

precision parameters. If their values are poorly chosen, then the resulting re-

construction won’t be representative of the actual target excitation field. To

alleviate this limitation, a possible alternative is to infer the shape and preci-

sion parameters by also considering them as independent random variables.

Such an idea gives rise to the complete Bayesian formulation at the root of the

proposed optimal Bayesian regularization [20]. From a mathematical stand-

point, this particular Bayesian formulation of the reconstruction problem is

given by:

p(F, τn, τsr, qr|X) ∝ p(X|F, τn) p(τn)
R∏
r=1

p(Fr|τsr, qr) p(τsr) p(qr), (7)

where p(qr) is the prior probability distribution of the shape parameters qr,

while p(τn) and p(τsr) are the prior probability distributions of the precision

parameters τn and τsr respectively.

To finalize the definition of the complete Bayesian formulation, it remains

to specify the prior probability distributions of the shape and precision pa-

rameters. The choice of the priori probability distributions p(τn) and p(τsr)

is first limited to distribution having a strictly positive support, because the

precision parameters τn and τsr are real positive numbers. The common

choice, made in the literature to use conjugacy properties, is the Gamma

distribution [33]. Practically, the Gamma distribution is defined by:

G(x|α, β) =
βα

Γ(α)
xα−1 exp(−β x) with α > 0, β > 0, (8)

where α and β are respectively the scale parameter and the rate parameter
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of the distribution.

The definition of the prior probability distribution of the shape parame-

ters qr relies on the fact that they are positive and bounded. In absence of

more precise knowledge on the parameters, the probability distribution is not

only chosen to reflect the available information but also for its mathematical

tractability. A probability distribution that meets these requirements is the

truncated Gamma distribution defined by:

GT (x|α, β, lb, ub) =
Γ(α)

γ(α, βub)− γ(α, βlb)
G(x|α, β) I[lb,ub](x), (9)

where:

• G(x|α, β) is the Gamma distribution defined in Eq. (8);

• I[lb,ub](x) is the truncation function defined between the lower bound lb

and the upper bound ub. More precisely, this function simply writes:

I[lb,ub](x) =

1 if x ∈ [lb, ub]

0 otherwise
; (10)

• γ(s, x) =
∫ x
0
ts−1 exp(−t) dt is the lower incomplete Gamma function.

From the above considerations, it results that the proposed complete

Bayesian formulation is finally expressed as follows:

p(F, τn, τsr, qr|X) ∝ p(X|F, τn) p(τn|αn, βn)

×
R∏
r=1

p(Fr|τsr, qr) p(τsr|αsr, βsr) p(qr|αr, βr, lb, ub),
(11)
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where (αr, βr) are the hyperparameters related to the shape parameters qr,

while (αn, βn) and (αsr, βsr) are the hyperparameters associated to the pre-

cision parameters τn and τsr respectively.

As a final remark, it is worth mentioning that the previous Bayesian for-

mulation allows emphasizing the specificity of the proposed optimal Bayesian

regularization with respect to those at the roots of the Augmented Tikhonov

regularization and the adaptive `q-regularization used in the context of force

reconstruction. First, the proposed Bayesian regularization generalizes to

some extent the Augmented Tihkonov regularization by considering the shape

parameters qr as random variables and not as deterministic parameters. Sec-

ond, it extends the adaptive `q-regularization, which is based on the formu-

lation proposed by the authors in Ref. [19], by defining several identification

regions and imposing, if necessary, a greater sparsity of local excitation fields

by authorizing the shape parameters to be less than 1.

3. Optimal Bayesian regularization

This section aims at introducing thoroughly the proposed optimal Bayesian

regularization. To this end, its practical implementation is detailed after hav-

ing introduced the underlying theoretical formulation. In the present work,

the identification regions are supposed to be known a priori. In general, a

careful analysis of the mechanical system is sufficient to determine the iden-

tification regions if the studied system or the operating conditions are rather

simple. In case of more complex systems or operating conditions, the defini-

tion of the identification regions could be automatically done using machine
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learning strategies such as Relevance Vector Machine [34], but this is outside

the scope of this paper.

3.1. Theoretical formulation

The basic idea of the optimal Bayesian regularization is to determine

the MAP estimate of the complete Bayesian formulation given by Eq. (11),

without performing a full Bayesian inference. Consequently, the solution of

the source identification problem is sought such that:(
F̂, τ̂n, τ̂sr, q̂r

)
= argmax

(F,τn,τsr,qr)
p(F, τn, τsr, qr|X). (12)

The solution of the previous optimization problem can be classically

solved by applying the first-order optimality condition to the dual minimiza-

tion problem. However, to render the presentation of the optimal Bayesian

regularization more didactic, one can notice that an alternative way of solving

this optimization problem consists in maximizing the full conditional prob-

ability distributions associated to each parameters. Consequently, the MAP

estimate of the complete Bayesian formulation can be found by solving the

following set of optimization problems:

q̂r = argmax
qr

p(qr|X,F, τn, τsr), (13a)

τ̂sr = argmax
τsr

p(τsr|X,F, τn, qr), (13b)

τ̂n = argmax
τn

p(τn|X,F, τsr, qr), (13c)

F̂ = argmax
F

p(F|X, τn, τsr, qr). (13d)
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Practically, it is generally easier to solve the dual minimization problem,

which consists in finding the value of the parameter minimizing the opposite

of the logarithm of the corresponding full conditional probability distribu-

tion. For the complete Bayesian formulation, the full conditional probability

distributions are for:

• the shape parameters qr:

p(qr|X,F, τn, τsr) ∝
τ

Mr
qr
sr

Γ(1/qr)Mr
qαr+Mr−1
r exp

[
−βr qr − τsr‖Fr‖qrqr

]
I[lb,ub](q);

(14)

• the precision parameters τsr:

p(τsr|X,F, τn, qr) ∝ G
(
τsr

∣∣∣αsr +
Mr

qr
, βsr + ‖Fr‖qrqr

)
; (15)

• the precision parameters τn:

p(τn|X,F, τsr, qr) ∝ G
(
τn

∣∣∣αn +N, βn + ‖X−HF‖22
)

; (16)

• the force vector F:

p(F|X, τn, τsr, qr) ∝ exp

[
−τn‖X−HF‖22 −

R∑
r=1

τsr‖Fr‖qrqr

]
. (17)

Consequently, finding the MAP estimate is equivalent to solve the follow-

ing set of minimization problems, defining the optimal Bayesian regulariza-

tion1:

q̂r = argmin
qr

f(qr|τsr,Fr) for qr ∈ [lb, ub], (18a)

1By setting αr = αsr = αn = 1 and βr = βsr = βn = 0, the resulting optimal

Bayesian regularization is equivalent to that obtained assuming that the prior probability

distributions on the shape and precision parameters are uniform.
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τ̂sr = argmin
τsr

τsr
(
βsr + ‖Fr‖qrqr

)
−
(
αsr +

Mr

qr
− 1

)
log τsr, (18b)

τ̂n = argmin
τn

τn
(
βn + ‖X−HF‖22

)
− (αn +N − 1) log τn, (18c)

F̂ = argmin
F

‖X−HF‖22 +
R∑
r=1

λr‖Fr‖qrqr . (18d)

where f(qr|τsr,Fr) = Mr log Γ(1/qr)−Mr

qr
log τsr−[αr +Mr − 1] log qr+βr qr+

τsr‖Fr‖qrqr and λr = τsr/τn.

3.2. Resolution algorithm

The analysis of the set of equations (18) suggests that the optimal Bayesian

regularization can only be solved in an iterative manner, since the optimal

value of a given parameter explicitly depends on the value of the others. It

results that the resolution process is divided into three main steps:

1. Set k = 0 and initialize q̂(0)r , τ̂ (0)sr , τ̂ (0)n and F̂
(0)
;

2. while convergence is not reached

a. k = k + 1;

b. for each region r, compute q̂(k)r from Eq. (18a) given τ̂
(k−1)
sr and

F̂
(k−1)
r ;

c. for each region r, compute τ̂ (k)sr from Eq. (18b) given F̂
(k−1)
r and

q̂
(k)
r ;

d. compute τ̂ (k)n from Eq. (18c) given F̂
(k−1)

;

e. compute F̂
(k)

from Eq. (18d) given τ̂ (k)n , τ̂ (k)sr and q̂(k)r ;
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f. monitor the convergence

end while

3. return F̂, τ̂n, τ̂sr and q̂r.

The practical implementation of the previous resolution procedure re-

quires a particular attention, since each step has to be carefully and properly

defined to converge to the optimal solution. For this particular reason, im-

plementation issues are detailed in the next sections.

3.2.1. Initialization of the resolution algorithm

The initialization step can be one of the keys of the convergence of the

iterative procedure when the functional to minimize exhibits local minima.

To properly address this issue, it has been decided to initialize the procedure

from a starting point having a reasonably high probability. In the present

case, the initial force vector F̂
(0)

is obtained from the MAP estimate of the

standard Bayesian formulation, which is defined by [see Ref. [14] for more

details]:

F̂
(0)

= argmax
F

p
(
F|X, τ̂ (0)n , τ̂ (0)sr , q̂

(0)
r

)
= argmin

F
‖X−HF‖22 +

R∑
r=1

λ(0)r ‖Fr‖q̂
(0)
r

q̂
(0)
r

,

(19)

where λ(0)r = τ̂
(0)
sr /τ̂

(0)
n is the regularization parameter in the zone r.

To simplify somewhat the calculation, it is supposed that the precision pa-

rameters τ̂ (0)sr are equal to a unique constant value τ̂ (0)s . Accordingly, Eq. (19)

becomes:

F̂
(0)

= argmin
F
‖X−HF‖22 + λ(0)

R∑
r=1

‖Fr‖q̂
(0)
r

q̂
(0)
r

, (20)
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where λ(0) = τ̂
(0)
s /τ̂

(0)
n .

To obtain a relevant initial force vector, it is necessary to determine rea-

sonable values of the initial shape parameters q̂(0)r and the precision param-

eters τ̂ (0)s and τ̂ (0)n . Practically, the values of the shape parameters q̂(0)r lie in

the interval ]0, 2] for force reconstruction problems. They can be chosen from

subjective considerations by recalling that smoothed solutions are promoted

for q̂(0)r = 2, while sparse solutions are promoted for q̂(0)r ≤ 1 [8, 35]. On

the contrary, near-optimal values of the precision parameters are difficult to

assess a priori, i.e. without any calculation, because they are strongly related

to the optimization problem given in Eq. (20) through the regularization pa-

rameter λ(0), whose optimal value is partly conditioned to q̂(0)r . In addition,

since the shape parameter q̂(0)r can take any value in the range ]0,2], the so-

lution of the optimization problem has generally no closed-form expression.

Incidentally, the optimal value of the regularization parameter λ(0) can not

be directly estimated from the marginalized MAP [36], the L-curve principle

[37] or the Generalized Cross Validation [16] before solving the minimization

problem [see Ref. [35] for details]. To this end, the optimization problem is

solved iteratively using an adapted Iteratively Reweighted (IR) algorithm,

which allows determining in an iterative manner the regularized force vector

as well as the optimal regularization parameter associated to the minimiza-

tion problem.

The proposed IR algorithm is derived by applying the first-order optimal-

ity condition to Eq. (20). It results from what precedes that the solution at
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iteration j of the iterative process is given by:

F̂
(0,j)

=
(
HHH + λ(0,j) W(j)

)−1
HHX, (21)

where the regularization parameter λ(0,j) is updated from an automatic se-

lection procedure such as the L-curve principle [37], while W(j) is a diagonal

global weighting matrix depending explicitly on F̂
(0,j−1)
r and q̂(0)r and defined

from local weighting matrices Wr such that:

W(j) = diag[W(j)
1 , . . . ,W(j)

r , . . . ,W(j)
R ]. (22)

In the previous equation, each local weighting matrix W(j)
r is a diagonal

matrix, expressed as:

W(j)
r = diag

[
w

(j)
r,1 , . . . , w

(j)
r,i , . . . , w

(j)
r,Mr

]
, (23)

with:

w
(j)
r,i =

q̂
(0)
r

2
max

(
εr,
∣∣∣f (j−1)
ri

∣∣∣)q̂(0)r −2
, (24)

where f (j−1)
ri is the ith component of the vector F̂

(j−1)
r and εr is a small real

positive number acting as a damping parameter. It allows avoiding infinite

weights when
∣∣∣f (j−1)
ri

∣∣∣→ 0 and q̂(0)r < 2. Practically, the damping parameter

is automatically selected from the cumulative histogram of
∣∣∣F̂(0)

r

∣∣∣. More pre-

cisely, its value is chosen so that 5% of the values of
∣∣∣F̂(0)

r

∣∣∣ are less than or

equal to εr [13, 38].

After convergence of the iterative process, one obtains the optimal force

vector F̂
(0)
, the global weighting matrix W, as well as the optimal value of

the regularization parameter λ(0).
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At this stage of the initialization procedure, it remains to determine the

values of τ (0)n and τ (0)s . For this purpose, we follow the approach proposed by

Pereira et al. [36] consisting in finding the the most probable values of τ (0)n

and τ (0)s given the measured vibration field X. The application of this idea

to the proposed Bayesian formulation leads to the following values for τ̂ (0)s

and τ̂ (0)n [see Ref. [20] for details]:

τ̂ (0)s =
N

XH
(
λ(0)I + HW−1HH

)−1 X
and τ̂ (0)n =

τ
(0)
s

λ(0)
. (25)

As a final remark, it is worth noting that the proposed initialization

procedure implies that only the initial shape parameters q̂(0)r must be defined

by the user, since the other parameters are computer from Eqs. (20) and (25).

3.2.2. Computation of the optimal shape parameters q̂(k)r

The computation of q̂(k)r requires a special attention, since the function

to minimize has no analytical solution. However, because the function to

minimize, f(qr|τsr,Fr), is known analytically [see Eq. (18)], it is possible to

calculate its gradient with respect to qr. In the present case, the gradient,

g(qr|τsr,Fr), is expressed as:

g(qr|τsr,Fr) = βr + τsr

Mr∑
i=1

(|Fri|qr log |Fri|)−
αr +Mr − 1

qr

+
Mr

q2r
[log τsr − ψ(1/qr)] ,

(26)

where Fri is the ith component of the force vector Fr and ψ(x) is the digamma

function.
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The knowledge of the function and its gradient allows considering several

possibilities for finding the optimal values of the shape parameters qr at iter-

ation k within the interval [lb, ub]. Indeed, the minimization problem defined

by Eq. (18a) can be solved using either a bound-constrained minimization

method [39, 40] or a bounded root-finding algorithm applied to the gradient

[41] or even a brute-force approach.

It should be noted here that, even if the lower and upper bounds lb and ub

can theoretically take any positive value, the values of the shape parameters

qr generally lies in the interval ]0, 2] [see section 3.2.1]. For this particular

reason, we set lb = 0.05 and ub = 2 for all the validations presented in the

rest of the paper.

Finally, to complete this section, a comment must be added on the choice

of the hyperparameters αr and βr. As evoked previously, the choice of the

truncated Gamma distribution has been made for mathematical convenience,

because other continuous truncated distribution could have theoretically been

used. To avoid biasing the optimization process, the shape of the prior dis-

tribution needs to be weakly informative [42]. According to Gelman, a prior

distribution is said weakly informative if it is proper but is set up so that the

information it does provide is intentionally weaker than whatever actual prior

knowledge is available [43]. Here, this leads us to set the hyperparameters

such that αr = 1 and βr → 0.
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3.2.3. Computation of the optimal precision parameters τ̂ (k)n and τ̂ (k)sr

The computation of the precision parameters τ̂ (k)n and τ̂ (k)sr is straightfor-

ward, insofar as the solutions of minimization problems given by Eqs. (18b)

and (18c) can be analytically calculated by applying the first-order optimality

condition. In doing so, it readily comes that:

τ̂ (k)sr =

αsr +
Mr

q̂r(k)
− 1

βsr +
∥∥∥F̂(k−1)

r

∥∥∥q̂(k)r

q̂
(k)
r

and τ̂ (k)n =
αn +N − 1

βn +
∥∥∥X−HF̂

(k−1)∥∥∥2
2

. (27)

As for the computation of the shape parameters, the choice of the hyper-

parameters (αsr, βsr) and (αn, βn) is questionable, since the Gamma distribu-

tion has been chosen for mathematical convenience and does not reflect any

real prior information on the precision parameters, except their positiveness.

That is why, the prior distributions on τn and τsr should be as minimally

informative as possible. To this end, one sets, as previously, αn = αsr = 1

and βn = βsr → 0.

3.2.4. Computation of the optimal force vector F̂
(k)

By definition, the force vector at iteration k is solution of the following

minimization problem:

F̂
(k)

= argmin
F

‖X−HF‖22 +
R∑
r=1

λ(k)r ‖Fr‖q̂
(k)
r

q̂
(k)
r

, (28)

where λ(k)r = τ̂
(k)
sr /τ̂

(k)
n is the regularization parameter at iteration k.

Because this minimization problem has the same form as the one used to

compute the initial force vector F̂
(0)
, the IR algorithm, briefly described in
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section 3.2.1, is also implemented to compute the optimal force vector F̂
(k)

at iteration k. In this case, however, all the regularization parameters λ(k)r

are considered during the resolution process [20].

3.2.5. Convergence monitoring

As any iterative procedure, the proposed algorithm must be stopped after

either a certain stopping criterion is less than some tolerance or a certain

number of iterations fixed by the user is reached. In the present paper, the

stopping criterion is related to the relative error of the force vector between

two successive iterations. Mathematically, the relative error δ is defined such

that:

δ
(
F̂

(k−1)
, F̂

(k)
)

=

∥∥∥F̂(k)
− F̂

(k−1)∥∥∥
1∥∥∥F̂(k−1)∥∥∥

1

. (29)

The choice of the tolerance has a strong influence on the overall perfor-

mance of the optimal Bayesian regularization, since a too small tolerance

can lead to unnecessary calculations, while a too large tolerance can lead to

inaccurate solutions. This particular point will be thoroughly studied in the

next section.

4. Numerical validation

The present numerical study intends to demonstrate how the proposed

optimal Bayesian regularization (OBR) operates with respect to the choice of

the initial solution, the tolerance of the iterative process and the measurement

noise level. For the sake of completeness, the proposed optimal Bayesian

formulation is also applied for different prior structures and comparisons with
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results obtained from the corresponding full Bayesian inference are proposed.

Finally, the possibility of a parameters reduction is studied.

4.1. Description of the test case

In the present numerical validation, one seeks to identify a point force

of unit amplitude (i.e. F0 = 1 N) acting on a thin simply supported steel

plate with dimensions 0.6 m×0.4 m×0.005 m. The coordinates of the point

force, measured from the lower left corner of the plate, are (x0, y0) = (0.42 m,

0.25 m). Practically, this configuration allows studying the influence of the

definition of local regularization terms, since the present excitation field ex-

hibits two types of spatial distribution over the structure, namely a smooth

distribution of the reaction forces at boundaries and a singular distribution

around the location of the point force.

To properly simulate experimental measurements, the exact vibration dis-

placement field Xexact is first computed from a FE mesh of the plate made

up with 187 shell elements, assuming that only bending motions are measur-

able. Then, in absence of contradictory information, the exact displacement

field is supposed to be corrupted by an additive Gaussian white noise with a

signal-to-noise ratio (SNR) equal to 35 dB.

Finally, the transfer functions matrix H is computed from a FE model of

the plate with free boundary conditions, assuming that only bending motions

are measured. In other words, the computed transfer functions matrix H is

dynamically condensed over the measurable degrees of freedom only [13, 44].

The main interest in using free boundary conditions to model the dynamic
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behavior of the plate is to allow the identification of external excitations

acting on the structure as well as reaction forces at boundaries [45].

4.2. Application

To numerically validate any force reconstruction strategy, it is first nec-

essary to define the reference force vector Fref that could serve as a proper

benchmark. This reference force vector is computed from the transfer func-

tions matrix H and the exact displacement field Xexact thanks to the follow-

ing relation:

Fref = H−1Xexact. (30)

This numerical study is focused on the identification of the excitation

field at 350 Hz, i.e. outside the resonance frequencies of the plate. As shown

in Fig. 1, the reference force vector corresponds to the description of the test

case given in the previous section, since it exhibits smooth reaction forces at

boundaries of the plate as well as a unit point force F0 at (x0, y0) = (0.42 m,

0.25 m).

Consequently, the analysis of the reference force vector suggests that two

identification regions can be defined to apply the OBR: (i) a central region

associated to the shape parameter q1 and containing the point force only and

(ii) a region associated to the shape parameter q2 and corresponding to the

boundaries of the plate [see Fig. 2].

Regarding the application of the OBR to the previous synthesized data,

it should be noted that the tolerance for stopping the iterative is set to 10−4
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Figure 1: Reference force vector Fref at 350 Hz
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Figure 2: Definition of the identification regions - (◦) region 1 (Point force), (×) region 2

(Reaction forces) and (♦) location of the point force
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if no contradictory information is given. Finally, to quantify the accuracy

of identified solutions with respect to the considered operating conditions,

the relative error (RE) and the peak error (PE) are evaluated. Formally,

the relative error δ is defined in Eq. (29) and corresponds, in the present

situation, to the relative error between the reference excitation field Fref and

the excitation field F̂ reconstructed from the OBR. As a result, the relative

error must be written δ(Fref, F̂). Practically, the relative error is a global

indicator of the reconstruction quality. The peak error is a local indicator

that allows assessing the reconstruction quality of the point force amplitude.

Mathematically, it is defined such that:

δp =
F̂p − F ref

p

F ref
p

, (31)

where F ref
p is the point force amplitude associated to the reference force vector

Fref, while F̂p is the point force amplitude associated to the identified solution

F̂.

4.2.1. Influence of the choice of the initial parameters

In section 3.2.1, it has been noted that only the definition of the shape

parameters q̂(0)r is required to initialize the OBR, since all the other param-

eters are computed accordingly. In this context, it is interesting to assess

the convergence of the OBR with respect to the initial choice of the shape

parameters. To this end, it is supposed in the following that q̂(0)1 = q̂
(0)
2 = q̂0

with q̂0 = {0.5, 1, 2}.

Fig. 3 presents the excitation fields reconstructed from the OBR for the

three q̂(0) previously defined. At first sight, the identified excitation fields
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are in a relatively good agreement with the reference one. This qualitative

observation is confirmed by the results listed in Table 1. In particular, it

should be noted that the values of the identified parameters are very close to

each other. It is also worth noting that the point force is properly recovered

in all cases. It should however be noted that the overall reconstruction error

is about 41%, indicating that the reconstruction of the reaction forces is not

as good as expected. This confirms the visual inspection of Fig. 3. Finally,

the only noticeable difference appears in the number of iterations performed

by the algorithm to reach the convergence.

The main conclusion of this convergence study is that the OBR is almost

insensitive to the choice of the initial shape parameter q̂0.

Table 1: Convergence study of the OBR with respect to the choice of the initial shape

parameters – Nit: Number of iterations of the algorithm

Initial shape parameter q̂0

0.5 1 2

q1 0.51 0.51 0.51

q2 2 2 2

τs1 32.02 31.07 31.54

τs2 19.74 19.71 19.72

τn 2.78×1016 2.80×1016 2.79×1016

PE (%) 0.31 0.24 0.27

RE (%) 41.43 41.88 41.66

Nit 40 20 10
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Figure 3: Reconstructed force vector F̂ at 350 Hz from the OBR with respect to the initial

choice of the shape parameter q̂0. (a) Surface plot – q̂0 = 0.5, (b) Surface plot – q̂0 = 1,

(c) Surface plot – q̂0 = 2 and (d) Section view at y0 = 0.25 m – (—) Reference, (−−)

OBR for q̂0 = 0.5, (− · −) OBR for q̂0 = 1 and (· · · ) OBR for q̂0 = 2
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4.2.2. Influence of the choice of the convergence tolerance

As any iterative procedure, the identification accuracy of the OBR is

partly related to the value of tolerance used to stop the iterative process.

For this reason, it is important to study the convergence of the OBR with

respect to the value of tolerance defined by the user. Table 2 gathers the

results obtained with the OBR for tolerance values ranging from 10−3 to

10−8 and q̂0 = 2. The analysis of the results show that the OBR converges

quickly to the optimal solutions. Consequently, one can choose the value of

the tolerance so as to define a compromise between the solution accuracy and

the computational efficiency.

Table 2: Convergence study of the OBR with respect to the tolerance fixed to stop the

iterative process – Nit: Number of iterations of the algorithm

Tolerance

10−3 10−4 10−5 10−6 10−7 10−8

q1 0.51 0.51 0.51 0.51 0.51 0.51

q2 2 2 2 2 2 2

τs1 31.45 31.54 31.55 31.55 31.55 31.55

τs2 19.71 19.72 19.73 19.73 19.73 19.73

τn 2.79×1016 2.79×1016 2.79×1016 2.79×1016 2.79×1016 2.79×1016

PE (%) 0.28 0.27 0.28 0.28 0.28 0.28

RE (%) 41.69 41.66 41.66 41.66 41.66 41.66

Nit 8 10 13 15 17 20
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4.2.3. Influence of the measurement noise level

In the previous sections, it has been supposed that the vibration field is

corrupted by an additive Gaussian white noise having an SNR equal to 34

dB. However, it is legitimate to wonder whether the quality of the identified

solutions remains the same when the SNR gets lower. To answer this ques-

tion, the OBR is applied to vibration data having SNR ranging from 35 dB

to 10 dB. For this numerical experiment, the initial shape parameter q̂0 is set

to 2.

The results listed in Table 3 indicates that the OBR performs well what-

ever the SNR values considered, which is an indicator of the robustness of

the proposed regularization strategy.

Table 3: Convergence study of the OBR with respect to the measurement noise level

corrupting the data – Nit: Number of iterations of the algorithm

SNR

10 15 20 25 30 35

q1 0.36 0.37 0.39 0.39 0.45 0.51

q2 2 2 2 2 2 2

τs1 40.24 38.90 37.28 36.94 34.73 32.57

τs2 24.74 22.56 21.17 20.31 19.84 19.76

τn 6.16×1013 2.03×1014 6.78×1014 2.27×1015 7.83×1015 2.77×1016

PE (%) -0.55 2.81 2.19 1.53 0.59 0.39

RE (%) 28.67 30.25 32.92 35.73 39.90 41.02

Nit 18 20 22 10 11 19
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4.2.4. Comparison with Bayesian inference results

At this stage of the paper, it is interesting to compare the results obtained

in the previous section with those obtained from the full Bayesian inference

as described in Ref. [20].

After initially drawing 7000 samples, the values of the parameters cor-

responding to the mode of posterior distributions of each parameter of the

formulation are given in Table 4 for SNR values ranging from 10 dB to 35

dB. Overall, the most probable values of the parameters inferred from the

proposed MCMC procedure are in line with the OBR results. However, the

analysis of the PE and RE indicators shows that, while the estimation of the

point force amplitude is quite satisfying, the reconstruction of the reaction

forces differs significantly when the SNR decreases. A possible explanation of

these contrasted results is that a normal approximation has been used to draw

samples from the full conditional probability distribution p(F|X, τn, τsr, qr)2

[see Ref. [20] for details]. Finally, it worth mentioning that the OBR is, as

expected, computationally more efficient than the full Bayesian inference,

since the solution is obtained in 1 s on average for the OBR, while about 6

min are required on average for the full Bayesian inference.

4.2.5. Influence of the choice of the prior distributions

The proposed OBR being based on a particular prior structure, it is in-

teresting to study the influence of the choice of the prior distributions on the

2It should be mentioned that Metropolis-Hastings and HMC updates have also been

implemented without success due to convergence issues (low acceptance rate).
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Table 4: Most probable parameters inferred from MCMC with respect to the measurement

noise level corrupting the data

SNR

10 15 20 25 30 35

q1 0.62 0.71 0.59 0.60 0.48 0.47

q2 1.99 1.99 2 2 1.98 1.99

τs1 29.54 27.10 30.92 30.68 34.27 34.18

τs2 0.45 1.06 2.07 3.37 5.09 6.24

τn 5.81×1013 1.88×1014 5.89×1014 1.89×1015 5.26×1015 1.70×1016

PE (%) -4.92 -1.57 -4.40 -2.62 -2.94 -2.20

RE (%) 99.90 95.35 71.85 66.89 47.79 41.63

estimation of the optimal solution.

Prior distributions of the shape and precision parameters

As a first modification, let us assume that the shape and precision pa-

rameters are uniformly distributed. Formally, this imposes that:

p(τn) ∝ IR+ , p(τsr) ∝ IR+ and p(qr) ∝ I[lb,ub]. (32)

From a practical standpoint, the corresponding OBR is obtained by set-

ting αn = αsr = αr = 1 and βn = βsr = βr = 0 in Eqs. (18a) and (27).

Given this particular formulation, obtained estimated parameters are listed

in Table 5 for SNR values ranging from 10 dB to 35 dB. As expected, the

results are identical to those presented in Table 3.
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Table 5: Convergence study of the OBR with respect to the measurement noise level

corrupting the data when the shape and precision parameters are uniformly distributed –

Nit: Number of iterations of the algorithm

SNR

10 15 20 25 30 35

q1 0.36 0.37 0.39 0.39 0.45 0.51

q2 2 2 2 2 2 2

τs1 40.24 38.90 37.28 36.94 34.73 32.57

τs2 24.74 22.56 21.17 20.31 19.84 19.76

τn 6.16×1013 6.16×1014 6.78×1014 2.27×1015 7.83×1015 2.77×1016

PE (%) -0.55 2.81 2.19 1.53 0.59 0.39

RE (%) 28.67 30.25 32.92 35.73 39.90 41.02

Nit 18 20 22 10 11 19
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Another possibility is to define a Jeffrey’s prior for the precision parame-

ters τn and τsr, while keeping the prior distribution of the shape parameters

defined as a truncated Gamma distribution. It results that the prior distri-

butions of the precision parameters are defined such that:

p(τn) ∝ 1

τn
and p(τsr) ∝

1

τsr
. (33)

From a practical standpoint, the corresponding OBR is obtained by set-

ting αn = αsr = 0 and βn = βsr = 0 in Eq. (27). In doing so, one obtains the

results presented in Table 6. Contrary to the previous situation, the results

only slightly differ from those listed in Table 3. Consequently, it can be con-

cluded that regulation results are quite insensitive to the choice of the prior

distributions of the shape and precision parameters provided that the latter

are weakly informative or non-informative.

Prior distribution of the force vector

As for the shape and precision parameters, the choice of the prior distri-

bution of the force vector to identify is not unique. The main advantage of

the proposed prior distribution is to be flexible enough to deal with various

distributions such as Gaussian and Laplace distributions by properly setting

the value of the shape parameters. When the shape parameters are supposed

to be deterministic, the corresponding Bayesian formulation is given by:

p(F, τn, τsr|X, qr) ∝ p(X|F, τn) p(τn|αn, βn)
R∏
r=1

p(Fr|τsr, qr) p(τsr|αsr, βsr).

(34)

A classical choice made in the literature is to suppose that the components

of the force vector are normally distributed. In the present case, this implies
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Table 6: Convergence study of the OBR with respect to the measurement noise level

corrupting the data when the precision parameters follow a Jeffrey’s prior – Nit: Number

of iterations of the algorithm

SNR

10 15 20 25 30 35

q1 0.36 0.37 0.39 0.39 0.44 0.51

q2 2 2 2 2 2 2

τs1 40.44 39.34 37.15 36.16 32.99 31.46

τs2 24.24 22.11 20.75 19.90 19.43 19.35

τn 6.13×1013 2.02×1014 6.75×1014 2.26×1015 7.82×1015 2.77×1016

PE (%) -0.62 2.80 2.25 1.50 0.67 0.34

RE (%) 28.80 30.39 33.10 36.10 40.40 41.69

Nit 15 15 18 12 14 23
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that qr = 2 for all the considered regions. This formulation gives rise to an

Augmented group Tikhonov regularization. As shown in Fig. 4 and Table 7,

this particular formulation is unfortunately unable to properly identify the

point force excitation, while the reconstruction of the reaction forces is quite

satisfying.

0
0.4

0.2

0.4

0.6

F
o

rc
e
 a

m
p

li
tu

d
e
 [

N
]

0.6

y [m]

0.8

0.2 0.4

x [m]

1

0.2

0 0

(a)

0
0.4

0.2

0.4

0.6

F
o

rc
e
 a

m
p

li
tu

d
e
 [

N
]

0.6

y [m]

0.8

0.2 0.4

x [m]

1

0.2

0 0

(b)

Figure 4: Reconstructed force vector F̂ at 350 Hz when the components of the force vector

are normally distributed - (a) SNR = 10 dB and (b) SNR = 35 dB

When the components of the force vector are supposed to follow a Laplace

distribution (i.e. qr = 1 for each region), the results are not much better as

indicated by the analysis of Fig. 5 and Table 8.

These disappointing results can be explained by the fact that the prior

on the force vector is not well adapted to the reconstruction of both localized

and distributed sources at the same time.

4.2.6. Parameters reduction

When dealing with parameter optimization, it could be interesting to re-

duce the number of parameters to constrain the space of admissible solutions
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Table 7: Convergence study of the OBR with respect to the measurement noise level

corrupting the data when components of the force vector is normally distributed – Nit:

Number of iterations of the algorithm

SNR

10 15 20 25 30 35

τs1 6.35×1058 5.45×1036 4.62×1035 3.20×103 2.32×103 1.43×103

τs2 25.84 22.11 23.48 21.39 20.90 20.04

τn 4.32×1013 9.05×1013 1.39×1014 1.74×1015 5.74×1015 2.09×1016

PE (%) -100 -100 -100 -93.76 -91.17 -85.97

RE (%) 36.54 34.11 31.12 53.24 54.94 57.71

Nit 9 10 15 13 13 17
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Figure 5: Reconstructed force vector F̂ at 350 Hz when the components of the force vector

follow a Laplace distribution - (a) SNR = 10 dB and (b) SNR = 35 dB
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Table 8: Convergence study of the OBR with respect to the measurement noise level

corrupting the data when the components of the force vector follow a Laplace distribution

– Nit: Number of iterations of the algorithm

SNR

10 15 20 25 30 35

τs1 2.25×1010 5.43×1010 149.32 135.76 127.79 114.05

τs2 6.27 5.89 5.27 5.02 4.95 4.98

τn 4.38×1013 9.15×1013 6.64×1014 2.30×1015 7.81×1015 2.70×1016

PE (%) -100 -100 -29.17 -18.15 -12.78 -9.37

RE (%) 66.19 58.40 80.65 77.91 68.63 58.82

Nit 8 12 100 9 7 6

by eliminating some degrees of freedom. In the present work, two possibilities

are studied. The first one consists in defining a unique precision parameter

τs for all the identification region, which leads to define a single regulariza-

tion parameter for computing the optimal force vector. From the theoretical

standpoint, the corresponding Bayesian formulation is written:

p(F, τn, τs, qr|X) ∝ p(X|F, τn) p(τn|αn, βn) p(τs|αs, βs)

×
R∏
r=1

p(Fr|τs, qr) p(qr|αr, βr, lb, ub).
(35)

Regarding the resolution algorithm, this assumption leads to change the cal-

culation of the precision parameter τs at step 2.c of the pseudo-code described

in section 3.2, whose closed-form expression is given by Eq. (27). Under this
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assumption, the precision parameter τ̂ (k)s at iteration k is expressed as:

τ̂ (k)s =

αs +
R∑
r=1

Mr

q̂
(k)
r

R∑
r=1

∥∥∥F̂(k−1)
r

∥∥∥q̂(k)
q̂(k)

. (36)

As shown in Table 9, the results obtained for a unique precision parameter

τs are in a very good agreement with those listed in Table 3. Consequently,

it is possible to employ only one precision parameter τs for all the considered

regions.

Table 9: Convergence study of the OBR with respect to the measurement noise level

corrupting the data for a unique precision parameter τs – Nit: Number of iterations of the

algorithm

SNR

10 15 20 25 30 35

q1 0.34 0.35 0.36 0.34 0.41 0.51

q2 2 2 2 2 2 2

τs 32.62 30.63 28.98 28.52 26.06 24.55

τn 6.10×1013 2.02×1014 6.73×1014 2.25×1015 7.88×1015 2.89×1016

PE (%) 1.39 3.39 2.43 1.72 0.94 -0.37

RE (%) 26.73 27.25 29.13 30.53 36.73 42.11

Nit 14 14 16 15 12 15

In the light of the previous observations, it is legitimate to wonder whether

it is possible to limit the number of the shape parameters. To explore this
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possibility, let us defining a unique shape parameter q for all the identifi-

cation region. From the theoretical standpoint, the corresponding Bayesian

formulation is written:

p(F, τn, τsr, q|X) ∝ p(X|F, τn) p(τn|αn, βn) p(q|α, β, lb, ub)

×
R∏
r=1

p(Fr|τs, q) p(τsr|αsr, βsr).
(37)

Regarding the resolution algorithm, this assumption leads to change the cal-

culation of the shape parameter q at step 2.b of the pseudo-code described

in section 3.2. Under this assumption, the shape parameter q̂(k) at iteration

k is solution of the following minimization problem:

q̂ = argmin
q

f(q|τsr,Fr) for q ∈ [lb, ub], (38)

where f(q|τsr,Fr) = βq−
[
α− 1 +

∑R
r=1Mr

]
log q + log Γ(1/q)(

∑R
r=1Mr)−

1
q

∑R
r=1Mr log τsr +

∑R
r=1 τsr‖Fr‖qq.

As highlighted in Table 10, the reduction of the number of the shape

parameters leads to inconsistent solutions, since the solver converges to the

sparsest solution, which is not a desirable effect. However, these results are

consistent with the results presented in Tables 7 and 8 indicating that a

reduction of the number of shape parameters is detrimental to the solution

accuracy.

4.2.7. Recommendations

In the light of the previous results, we propose the following recommen-

dations to properly apply the OBR:
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Table 10: Convergence study of the OBR with respect to the measurement noise level

corrupting the data for a unique shape parameter q – Nit: Number of iterations of the

algorithm

SNR

10 15 20 25 30 35

q 0.28 0.28 0.32 0.35 0.44 0.52

τs1 28.17 30.82 26.90 28.95 30.47 33.84

τs2 10.97 9.55 8.61 7.47 6.01 5.30

τn 5.96×1013 1.97×1014 6.67×1014 2.25×1015 7.87×1015 2.72×1016

PE (%) 4.42 6.45 3.74 2.01 0.83 0.27

RE (%) 122.40 103.05 104.60 86.48 90.32 81.71

Nit 55 31 100 31 26 30

1. The OBR being almost insensitive to the choice of the initial shape

parameters from which all the other initial parameters are derived, it is

recommended to set q̂(0)1 = q̂
(0)
2 = 2. This allows computing the initial

parameters in an efficient manner;

2. The convergence study, presented in section 4.2.2, has demonstrated

that the OBR converges quickly to the optimal solution. Consequently,

it is recommended to set the tolerance of the iterative process to 10−3,

which leads to a reasonable compromise between the solution accuracy

and the computational efficiency;

3. As shown in section 4.2.6, it is possible to limit the number of pa-

rameters of the optimization problem. Indeed, a parameter reduction

allows constraining more the space of admissible solutions, which can
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help for finding an optimal solution. However, our results suggests to

reduce the number of the precision parameters τsr instead of the shape

parameters qr.

5. Experimental validation

This section aims at confirming the main conclusions drawn in the previ-

ous section by extending the analysis to a real-world application. Since the

proposed method is a natural extension of the work presented in Refs. [14, 20],

we have decided to perform this validation using the same experimental set-

up.

5.1. Description of the experimental set-up

The structure under test is a steel parallelepiped box, excited on one of

its faces by a shaker fed by a white noise signal and equipped with a force

sensor [see Fig. 6]. The parameters of this experimental validation are given

in Table 11.

Measurements of the vibration field were carried out with a scanning laser

vibrometer on a grid of 19×22 points along y and z directions respectively

using the force signal as phase reference. In all the subsequent identifica-

tions, the measured vibration velocity field is normalized to the force signal

delivered by the force sensor. In doing so, the identified point force F0 should

be equal to 1.

Regarding the FE mesh used to model the dynamic behavior of the plate,

it has been designed to perfectly match the measurement mesh. Hence, it

consists of 378 shell elements, making the model theoretically valid up to
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Figure 6: Experimental set-up

Table 11: Experiment parameters

Parameters Values

Length of the parallelepiped Lx = 0.45 m

Width of the parallelepiped Ly = 0.3 m

Height of the parallelepiped Lz = 0.35 m

Wall thickness h = 0.005 m

Young’s modulus E = 2.1× 1011 Pa

Density ρ = 7800 kg.m−3

Location of the force (y0, z0) = (0.10 m, 0.09 m)
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5000 Hz. Then, the corresponding FE model with free boundary conditions

has been used to compute the transfer functions matrix H, considering the

bending motions as the only available data.

5.2. Application

A careful analysis of the experimental set-up suggests the definition of two

identification regions. The first region associated to the shape parameter q1

contains the point force only, while the second region, associated to the shape

parameter q2, corresponds to the boundaries of the plate [see Fig. 7].

00.050.10.150.20.250.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y [m]

z
 [

m
]

Figure 7: Definition of the identification regions - (◦) region 1 (Point force), (×) region 2

(Reaction forces) and (♦) location of the point force

In the experimental application, the OBR is applied at 525 Hz, which is

a frequency lying outside the resonance frequency of the plate for a conver-
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gence tolerance equal to 10−3 and q̂(0) = 2. The aim of this experimental

validation is to compare the OBR implemented from the full Bayesian for-

mulations given by Eq. (11) and (35) respectively. In other words, we are

going to compare the OBR considering either two precision parameters τsr

(case 1) or a single precision parameter τs (case 2). For the sake of complete-

ness, these results are also compared with the MAP solution estimated after

initially drawing 7000 samples from the full Bayesian inference introduced in

Ref. [20].

Fig. 8 presents the excitation fields reconstructed from the OBR for the

two considered parametrizations. This figure shows that the reconstructed

excitation fields are qualitatively similar. More precisely, the location and

the amplitude of the point force amplitude are recovered. This observation

is confirmed by the analysis of the results listed in Table 12. Indeed, the

estimates of the shape parameters are consistent with our expectations and

the peak error indicates that the point force amplitude is properly estimated.

Furthermore, it is interesting to note that, in the present experimental vali-

dation, the proposed OBR results are fully consistent with those estimated

from the full Bayesian inference.

6. Conclusion

In the present paper, an optimal Bayesian regularization has been in-

troduced for reconstructing mechanical sources acting on a structure. The

purpose of the proposed approach is to determine the most probable ex-

citation field as well as the most probable parameters associated to the full
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Figure 8: Reconstructed force vector F̂ at 525 Hz (a) OBR for two precision parameters

τsr (case 1), (b) OBR for a single precision parameter τs (case 2) and (c) MAP estimated

from MCMC samples
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Table 12: Comparison of the OBR when considering two precision parameters τsr (case 1)

or a single precision parameter τs (case 2) with the MAP estimated from MCMC samples

– Nit: Number of iterations of the algorithm

case 1 case 2 MCMC

q1 0.26 0.26 0.40

q2 2 1.40 1.99

τs1 64.50 62.79 55.78

τs2 458.77 - 6.11

τn 7.99×108 8.25×108 9.01×108

PE (%) -0.6 0.8 -0.1

Nit 30 70 -

Bayesian formulation previously published by the authors and recalled in this

contribution. One of the most interesting features of the proposed strategy

lies in its ability in computing optimal solutions from a minimal amount of

prior information on the sources to identify. A set of recommendations has

been proposed from the numerical and experimental validations we have con-

ducted. It has also been shown that the proposed approach is robust against

the initialization, the tolerance set to stop the iterative process and the mea-

surement noise level. Finally, it must be said that the optimal Bayesian

regularization is quite general, since it can be directly used to tackle identifi-

cation problems in frequency or time domains, provided that the reconstruc-

tion model is established accordingly.
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