
HAL Id: hal-02068449
https://hal.science/hal-02068449

Preprint submitted on 14 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A simple way to explain undecidability
Stavros Tripakis

To cite this version:

Stavros Tripakis. A simple way to explain undecidability. 2019. �hal-02068449�

https://hal.science/hal-02068449
https://hal.archives-ouvertes.fr


A simple way to explain undecidability

Stavros Tripakis
Northeastern University

March 3, 2019

1 Introduction

The undecidability of the halting problem for Turing machines is a cornerstone result in computer science [3].
Many students are exposed to rigorous proofs of this result in textbooks on computability theory, such
as [1, 2]. These proofs rely on knowing what a Turing machine is and how it operates. This is of course
necessary for a rigorous exposition of the undecidability result.

Here’s a way to explain undecidability without having to explain Turing machines. This is by no means
a rigorous proof, but I have found it a useful way to introduce students to the undecidability concept.

2 Undecidability without Turing machines

The argument is as follows. Suppose there exists a program, call it terminator, which can decide termi-
nation of other programs. terminator takes as input a program P and an input x and returns YES if P
terminates on x, and NO if P does not terminate on x. terminator always terminates and gives a YES or
NO answer.

Now build a new program Q as follows:

Q(P) := if (TERMINATOR(P,P) = YES)

then loop forever

else return YES.

Q takes as input a program P and runs terminator on P , with the input
x also set to P . If terminator returns YES, then Q goes into an infinite
loop. Otherwise, Q returns YES (the actual returned value is in fact not
important).

Assuming that program terminator exists, Q is also a valid program
(which calls terminator as a subroutine). So Q can be given as an input
to itself, and we can ask: does Q(Q) terminate? There are two cases:

• Either terminator(Q,Q) returns YES, which means that Q(Q)
terminates. But in that case, Q takes the then branch and loops
forever, which means it does not terminate!

• Or terminator(Q,Q) returns NO, which means that Q(Q) does
not terminate. But in that case, Q takes the else branch and
returns a value, which means that it does terminate!

In both cases, we reach a contradiction. Therefore, terminator cannot exist.
This “proof” is both simple and short: it fits in one page of a small note pad, as the picture above shows.

1



References

[1] H. Lewis and C. Papadimitriou. Elements of the Theory of Computation, 2/e. Prentice-Hall, 1997.

[2] Michael Sipser. Introduction to the theory of computation. 1997.

[3] A. M. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings
of the London Mathematical Society, 1936.

2


	Introduction
	Undecidability without Turing machines

