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des Systèmes, UMR CNRS 5513

Ecole Centrale de Lyon

36 avenue Guy de Collongue

69134 Ecully Cedex, France

Email: joel.perret-liaudet@ec-lyon.fr

This paper presents a methodology for the multi-

objective optimization of both gear macro and micro-

geometry parameters in order to minimize the Static

Transmission Error (STE) and the mesh stiffness fluc-

tuations generated by the meshing process. The opti-

mization is performed using a genetic algorithm which

allows testing of a high number of gears. As the repeti-

tive calculation process requires a fast evaluation of the

gear excitation sources, a semi-analytical tooth bending

model is proposed in order to evaluate gear compliance

from a thick Reissner-Mindlin analytical plate model for

the evaluation of the tooth strain energy and from a

Ritz-Galerkin approximation for the description of the

tooth deflection form. For each gear design tested by the

algorithm, the robustness of solution to manufacturing

errors is evaluated by performing Monte Carlo simula-

tions for a thousand samples of random manufacturing

errors. The Probability Density Functions (PDF) de-

scribing the RMS values of the mesh stiffness and STE

fluctuations of each gear are estimated and their aver-

age values are the two objectives minimized by the opti-

mization procedure. Standard deviations and maximum

values describing the dispersion of results are also evalu-

ated. Finally, the methodology provides a decision help

tool for the designer who intends to choose the best gear

design according to the criteria retained. The method

is illustrated for a mechanical system equipped with a

reverse gear.



Nomenclature

a′ Center distance

b Gear facewidth

C Gear torque

Cβ Parabolic and symmetrical gear crowning

e(θ) Vector describing the initial gap between the

teeth at the angular position θ

E Young Modulus

f Rotating frequency of the shaft

fm Meshing frequency

fHα Gear tip relief

F Gear load

gs Specific glide

H(θ) Compliance matrix of the teeth in contact at

the angular position θ

h(x) Thickness of the plate at the heigh x (0 being

the tooth foot)

ha Tooth addendum coefficient

he Tooth height

hf Tooth dedendum coefficient

j Gear backlash

k(t) Gear mesh stiffness

L fHα Gear tip relief length

mk Average value of the PDF describing RMS

values of k(t) fluctuations

mste Average value of the PDF describing RMS

values of STE δ(t) fluctuations

(Mx,My)
T Bending moments

(Qx,Qy)
T Shear stress forces

Mk Maximum value of the PDF describing RMS

values of k(t) fluctuations

Mste Maximum value of the PDF describing RMS

values of STE δ(t) fluctuations

Mxy Twisting moments

nMC Number of Monte Carlo simulations

N Number of angular positions of the driving

wheel in a meshing period

P(θ) Load distributed along the gear contact line

at the angular position θ

Pi Load at the discretized contact point i

rb Gear base radius

r f Gear root radius

r i Gear reference radius

sR(R) Tooth thickness at the radius R

si Tooth thickness at the reference radius r i

S Surface of the plate

T(x0,y0) Transverse force applied to the point (x0,y0)

u(x,y) Displacement vector of the plate

w(x,y) Deflection of the plate in the direction z in

function of (x,y) the position in the tooth

Wde f Strain energy of the plate

xps Gear profile shift coefficient

Z Number of teeth

αo Gear pressure angle

αoT Gear transverse pressure angle

β Gear helix angle

ε Strain tensor of the plate

δ(θ) Static Transmission Error (STE) at the an-

gular position θ

ν Poisson coefficient

σk Standard of the PDF describing RMS values

of k(t) fluctuations

σste Standard of the PDF describing RMS values

of STE δ(t) fluctuations

θx(x,y) Rotation sectio around x of the plate

θy(x,y) Rotation sectio around y of the plate

σ̃ Generalized stress of the plate

inv Involute operation

1 Introduction

Mechanical gear systems involve internal excitations

responsible for upsetting vibroacoustic phenomena [1].

It is usually assumed that the Static Transmission Error

(STE) δ(t) is the main excitation source generated by

the meshing process. It is defined as the difference

between the actual position of the output wheel and the

position it would occupy if the gear drive were perfect

and infinitely rigid [2, 3]. Its time-evolution depends

on the instantaneous situations of the meshing tooth

pairs which results from two physical sources. The

first source corresponds to the under load gear teeth

deflections. The second source correspond to the tooth



flank micro-geometry associated with manufacturing

errors and/or profile/longitudinal tooth corrections.

The misalignment induced by the global deformation

of the device can be included in the second source.

STE is an excitation source which can be taken into

account by its time-evolution (displacement type exci-

tation) and a mesh stiffness fluctuation k(t), origin of

a parametric excitation of the mechanical gear system.

Under steady-state operating conditions, STE and

mesh stiffness fluctuations are periodic functions. In

the absence of pitch errors and eccentricity faults, their

fundamental frequency corresponds to the meshing

frequency ( fm = Z f , with f the rotation frequency of

a wheel and Z its number of teeth). Under operating

conditions, STE δ(t) and k(t) lead to dynamic mesh

forces which are transmitted to the housing through

wheel bodies, shafts and bearings. Housing vibratory

state is directly related to the whining noise radiated

by the gearbox [4, 3, 5, 6]. Controlling these excitations

is an important key for Noise Vibrations and Harshness

(NVH) reduction.

The computation of the STE for spur and helical

gears from analysis of the static unilateral contact

between teeth is well mastered [7, 8, 9]. Initial gap

between unloaded contact surfaces is deduced from

tooth flank micro-geometry. Gear teeth compliance is

usually deduced from a previous finite element modeling

of the gear teeth. Contact equations computation leads

to the driven wheel displacement relative to the driving

pinion one and the load distribution along the contact

line. This computation is performed for each successive

position of the driving pinion along the meshing process

in order to build the STE time-evolution. Furthermore,

the mesh stiffness is deduced from the derivative of the

STE with respect to the transmitted load F.

The effect of the micro-level geometry on the STE

has been widely studied, as well as the influence of the

wheel body deflection and the coupling between the

teeth in the meshing process [10, 11, 12, 13, 14, 15, 16].

Micro-level corrections may be used to modify

the load distribution, the stress and the wear of

teeth [17, 18, 19, 20]. These corrections have also been

used to minimize STE and mesh stiffness fluctuations

and so the noise induced [21,11,13,17,22].The variability

of excitations generated by the presence of micro-level

manufacturing error has also been studied [23]. These

observations bring us to consider NVH optimization of

gear geometries.

Various gear optimization have been imple-

mented in the literature. Some of them focus on

stress or weight minimization [24, 6, 25, 26, 27, 28],

considering macro-level design parameters as factors

(mostly module, number of teeth, tooth addendum

and dedendum, shift profile [24, 27, 28]). Some

others concern minimization of excitation sources,

dynamic phenomena and induced emitted noise

[7, 29, 6, 30, 31, 22, 32, 33, 34, 5], considering micro-level

parameters (mostly longitudinal and profile tooth flank

corrections [21,7,29,10,11,13,30,31,18,19,35,36,37,38]).

Dedicated algorithms are sometimes developed [24, 33]

and metaheuristic algorithms are used [27, 28, 36, 38].

Mono-objective [24, 33, 28] or multi-objective [27] gear

optimizations are both performed.

Large varieties of methods are used in the literature

to perform Multi-Objective (MO) optimization, such as

gradient-method [39, 40], Particle Swarm Optimization

(PSO) [34] and MO Evolutionary Algorithms (EA)

methods [41, 42] to cite a few. Most of the time,

gradient methods are the simplest to use when both

the objective and Jacobian functions are defined. On

the other hand, MOEA present two major advantages:

they can deal with 0-order objective functions and

they act on the total design space. In this field, many

methods are available [43] such as Strength Pareto

Evolutionary Algorithms (SPEA [44, 45] and SPEA-

II [46]), Non-dominated Sorting Genetic Algorithms

(NSGA [47] and NSGA-II [48, 49]), Pareto Archived

Evolution Strategy (PAES [50]) or Adaptive Pareto



Algorithm (APA [51, 52]). These methods give a set of

Pareto-optimal solutions. A major inconvenient is the

repetition of the criteria’s evaluation for each individual

which may lead to prohibitive computation (CPU)-time.

The goal of this paper is to present a multi-objective

optimization methodology using an evolutionary algo-

rithm that minimizes, in the context of NVH process,

the excitation sources generated by the meshing pro-

cess (STE and mesh stiffness fluctuation). The factors

of the optimization procedure are both the gear macro

and micro-geometry parameters. The optimization also

takes into account the robustness of the obtained solu-

tions to manufacturing errors within tolerance classes.

As the number of required gear samples for EA must

be very important, a fast and efficient semi-analytical

tooth bending model is defined and introduced in order

to evaluate the gear excitation sources associated with

each gear sample.

In section 2, the semi-analytical tooth bending model is

built in order to obtain a fast evaluation of the gear teeth

compliance. The model is used to solve the equations de-

scribing unilateral contact between gear teeth and com-

pute STE and mesh stiffness fluctuations. Section 3

presents the multi-objective NVH global optimization

procedure of the gear macro and micro-geometries us-

ing a genetic algorithm. The robustness of each indi-

vidual/gear tested to the manufacturing errors is also

checked using Monte Carlo simulation and a thousand

samples of random errors within the tolerance class as-

sociated with the manufacturing process. Even though

the mesh stiffness depends on the STE, minimizing the

one doesn’t lead to minimize the other. The two objec-

tives of the optimization are then the following:

• minimizing the average of the PDF describing the

RMS values of STE δ(t) fluctuations estimations,

• minimizing the average of the PDF describing the

RMS values of k(t) fluctuations estimations.

Section 4 briefly presents the NSGA-II algorithm

method used to perform the optimization. In the last

section 5, the method is illustrated with an optimization

example.

2 Deterministic computation of the Static

Transmission Error and the mesh stiffness

fluctuations

In this part, we present the deterministic compu-

tational model used in the optimization procedure to

evaluate the periodic excitations generated by a gear.

2.1 Analytical tooth bending model

Computation of the Static Transmission Error

firstly requires the estimation of the loaded teeth

deflection. Most of times, a compliance matrix is built

in a prior calculation, from a finite element modeling of

the toothed wheels. All of the physical phenomena that

participate in the tooth deflection should be taken into

account. The influence of the wheel elasticity and the

interaction between the adjacent teeth in the meshing

process are all the more important that the wheel body

is thin [8, 9]. Despite a proven efficiency [8, 9], the

built of a finite element meshing and the work on large

stiffness matrices are time-consuming. So that, the cost

in computing time is prohibitive in the case of the im-

plementation of a robust optimization needing a lot of

gear macro-geometries built and tested. In this context,

a semi-analytical modeling of the compliance matrix

has been developed. It is based on the Reissner-Mindlin

thick plate analytical theory [53, 54] described in this

part, coupled with a Ritz-Galerkin approximation for

the teeth deflection form (see next section 2.2).

The gear tooth is modeled with a rectangular plate

with variable thickness h(x) depending on the gear

macro-geometry parameters. The deflection of the the

plate w(x,y) is used to model the deflection of the tooth.

The simplified model is depicted in figure 1 and uses a

Reissner-Mindlin thick plate theory (see figure 2). The

strain energy Wde f of a thick plate (surface S) in a plane

(x,y) submitted to a force the transverse force T(x0,y0)



is defined as follows:

Wde f =

∫∫
S

1
2

εT σ̃(ε)−w(x0,y0)T(x0,y0)dS (1)

with ε et σ̃ respectively the strain and generalized stress

of the plate.

The displacement vector u(x,y) is defined as follows:

 

Fig. 1: Analytical tooth bending model
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with w(x,y), θx(x,y) and θy(x,y) respectively the deflec-

tion of the plate, the rotation of section around x and y

at the point (x,y). The strain ε and generalized stress σ̃

at a point (x,y) are defined by:
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(4)

with E the Young modulus and ν the Poisson coefficient.

The plate representing the tooth is assumed clamped at

the root radius r f . The thickness h(x) of the plate is

equal to the tooth thickness sR(R) at the radius R=

r f + x:

sR(R) = R

[

si

r i
−2

[

inv(arccos(
rb

R
)
]

− inv(αoT))

]

(5)

with

si = mo

[

Π
2
+2xpstan(αo)

]

(6)

and mo the gear module, αo the normal pressure angle,

xps the profile shift coefficient, r i the reference radius, rb

the base radius and αoT the transverse pressure angle.

“Inv” is the involute function corresponding to:

inv(α) = tan(α)−α (7)

2.2 A Ritz-Galerkin approximation

A Ritz-Galerkin polynomial interpolation is made

to approximate the 3 displacement fields over the plate.

These ones are described using chosen kinematically ad-

missible functions respecting the following conditions:















w(0,y) = 0

θx(0,y) = 0

θy(0,y) = 0

(8)
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Fig. 2: Reissner-Mindlin theory: (a) Displacements, (b) Generalized stress: bending moments (Mx,My)
T , twisting

moment Mxy and shear stress forces (Qx,Qy)
T

The displacements of a given point (x,y) are written as

follows:

u(x,y) =
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(9)

with aw, bw, cw, aθx , bθx , cθx , aθy , bθy and cθy the 9

coefficients that define the 3 fields w(x,y), θx(x,y) and

θy(x,y) of the displacement vector u(x,y).

The 9 unknowns parameters of the Ritz-Galerkin

approximation 9 are identified from application of the

minimum total potential energy principle to equation 1.

A symbolic scientific computing software was used in

order to obtain the 3 fields w(x,y), θx(x,y) and θy(x,y)

of the displacement vector u(x,y). These analytical ex-

pressions are function of:

• the gear macro-geometry parameters governing the

tooth thickness h(x),

• the material characteristics (E and ν),

• the position (x0,y0) and intensity of the force T,

• the position (x,y) of the point where the deflec-

tion w(x,y) and the rotations of section θx(x,y) and

θy(x,y)) are evaluated.

The accuracy of the analytical thick plate model

coupled with the Ritz approximation has been com-

pared to a finite element model. A MAC-like criterion

was used to compare the plate deflection forms obtained

with our semi-analytical model and a classical plate

finite element model. It shows a good correlation with

an 95% accuracy.

For each individual/gear tested in the genetic algo-

rithm, the semi-analytical tooth bending model allows

the computation of the compliance matrices (for each

angular position θ in the meshing period) from the gear

macro-geometry in less than 1 second using MATLAB

software coupled with an Intel Core i7-5500U processor

(2.40 GHz, 2 core) and RAM 16 Go. More than 1000

seconds are necessary when the meshing of gear teeth

are required with a finite element modeling.

2.3 Static Transmission Error STE δ(t) and

mesh stiffness fluctuations k(t)

For a given transmitted load F , Static Transmission

Error (STE) δ(t) is calculated for a set of successive po-

sitions θ of the driving wheel, in order to evaluate its

periodic time evolution. For each angular position θ

of the driving wheel, a kinematic analysis of gear mesh

allows the location of theoretical contact lines for each

loaded tooth pair. The contact lines are discretized in

segments where the force is assumed constant. A com-

pliance matrix H(θ) of the contact lines at the wheel

position θ is then introduced, and links the displace-

ments of the discrete points to the applied forces. This



matrix is built using the semi-analytical tooth bending

model described in the two last sections 2.1 and 2.2.

The Hertz deformation is added in the compliance ma-

trix H(θ). On each segment of the discretized contact

lines, an initial gap distance needs to be taken into ac-

count. This gap, represented by the vector e(θ), is in-

duced by the tooth flank corrections, the manufacturing

errors and the parallelism errors which result from the

elasto-static deformation of the gearbox. For each posi-

tion θ over a meshing period, the contact equation can

be written as follows:

{

H(θ).P(θ) = δ(θ).1− e(θ)

1T .P(θ) = F
(10)

under the following constraints:

{

H(θ).P(θ)+ δ(θ).1 > e(θ)

Pi > 0
(11)

where the unknowns are the STE δ(θ) and the load

P(θ) distributed along the contact lines.

For each of the successive positions θ of the driving

wheel, the mesh stiffness is defined as the derivative of

STE relative to the transmitted load F :

k(θ) =
∂F

∂δ(θ)
(12)

The mesh stiffness is evaluated for the set of successive

positions θ of the driving wheel, in order to evaluate its

periodic time evolution. Practically, it is estimated by

numerical derivation rule.

Figure 3 displays the excitation sources generated by

the meshing process.

Figure 4 displays the Static Transmission Error and

mesh stiffness fluctuations for two sets of macro and

micro-geometry parameters presented in the table 1.

Results obtained with a compliance matrix computed

with the analytical tooth bending model are compared

with results obtained from a finite element modeling of

θ: Instantaneous position of the driving wheel
STE (θ) : Static Transmission Error (displacement excitation)

k (θ) : Mesh stiffness (parametric excitation)

α: Pressure angle
Rbi : Base radius of the wheel i

k(  )θ
STE(  )θ

o

o

o

Fig. 3: Excitation sources generated by the meshing

process [55]

the gear teeth. The results demonstrate the good ac-

curacy of the analytical tooth bending model. Many

additional comparisons performed with various macro-

geometries in terms of module, number of teeth, helix,

pressure angles and torques transmitted have shown a

relative error which remains under 10%, for both the

mean and peak-to-peak values of static transmission er-

ror and mesh stiffness. Only some anecdotal cases may

show a relative error upt to 25%.

Case 1 2

Young Modulus E (GPa) 210

Poisson coefficient ν 0.3

Number of teeth Z (wheel 1/2) 33/75 17/71

Module mo (mm) 12 2.676

Pressure angle αo (degrees) 20 20

Facewidth b (mm) 90 20

Helix angle β (degrees) 0 25.648

Addendum coefficient ha (wheel 1/2) 0.99/0.99 1.15/1.13

Dedendum coefficient hf (wheel 1/2) 1.25/1.25 1.65/1.62

Center distance a′ (mm) 650 128

Torque on the wheel 1 (N.m) 13200 230

Table 1: Gears tested
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Fig. 4: Periodic evolution of STE and mesh stiffness over two meshing period for 2 different gears: comparison

between Finite Element Model and Analytical Model. (a) STE δ(t) of gear 1. (b) STE δ(t) of gear 2. (c) k(t) of

gear 1. (d) k(t) of gear 2.

3 Optimization problem

The NVH (Noise, Vibration and Harshness) multi-

objective optimization aims to find the gear macro and

micro-geometry parameters that minimize the excita-

tions generated by the meshing process under the oper-

ating conditions, respecting wear conditions, and taking

into account the robustness of the solutions to the man-

ufacturing errors.

3.1 Robust objectives

STE and mesh stiffness fluctuations are highly de-

pending on the manufacturing and assembly errors [23]

(which are taken into account through the vector e(θ)

of the equation 10). Solution of the optimization proce-

dure should take in account the parameters variability.

For each gear tested by the algorithm, a precision corre-

sponding to the tolerance class 6 (ISO 1328) is assumed.

The manufacturing errors taken into account are the fol-

lowing:



• profile errors (linear and parabolic),

• longitudinal errors (linear and parabolic),

• parallelism errors (axis inclination and deviation).

The manufacturing errors distribution is considered to

be uniform over the range associated with the tolerance

class, which is the worst possible case in. In order to

consider the variability of the results induced by such

tolerances, the objectives considered are statistical av-

erages. A Monte-Carlo simulation is performed for each

gear with nMC = 1000random manufacturing error sam-

ples and the Probability Density Functions (PDF) de-

scribing the RMS values of STE δ(t) and mesh stiffness

k(t) fluctuations are built (see an example in figure 5).

The choice of nMC = 1000 combines both a good accu-

racy (around 3%) and a reasonable CPU-time. The ob-

jectives of the optimization are the following:

• minimizing the average value mste of the PDF de-

scribing the RMS values of STE δ(t) fluctuations

estimations,

mste=
nMC
Σ

i=1

RMS
[

δi(t)− δi(t)
]

nMC
(13)

• minimizing the average value mk of the PDF describ-

ing the RMS values of k(t) fluctuations estimations.

mk =
nMC
Σ

i=1

RMS
[

ki(t)−ki(t)
ki(t)

]

nMC
(14)

Other characteristics of the PDF, such as the standard

deviation σ and the maximum value M are used in the

last section 5.

3.2 Parameters

The parameters of the optimization are both macro

and micro geometry parameters, namely:

• the gear cutting tool, that defines the normal mod-

ule mo and the normal pressure angle αo,

• the teeth number Z1, Z2,

• the helix angle β,

Probability Density Function

Standard deviation
-�i

 

Maximum

M i

�i

 

 Mean value

mi

OPTIMIZATION OBJECTIVES 

i (STE(t) or k(t) fluctuations)

Fig. 5: Power Density Function of signal i (STE δ(t)

or k(t) for one gear tested

• the tooth addendum ha,

• the crowning magnitude Cβ, corresponding to a

micro-geometrical parabolic and symmetrical lon-

gitudinal tooth flank correction,

• the tip relief magnitude fHα and the tip relief length

L fHα corresponding to a micro-geometrical tooth

profile correction.

They are chosen under some constraints, namely:

• the gear ratio is imposed,

• the center distance a′ is imposed,

• the gear facewidth b is imposed,

• the gear backlash j is set,

• the material is imposed,

• the tooth dedendum coefficient hf is set (default

value = 1.25),

• the total contact ratio is more than 1.1,

• the specific sliding ratio gs is less than 2.5,

• the maximum contact pressure and mechanical

strength are less than a material dependent limit.

One may note that the profile shift coefficient xps is

deduced from the other parameters, especially the

center distance a′ and the gear backlash j.

In this way, a gear tested by the algorithm (i.e. an

individual) is a combination of a macro and micro-level

geometry parameters. For each gear, a Monte Carlo

simulation with 1000 random manufacturing errors is



 

Fig. 6: Principle of the evaluation of each gear

made. The objectives are the averages mste and mk of

the the PDF describing the STE and mesh stiffness fluc-

tuations RMS values. The principle of the evaluation of

each individual/gear is described in figure 6.

4 Principle of the genetic algorithm

Genetic algorithm methods are based on the evo-

lution of species over generations in their natural en-

vironment. Figure 7 summarizes the principle of such

method. The algorithm used is called NSGA-II [48,49].

“Individuals” are considered. In this paper, each indi-

vidual corresponds to a gear (which means a combina-

tion a macro and micro-geometry parameters) associ-

ated with its two objectives (see section 3.1). A group of

independent individuals form a “population”. The goal

of the algorithm is to make the population evolve over

the “generations” (iterations) by doing “mutations” and

“crossing” between the individual’s parameters of this

population, in order to improve the objectives of the in-

dividuals in the population. The algorithm is composed

of 5 different stages (see figure 7). Figure 6 gives a de-

tailed insight of the evaluation step 2.

For populations composed of 100 gears evolving over

200 up to 300 generations, the number of gears tested

by the algorithm is larger than 20 000. The results focus

on the last generation obtained by the algorithm. Usu-



1. Initialization of the population
Set of various gears

2. Evaluation of the individuals
Monte Carlo simulation taking account of manufacturing errors for each gear

Calculation of the PDF averages for STE(t) and k(t) RMS values

3. Selection / Mutations / Crossing

2. Evaluation of the individuals
Monte Carlo simulation taking account of manufacturing errors for each gear

Calculation of the PDF averages for STE(t) and k(t) RMS values

Insertion in the population

4. New population
Set of various gears

5. New iteration/
Generation

Fig. 7: Functioning of the genetic algorithm NSGA-II

ally, this last population is composed of Pareto-optimal

solutions, which correspond to gears that are compro-

mises between the two antagonistic objectives. In other

words, each solution (gear) of this Pareto front is bet-

ter than the others in the sense of at least one of the

objectives.

5 Application example

5.1 Mechanical gear system studied

An application example is presented in this part in

order to demonstrate the efficiency of the overall proce-

dure. It considers a kinematic chain composed of two

contra-rotative shafts driven by a reverse gear (1:1 ra-

tio). The center distance is set to a′ = 38 mm. The

torque transmitted by the gear is set to C = 10 N.m.

The backlash is set to j = 0 µm and the facewidth is

set to b= 8mm. 3 optimizations were performed for 3

different gear cutting tools (modules and pressure an-

gles: m1 = 1 mm, α1 = 20o; m2 = 1.5 mm, α2 = 20o and

m3 = 2 mm, α3 = 20o). For each gear cutting tool, the

teeth number parameter Z fulfills the constraints (see

section 3.2), the tooth addendum coefficient maximum

is 1, the helix angle β range is [0..25o], the crowning

magnitude Cβ range is [0..7µm], the tip relief magnitude

fHα range is [0..5µm] and the tip relief length L fHα range

is [0..he
2 ] (with he the tooth height). The manufacturing

errors correspond to a quality class 6. For each opti-

mization, more than 20 000 gears were tested and the

genetic algorithm provides a last generation composed of

100 gears (population size) which are the best compro-

mises between these two objectives, selected over gen-

erations. All the results for the last generation of each

gear cutting tool are presented in table 2, each line cor-

responding to a gear.

The first line corresponds to a standard spur gear

with a module mo = 1 mm, a pressure angle αo = 20o

and no micro-level corrections. The 3 next parts

correspond to the best solutions obtained for the 3

optimizations (one for each gear cutting tool). Many of

the hundred gears which compose the last generation

have the same macrogeometry and differ only because

of their microgeometry parameters. For the sake of

simplicity, only the best microgeometry parameters set

is kept for each gear (macrogeometry).

The first column indicates the index of the gear solution

G. The second column indicates the gear cutting tool

parameters (mo/αo). The 4 next columns indicate the



Table 2: Gears selected

G Tool Macro-level geometry Micro-level geometry Objectives Objectives dispersion

Module mo/ Nb. of Profile Helix Teeth Crowning Tip relief/ PDF Average Dev. & Dev. &

pressure teeth shift angle addendum Cβ length mk mste maximum maximum

angle αo Z coeff. β coeff. fHα/L fHα σk Mk σste Mste

(mm/o) xps (o) ha (µm) (µm & mm) (%) (µm) (%) (µm)

SC 1/20 38 0.000 0 1.000 0 0/0.000 18.0 0.48 1.4 21.6 0.09 0.65

1 1/20 37 0.464 5 0.600 5 0/0.000 8.2 1.61 0.9 10.4 0.34 2.87

2 1/20 37 -0.148 15 0.554 0 5/0.180 9.2 1.30 1.6 16.8 0.20 1.95

3 1/20 36 0.815 10 0.679 0 5/0.193 9.6 1.23 1.4 13.7 0.22 1.97

4 1/20 36 0.815 10 0.598 0 5/0.185 10.0 1.76 1.2 14.9 0.25 2.57

5 1/20 37 0.223 10 0.600 0 5/0.185 10.1 1.84 1.4 13.6 0.25 2.73

6 1/20 37 0.223 10 0.680 0 5/0.193 10.3 1.22 1.5 15.3 0.22 1.88

7 1/20 35 -0.293 25 0.916 0 2/0.000 12.8 0.11 3.6 18.7 0.05 0.27

8 1/20 36 -0.151 20 1.000 0 0/0.900 12.9 0.12 3.7 18.8 0.05 0.29

9 1/20 34 0.252 25 1.000 0 5/0.000 15.2 0.13 2.5 19.2 0.07 0.41

10 1.5/20 24 0.724 5 0.628 5 0/1.409 7.5 1.74 1.0 10.6 0.36 2.83

11 1.5/20 26 -0.336 5 0.405 0 0/0.993 7.9 1.58 0.6 11.0 0.34 2.84

12 1.5/20 25 0.123 5 0.610 0 0/0.000 7.9 1.68 0.6 11.5 0.34 2.70

13 1.5/20 24 -0.101 20 0.610 0 5/0.279 8.6 1.43 1.5 13.4 0.22 2.26

14 1.5/20 23 0.474 20 0.705 0 5/0.293 8.7 1.38 1.3 14.7 0.21 2.03

15 1.5/20 23 -0.022 25 0.677 0 5/0.289 8.9 1.09 1.3 14.2 0.19 1.67

16 1.5/20 23 0.905 15 0.710 0 5/0.294 9.2 1.33 1.2 14.2 0.23 1.93

17 1.5/20 22 0.593 25 0.748 0 5/0.300 9.3 1.08 1.4 15.8 0.19 1.64

18 1.5/20 23 0.474 20 0.764 0 5/0.302 9.3 1.12 1.3 17.0 0.21 1.78

19 1.5/20 23 0.905 15 0.647 0 5/0.285 9.6 1.71 1.2 14.2 0.25 2.42

20 1.5/20 24 0.259 15 0.729 0 5/0.297 9.7 1.33 1.5 15.3 0.23 2.08

21 1.5/20 24 0.259 15 0.662 0 5/0.287 9.7 1.80 1.3 14.9 0.25 2.58

22 1.5/20 24 -0.101 20 0.688 0 5/0.291 10.0 0.99 1.3 14.8 0.20 1.58

23 1.5/20 23 -0.022 25 0.741 0 5/0.299 10.3 0.85 1.2 14.0 0.18 1.42

24 1.5/20 23 0.474 20 0.823 0 5/0.311 10.7 0.91 1.1 15.4 0.19 1.47

25 1.5/20 22 0.593 25 0.849 0 5/0.315 11.1 0.80 1.2 16.5 0.18 1.38

26 1.5/20 22 0.593 25 0.899 0 5/0.645 11.1 0.96 1.7 16.7 0.16 1.45

27 1.5/20 22 0.593 25 0.950 0 5/0.660 11.4 0.83 1.6 18.2 0.15 1.37

28 1.5/20 22 0.593 25 1.000 0 5/0.675 11.6 0.71 1.5 17.6 0.14 1.14

29 1.5/20 23 -0.022 25 0.806 0 5/0.617 11.7 1.02 2.0 16.3 0.16 1.52

30 1.5/20 23 -0.022 25 0.871 0 5/0.636 12.1 0.79 1.8 16.3 0.15 1.25

31 1.5/20 24 -0.101 20 0.766 0 5/0.302 12.5 0.68 1.0 16.1 0.19 1.28

32 1.5/20 23 -0.022 25 0.935 0 5/0.656 12.5 0.60 1.6 16.5 0.13 1.06

33 1.5/20 23 -0.022 25 1.000 0 5/0.675 13.1 0.44 1.4 17.1 0.12 0.94

34 1.5/20 24 -0.101 20 1.000 0 5/0.000 14.2 0.17 2.1 18.6 0.09 0.53

35 1.5/20 24 -0.101 20 0.922 0 5/0.652 14.3 0.51 1.5 17.8 0.13 0.97

36 2/20 18 0.543 5 0.674 7 2/0.385 8.0 2.19 0.9 10.2 0.35 3.23

37 2/20 19 -0.036 5 0.590 0 0/0.000 8.3 1.74 0.6 10.0 0.34 2.80

38 2/20 17 0.126 25 0.747 0 5/0.399 8.6 1.48 1.4 13.2 0.23 2.16

39 2/20 18 0.408 10 0.688 5 0/1.938 8.6 1.67 0.8 11.0 0.34 2.90

40 2/20 17 0.126 25 0.797 0 5/0.409 8.9 1.22 1.4 14.9 0.22 1.92

41 2/20 17 0.521 20 0.795 0 5/0.409 9.3 1.44 1.4 15.9 0.23 2.22

42 2/20 16 0.804 25 0.861 0 5/0.422 9.5 1.11 1.2 14.3 0.22 1.83

43 2/20 17 0.521 20 0.744 0 5/0.399 9.6 1.73 1.3 14.0 0.26 2.73

44 2/20 18 -0.075 20 0.636 0 5/0.377 9.6 1.80 1.3 13.6 0.25 2.59

45 2/20 16 0.804 25 0.818 0 4/0.414 9.6 1.23 1.3 15.5 0.22 2.01

46 2/20 17 0.521 20 0.847 0 5/0.419 9.8 1.21 1.3 14.1 0.23 1.89

47 2/20 17 0.126 25 0.848 0 5/0.420 9.8 1.01 1.2 14.6 0.21 1.59

48 2/20 18 -0.075 20 0.709 0 5/0.392 9.8 1.26 1.5 14.3 0.22 1.92

49 2/20 17 0.859 15 0.734 0 5/0.397 10.0 1.62 1.2 13.8 0.26 2.38

50 2/20 17 0.859 15 0.784 0 5/0.407 10.1 1.35 1.2 13.7 0.24 2.00

51 2/20 16 0.804 25 0.903 0 5/0.431 10.5 1.00 1.2 17.9 0.20 1.62

52 2/20 17 0.126 25 0.899 0 5/0.430 11.0 0.84 1.0 14.9 0.20 1.41

53 2/20 16 0.804 25 0.945 0 5/0.439 11.3 0.89 1.0 15.5 0.19 1.55

54 2/20 16 0.804 25 0.987 0 5/0.895 11.7 1.06 1.5 15.8 0.18 1.61

55 2/20 17 0.126 25 0.949 0 5/0.440 12.0 0.71 0.9 14.8 0.18 1.43

56 2/20 17 0.126 25 1.000 0 5/0.900 12.4 0.88 1.6 16.5 0.17 1.40

AV 17.5 1.45



macrogeometry parameters (Z/xps/β/ha).

The 3 next columns indicate the micro geometry

parameters (Cβ/ fHα/L fHα).

The 2 next columns indicate the value of the two objec-

tives (average values mk and mste of the PDF describing

the RMS values of k(t) and STE δ(t) fluctuations).

The 4 last columns indicate the standard deviations

(σk and σste) and the maximum values (Mk and Mste)

of the PDF describing the RMS values of k(t) and STE

δ(t) fluctuations. They give an insight of the dispersion

of the results.

Gears are ranked in ascending order of mk values for

each gear cutting tool.

The last line presents mk and mste mean values observed

for the 60 000 gears tested during the 3 optimization

procedures.

5.2 Results of the optimization procedure

Figure 8 displays the three Pareto fronts ob-

tained at the last generation of each gear cutting

tool/optimization. In every front, each point is a gear

that is better than the others in the sense of at least one

of the two objectives mk (abscissa) and mste (ordinate).

The form of these fronts demonstrate that the two ob-

jectives are antagonistic and not independent: the min-

imization of the STE δ(t) fluctuations leads to an in-

crease of k(t) fluctuations, and conversely. This figure

also shows that none of the 3 gear cutting tools is better

than the others.

Figure 9 displays the Pareto front of the third gear

cutting tool (m3 = 2 mm, α3 = 20o) as well as an insight

of the robustness of each gear composing the front. A

square of [2σk x 2σste] surrounds each point and provide

an overview of the robustness of the gear. The figure

shows a significant dispersion that potentially enlarges

the Pareto front and makes it a relevant point in the

optimization choice.

Considering dispersion, the decision is made to

slightly improve the optimization procedure regarding

our application, and allow the algorithm to keep some

gears that are close to the Pareto front, but not techni-

cally in (even if they are not better than the other solu-

tions regarding the two objectives mk and mste). These

additional gears may present good performance in terms

of objectives regarding their robustness, as well as an in-

terest in term of geometry, and need to be taken into

account in the results analysis. This way, figure 10 dis-

plays a “wide” Pareto front for each of the 3 optimiza-

tions, obtained at the last generation of the algorithm.

Every gear presented in table 2 corresponds to a point

in figure 10.

Optimization procedure performed leads to a wide

range of results. For the standard gear (corresponding

to a module mo of 1 mm, a pressure angle αo of 20o, a

teeth number Z of 38, standard addendum and deden-

dum coefficients and no microgeometry corrections), mk

value is equal to 18% and mste value is equal to 0.48 µm.

For the 60 000 gears tested during the 3 optimiza-

tion procedures, mk value is between 7.5 and 29.2%

(mean value 17.5%) and mste value is between 0.133 and

23.60 µm (mean value 17.5%). For gears selected in ta-

ble 2, mk value is between 7.5 and 15.2% and mste value

is between 0.133 and 2.19 µm. Most of them show mk

and mste values which are less than the mean values ob-

served for the 60 000 gears tested. Five of them (gears

7, 8, 9, 33 and 34) show mk and mste values which are

less than the values observed for the standard gear. The

others show a smaller value for mk and a larger value for

mste than the standard gear.

5.3 Results analysis and discussion

The multi-objective optimization performed leads

to various solutions which provide great benefits in

terms of design choice.

Indeed, two close points of the Pareto front (see

figure 10) can have similar performance even if they

correspond to very different sets of design parameters.

For example, mk value is about 10% and mste value is
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Fig. 8: Pareto front of the optimization for the 3 gear cutting tools

about 1 µm for both gears 22 and 47. However, gear

22 is characterized by a module equal to 1.5 mm, a

number of teeth equal to 24 and a negative profile shift

coefficient, whereas gear 47 is characterized by a module

equal to 2 mm, a number of teeth equal to 17 and a

positive profile shift coefficient. Another illustration

corresponds to gears 10 and 11 built with the same

gear cutting tool (m = 1). mk value is about 7.7%

and mste value is about 1.65 µm. However, gear 10 is

characterized by a high positive profile shift coefficient

and requires a longitudinal gear crowning whereas gear

11 is characterized by a negative profile shift and does

not require any microgeometry modification.

From table 2, different gear categories can be

identified that may orient the designer choice. All

gears selected correspond to a number of teeth between

Z = 16 and Z = 37. Regardless of mk and mste values,

Z value may be a selection criterion because the main

spectral components of the excitation source generated

by the meshing process correspond to harmonics of

the mesh frequency which is multiple of the teeth

number. A modal analysis of the mechanical gear

system allows identification of the critical modes which

may be excited by the meshing process under operating

conditions [56]. Such analysis permits to eliminate the

gears likely to excite these critical modes, despite a

minimized excitation amplitude.

Most of the gears selected in table 2 have a high helix

angle β, a positive profile shift xps and do not require

crowning corrections Cβ. A high helix angle allows

progressive entry of teeth into the contact area unlike

spur gears. Few gears show a low helix angle (5o,

namely gears 1, 10, 11, 12, 36 and 37), which minimizes
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Fig. 9: Pareto front of the gear cutting tool 3 (m3 = 2 mm, α3 = 20o) with an insight of the dispersion

the risks caused by the axial load transmitted by

the gear to the shafts, bearings and housing of the

mechanical gear system. These gears usually show a

small value for mk and a large value for mste.

One should also note that some gears present exotic

macrogeometry parameters such as a high profile shift

coefficient xps and truncated teeth corresponding to a

low addendum coefficient ha. However, one can opt for

more conventional designs. Indeed, many gears show

a low profile shift coefficient (with an absolute value

under 0.15) and a standard tooth addendum coefficient

higher than 0.8 (namely gears 7, 8, 9 for the first gear

cutting tool and gears 29 to 35 for the second gear

cutting tool). These gears usually show a large value

for mk and a small value for mste.

Few gears do not require any micro-level corrections

(namely gear 8, 11, 12, 34 and 37), which simplifies the

manufacturing process.

The robustness of the objectives to manufacturing

errors can also be a criterion to help the designer

choose the best solution. It can be analysed from the

4 last columns indicating the standard deviations (σk

and σste) and the maximum values (Mk and Mste) of

the PDF describing the RMS values of k(t) and STE

δ(t) fluctuations. The smaller σk (respectively σste), the

higher the probability of the real value to be close to

the objective average value. The maximum value Mk

(respectively Mste) reflects the worst manufacturing er-

ror case regarding k(t) (respectively STE δ(t)) obtained

with the 1000 random samples. Therefore these values

may also constitute an essential criterion of choice.

For example, gears 7 and 8 are both characterized by

the smallest standard deviation σste (0.05 µm) as well
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Fig. 10: Wide Pareto front of the optimization for the 3 gear cutting tools

as a small maximum value Mste (0.27 and 0.29 µm), in

addition to a particularly small mean value mste (0.11

and 0.12 µm), Consequently, these two gears appear

to be very efficient and robust in term of low STE

δ(t) excitation. Similarly, gear 39 is characterized by a

small standard deviation σk (0.8%) as well as a small

maximum value a small maximum value Mk (11%), in

addition to a particularly small mean value mk (8.0%),

This gear appears to be very efficient and robust in

term of low k(t) excitation. On the contrary, gear 2 is

characterized by a high standard deviation σk (1.6%)

as well as a small maximum value a small maximum

value Mk (16.8%), despite a particularly small mean

value mk (9.2%).

More than a proper criterion, the standard deviations

σ and the maximum values M of the objectives may be

seen as a discriminant factor between two gears when all

the other criteria are taken into account, selecting one

for its robustness or removing the other. One also may

imagine some different optimization objectives that

mix both the average value m, the standard deviation

σ and the maximum value M of the PDF in order to

select the best compromise between performance and

robustness.

Finally, the methodology thus provides a decision

help tool for the designer who intends to choose the

best gear according to the problem encountered. For a

mechanical gear system subjected to external force fluc-

tuations such as input/output torques fluctuations, the

coupling between these excitations and the parametric

excitation associated with the mesh stiffness fluctuation

provides an enrichment of the spectral content of the

dynamic response as well as an increase of the global vi-



broacoustic level. In this case, minimization of the mesh

stiffness fluctuation appears to be the most important

objective [57]. For a mechanical gear system presenting

some critical eigenmodes which may be excited by STE

fluctuation under operating conditions, its minimization

may be overriding compared to the minimization of the

mesh stiffness fluctuation [56, 12].

6 Conclusion

In a NVH context, this paper introduces an original

methodology for the multi-objective optimization of

mechanical gear systems vibroacoustic behavior. Unlike

most NVH gear optimizations, its objective functions

are to minimize both the Static Transmission Error

(STE) and the mesh stiffness k(t) fluctuations. The

other originality is to include both macro and microge-

ometry parameters. This methodology also takes into

account the robustness of solutions to manufacturing

errors through Monte Carlo simulations included in the

optimization procedure.

The optimization is performed using a genetic

algorithm NSGA-II with the advantage of exploring

the global design space. It tests a high number of gears

and make them evolve through generations in order to

find the best compromises between the objectives.

This type of algorithm involves repetitive calcula-

tions and requires an efficient model to evaluate gear

excitation sources of each gear. For this reason, a

semi-analytical tooth bending model is introduced. It

is based on the modeling of the gear teeth compliance

by a thick Reissner-Mindlin plate analytical model and

a Ritz-Galerkin approximation of the tooth deflection

form. This model is proven very efficient with a

computational time about 1000 times shorter than a

finite element model, for a relative error remaining

under 10%.

The set of design parameters chosen for the optimization

procedure corresponds to both macrogeometry param-

eters (gear tool module and pressure angle,number of

teeth, helix angle and teeth addendum) and micro-

geometry parameters (crowning, amount and length

of tip relief). Considering the variability induced by

manufacturing tolerances, a Monte Carlo simulation

is performed with a thousand samples of random

manufacturing errors for each gear design tested by

the algorithm. The Power Density Functions (PDF)

describing the RMS values of k(t) and STE δ(t) fluctua-

tions are estimated for each gear, and its two objectives

are the minimization of the average values of these PDF.

The methodology efficiency is demonstrated with an

application example of a mechanical system equipped

with a reverse gear. Three different gear cutting tools

are used.

The algorithm tests more than 60 000 gears and selects a

hundred of gears which correspond to the best compro-

mises between the objectives. It provides a wide range

of results which systematically minimize STE δ(t) and

k(t) fluctuation, compared to the initial standard spur

gear.

The methodology then turns into a decision help tool for

the designer who may choose the best gear regarding its

problem. One may consider multiple criteria:

• The objectives values may favour a low k(t) fluctu-

ation or a low STE δ(t) excitation. The user must

study the mechanical device he wants to improve

and the operating conditions in order to identify

the prominence of one excitation source compared

to the other.

• The various solutions obtained can show very simi-

lar objectives values with very different gear designs.

They provide great benefits for the choice of the best

solution. One may select a gear in function of the

manufacturing cost or the number of teeth and the

corresponding meshing frequency.

• The dispersion of the PDF (standard deviations and

maximum values) may characterize more specifi-

cally the robustness of each selected gear to the

manufacturing errors and can also be seen as a dis-

criminant or promoting criterion of choice.

Ongoing researches develop the perspective of includ-



ing both the average values and standard deviations as

objective functions.
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