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Weak resilience of the chemostat model to a species invasion

with non-autonomous removal rates

Térence Bayen∗, Alain Rapaport†, Fatima-Zahra Tani‡

March 14, 2019

Abstract

In this paper, we study how resilience in the chemostat model with two species can be guaranteed in
a weak sense in presence of a species invader. Doing so, we construct a time varying removal rate that
allows the resident species to return an infinite number of times to its original density level, even though
the invader can never be totally eradicated. Moreover, we prove that the time spent by the system with
the resident density above or equal to its original level is of infinite measure introducing that way the
concept of “weak resilience”. Finally, under the conjecture that there exists an unique periodic solution
of the system associated with such a time-varying removal rate, we show that every solution converges
asymptotically to this periodic solution.

Keywords. Non-autonomous Dynamics, Chemostat Model, Periodic systems, Asymptotically Periodic Solu-
tions.

1 Introduction

The chemostat model describes microbial ecosystems which are continuously fed by nutrients, as it can be
found in natural environments, such as lakes, lagoons, wetlands... and in experimental or industrial bioreactors.
Being open systems, chemostats are naturally subject to external perturbations such as species invasion.

In this paper, we focus on the classical chemostat model, for which the Competitive Exclusion Principle
(CEP) holds [1]. For a single limiting resource, the CEP states that no more than one species (generically)
survives in the long term under constant fed conditions (input substrate concentration and flow rate of the
incoming resource), see, e.g., [14, 24].

For dynamical systems, resilience is often described as the ability of a system to return to an original
state (typically a steady state) after a transient perturbation [17]. In the present work, we wish to study the
resilience of the chemostat model to invasions by other species considered as disturbances. In particular, we
are interested in the possibility of extending the resilience domain using time-varying input conditions.

For the chemostat model, it has already been pointed out that non-constant removal rates could allow
the coexistence of two species, under some precise integral conditions, see for instance [22, 9, 15, 20, 19, 25]
for periodic removal rates or [16] for slow varying environments. The idea is to create a time-varying growth
environment which alternates the favored species. Recently, the question of quantifying the excursions of the
state variables in the chemostat model under periodic removal rates, has been studied in [7, 8], but for the
mono-specific case only. To our knowledge, it has not been investigated how to synthesize time-varying removal
rates allowing resilience of a mono-specific chemostat system in presence of an invasion by a new species, in
such a way that the resident species returns to the same density level than before invasion an infinite number
of times. The design of such time-varying removal rate is precisely the matter of the present work.

The paper is structured as follows. In Section 2, we state the resilience problem in the context of the
chemostat model with two species. In particular, we show the existence of a threshold on the level of the
resident species above which resilience is lost that allows us to introduce a concept of weak resilience in a
time varying context. In Section 3, we provide a construction of a time-varying removal rate which guarantees
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weak resilience in the sense given in Section 2. In Section 4, we show that there exist weakly resilient periodic
solutions, and conjecture that there exists an unique periodic solution associated to the time-varying removal
rate that we construct. Then, we show that any solution of the system associated with this time-varying
removal rate converges to this periodic solution.

2 Assumptions and definition of weak resilience

We start by recalling the chemostat model with two microbial species of concentrations x1, x2, respectively,
that compete for a single resource of concentration s: ṡ = −µ1(s)x1 − µ2(s)x2 +D(sin − s),

ẋ1 = (µ1(s)−D)x1,
ẋ2 = (µ2(s)−D)x2,

(2.1)

in which the yield coefficients are equal to one. Parameters D and sin are respectively the removal rate
(imposed by the input flow rate) and the input concentration of the resource. Here, species 1 and 2 play
the respective roles of the resident and invasive species, as described in the introduction: the chemostat is
considered first with the species 1 (the resident) alone and at some time t0 (chosen equal to 0 for simplicity),
the invasive species 2 appears. In the sequel, we consider that the following assumption on the growth functions
µi(·), i = 1, 2 in (2.1) is fulfilled.

Assumption 2.1. The functions µi(·) are of class C1, monotone increasing with µi(0) = 0, i = 1, 2.

For i = 1, 2, the break-even concentration for species i (related to the parameter sin) is defined as

λi(D) := sup {s ∈ [0, sin] ; µi(s) < D} ∈ [0,+∞], i = 1, 2.

When λi(D) < +∞, and because µi are strictly monotone, one has

µi(λi(D)) = D ⇐⇒ λi(D) = µ−1i (D).

Consider now the competition between the two species. The CEP states that only the species that realizes the
minimum of the numbers λi(D), i = 1, 2 (with D > 0) has a non null concentration at steady state. For a given
constant D with 0 < D < µ1(sin), this means that species 1 is excluded by an invasion by a species 2 when
λ2(D) < λ1(D), or equivalently that the state of (2.1) converges asymptotically to (λ2(D), 0, sin−λ2(D)). Let
us now consider a situation for which the dominance of one growth function over the other one is alternated
with respect to the level of the resource, in the following way.

Assumption 2.2. There exists s̄ ∈ (0, sin) such that

(µ1(s)− µ2(s))(s− s̄) > 0, s ∈ [0, sin] and s 6= s̄. (2.2)

In the rest of the paper, we assume that this assumption holds true. Note that for Monod’s growth
functions [18] (which are quite popular in microbiology and bio-processes), one has

µi(s) =
µ̄is

Ki + s
, i = 1, 2.

Assumption 2.2 then amounts to have the following condition

0 < µ̄2K1 − µ̄1K2 < (µ̄1 − µ̄2)sin

to be fulfilled. From (2.2), one must have µ1(s̄)− µ2(s̄) = 0, therefore we set

D̄ := µ1(s̄) = µ2(s̄).

We formulate the problem of invasion of species 1 by species 2 as follows. Suppose that only species 1 is
present in a bioreactor, at the initial time (i.e., x2 = 0 in (2.1)). For a constant value of D, a straightforward
analysis shows that a necessary condition for species 1 to set up at steady state is to have λ1(D) < sin. Then,
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the corresponding steady state is given by (λ1(D), sin−λ1(D)), which is globally asymptotically stable in the
(s, x1) positive plane (see for instance [14]). Moreover, if D is less than D̄, then the concentration of species
1 at steady state, xeq1 , is necessarily such that xeq1 ≥ x̄1 with

x̄1 := sin − µ−11 (D̄) = sin − s̄ > 0.

Suppose now that a new species (species 2) that fulfills Assumption 2.2, invades the growth vessel and that
the removal rate D is less than D̄. Then, the new system (2.1) (with x2 6= 0) will not be able to return to the
original state (from the CEP cited before, the state of (2.1) converges asymptotically to (λ2(D), 0, sin−λ2(D))),
after this perturbation. This is why, we say that the dynamics is not resilient when the concentration x1 at
steady state, before the invasion, is above the threshold x̄1. The question of interest is to investigate if, even
so, the system can be resilient with x1 above the threshold x̄1, when considering time-varying removal rate
D(·). First, one can easily check that the domain

{(s, x1, x2) ∈ R3
+ ; s+ x1 + x2 = sin},

is an invariant and attractive set for the dynamics (2.1) when D(·) is persistently exciting1. Assuming that
system (2.1) is already at steady state before invasion, we shall consider in the sequel the reduced dynamics
on this domain, that is,

ẋ = f(x,D) :=

[
(µ1(sin − x1 − x2)−D)x1
(µ2(sin − x1 − x2)−D)x2

]
, (2.3)

defined on the invariant set
S := {x ∈ R2

+ ; x1 + x2 ≤ sin}.
From now on, we consider D(·) as a control variable, i.e., as a measurable function of time taking values within
some interval [Dm, DM ] where the minimum and maximum dilution rates Dm and DM satisfy the inequality:

0 < Dm < D̄ < µ1(sin) < DM . (2.4)

Note that DM is large enough to have the possibility to drive solutions of (2.3) to the washout2 of both species.
To introduce resilience, we consider a threshold

xr1 ∈ (x̄1, sin),

for species 1 aiming at keeping x1 above xr1 as much as possible. It is then natural to introduce the subset of
S, K(xr1), defined as:

K(xr1) := {x ∈ S ; x1 ≥ xr1 and x2 > 0},
and to ask about weak invariance properties of K(xr1) for the dynamics (2.3) in the context of viability theory
[2]. Recall that given a controlled system ẋ = g(x, u) (with g : Rn × Rm → Rn) and given a closed subset
K ⊂ Rn, the viability kernel, denoted by V iab(K), is defined as the largest subset of initial states x0 ∈ K for
which there is an admissible control u(·) such that the unique solution x(·) of the dynamics associated with u
and such that x(0) = x0, satisfies x(t) ∈ K for any time t ≥ 0 (see [2]). We then say that the viability kernel
is weakly invariant. Going back to (2.3), we assume in the rest of the paper (in addition to Assumptions 2.1,
2.2) that the following assumption is fulfilled:

Assumption 2.3. The threshold xr1 satisfies

0 < Dm < µ1(sin − xr1). (2.5)

Remark 2.1. The choice of the three parameters Dm, DM , and xr1 is crucial throughout this work. In this
approach, note that we first chose Dm, DM satisfying (2.4), and then we supposed that the threshold xr1 satisfies
(2.5). It is worth to mention that we could alternatively fix xr1 ∈ (x̄1, sin) and then choose the minimal and
maximal dilution rates in such a way that (2.5) and the inequality µ1(sin) < DM are verified.

One has the following property, in terms of viability analysis (hereafter cl S is the closure of a set S ⊂ R2).

1By persistently exciting, we mean that the non-negative function D(·) is such that
∫+∞
0 D(t)dt = +∞, see [3].

2This means that for DM sufficiently large (DM > µ1(sin)), solutions of (2.3) converge to the origin.
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Lemma 2.4. The viability kernel V iab(clK(xr1)) of the set K(xr1) for (2.3) satisfies

V iab(clK(xr1)) = [xr1, sin]× {0}.
Proof. Recall that xr1 is such that xr1 ∈ (x̄1, sin − λ1(Dm)) (by (2.5)). Assumptions 2.1, 2.2 and (2.4) also
imply the inequality 0 < λ2(Dm) < λ1(Dm) < s̄. Take an initial condition (x1,0, x2,0) in clK(xr1). If x2,0 = 0,
the solution of (2.3) verifies x2(t) = 0 for any t > 0 and any time-varying D(·). From (2.5), we can choose a
constant D such that 0 < Dm ≤ D < µ1(sin − xr1), and we observe that (2.3) with D(t) = D satisfies

x1 = xr1 ⇒ ẋ1 = (µ1(sin − xr1)−D)xr1 > 0 and x1 = sin ⇒ ẋ1 = −Dsin < 0.

Thus, this constant D prevents x1(·) to leave the interval [xr1, sin] over [0,+∞).
Assume now that x2,0 > 0. Then, a solution x(·) of (2.3) associated with an admissible time-varying function
D(·) verifies x2(t) > 0 for any time t ≥ 0. Suppose by contradiction that x(·) stays in K(xr1) for any time
t ≥ 0. Then one has s(t) < sin − xr1 < s̄ for any time t ≥ 0. By Assumption 2.2, one has for any t ≥ 0,
µ1(s(t))− µ2(s(t)) < 0 and thus, we deduce the inequality

ṡ(t) > −µ2(s(t))x1(t)− µ2(s(t))x2(t) +Dm(sin − s(t)) = (Dm − µ2(s(t)))(sin − s(t)), t ≥ 0.

Notice that any positive solution ζ(·) of ζ̇ = (Dm − µ2(ζ(t)))(sin − ζ(t)) converges to λ2(Dm) when t→ +∞.
From (2.5) one has λ2(Dm) < sin−xr1, hence there exist t1 ≥ 0 and s ∈ (0, λ2(Dm)) such that one has ζ(t) > s
for any t ≥ t1. From the preceding inequality, we deduce that s(·) satisfies s(t) ≥ ζ(t) for any time t ≥ 0. We
thus deduce that for any time t ≥ t1, one has

µ1(s(t))− µ2(s(t)) ≤ c := min{µ1(σ)− µ2(σ) ; σ ∈ [s, sin − xr1]} < 0.

If we differentiate the function q1 := x1/x2 w.r.t. t, we find that

q̇1 =
(
µ1(s(t))− µ2(s(t))

)
q1,

with s(t) = sin − x1(t) − x2(t). One then obtains q̇1 < c q1. Therefore q1 decreases to zero and x1 as well,
leading to a contradiction. We conclude that the only solutions of (2.3) that stay in clK(xr1) for any time are
the ones starting with x2,0 = 0 as was to be proved.

This lemma shows that for any given threshold xr1 satisfying (2.5), i.e., such that

x̄1 < xr1 < sin − λ1(Dm),

(or equivalently λ1(Dm) < sin − xr1 < s̄), the dynamics (2.3) is not resilient for the domain K(xr1) in presence
of species 2. This is precisely our starting point to introduce the concept of weak resilience.

Definition 2.5. Let xr1 ∈ (x̄1, sin−λ1(Dm)). The system (2.3) is said to be weakly resilient for the set K(xr1)
if for any initial condition in K(xr1), there exists a time-varying function D(·) with values in [Dm, DM ] such
that the corresponding solution of (2.3) satisfies

meas {t ≥ 0 ; x(t) ∈ K(xr1)} = +∞.
Such a function D(·) will be called a weakly resilient removal rate.

This definition is related to the minimal time crisis of controlled dynamics, studied in [4, 5, 6, 13], although
we do not look in this paper for control functions minimizing the time spent outside the set K(xr1) over a given
time period [0, T ].

3 Construction of a weakly resilient removal rate

The aim of this section is to propose a robust and systematic way to build a time-varying D(·) taking alter-
natively the values Dm and DM , and that is weakly resilient for (2.3), without requiring a precise knowledge
of the expressions of the growth functions µi(·). Recall that we suppose Assumptions 2.1, 2.2, and 2.3 to be
fulfilled and that the parameter xr1 satisfies

xr1 ∈ (x̄1, sin − λ1(Dm)).

We begin by giving the main result (in Section 3.1) which gives a construction of a weakly resilient D(·).
Next, we provide some properties of the dynamical system(2.3) in the domain S for a constant D (D = DM

and D = Dm). Finally, we give the proof of Proposition 3.1 at the end of this section.
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Figure 1: Illustration of Assumption 2.3.

3.1 Synthesis of a weakly resilient removal rate

In the following Proposition, we propose a time-varying D(·) allowing the dynamics (2.3) to be weakly resilient
for the set K(xr1). For any ε > 0, we define the set E

E := (0, x̄1]× (0, ε].

Proposition 3.1. For ε small enough and any initial condition x0 := (x1,0, x2,0) ∈ K(xr1) there exists a
piecewise constant function D(·) which alternates the values DM , Dm on time intervals [Ti, Ti+1), i ∈ N
satisfying:

T0 = 0 < T1 < · · · < Ti < Ti+1 < · · · and lim
i→∞

Ti = +∞, (3.1)

where x(·) is the unique solution of (2.3) associated with the time-varying D(·) such that

(i) if x(Ti) /∈ E, one has D(t) = DM for t ∈ [Ti, Ti+1) with Ti+1 is defined as the first next entry time in E.

(ii) if x(Ti) ∈ E, one has D(t) = Dm for t ∈ [Ti, Ti+1), the trajectory x(·) enters to the set K(xr1) in finite
time and Ti+1 is defined as the first next exit time from K(xr1).

Finally, the time-varying D(·) is a weakly resilient removal rate.

We begin by a lemma which describes the asymptotic behavior of (2.3) when D is constant.

Lemma 3.1. Any solution of (2.3) in S with a constant removal rate D converges asymptotically to an
equilibrium.

Proof. First, consider an initial condition on the axes that are invariant by (2.3). Then, the variable xi (i
equal to 1 or 2) is solution of a scalar autonomous dynamics on the xi-axis. Therefore, either it converges to
an equilibrium point on the axis, or it tends to infinity, which is not possible as the domain S is bounded.

Consider now a positive initial condition in the set S. The corresponding solution then remains in the
positive orthant, and one can consider the variables ξi = ln(xi), i = 1, 2, whose dynamics is

ξ̇i = Fi(ξ) := µi
(
sin − eξ1 − eξ2

)
−D, i = 1, 2.

For a constant D, one has

divF (ξ) =
∑
i=1,2

∂ξiFi(ξ) = −
∑
i=1,2

µi
(
sin − eξ1 − eξ2

)
eξi < 0.

By Dulac’s criterion, the system has no closed orbit and by Poincaré-Bendixon Theorem (see [21]). We can then
conclude that solutions of (2.3) converge asymptotically to an equilibrium, since trajectories are bounded.

In the sequel, we denote by z(·, ζ,D) the unique solution of (2.3) (over R) for an initial condition z(0) =
ζ ∈ S and a constant D ∈ {Dm, DM}.
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3.2 Properties of the reduced dynamics with constant D = DM

We now provide asymptotic properties of (2.3) when D is constant equal to DM , that are illustrated on Fig.
2.

Lemma 3.2. Any solution z(·, ζ,DM ) of (2.3) with ζ ∈ S converges asymptotically to the origin. Moreover,
for any positive initial condition ζ in S, z1(·, ζ,DM ) and z2(·, ζ,DM ) are decreasing functions and the trajectory
converges to the origin tangentially to the x1-axis.

Proof. From Assumption 2.3, the system (2.3) has a unique steady state (0, 0) in S. From Lemma 3.1, we
deduce that it is globally asymptotically stable on S. Consider a positive initial condition. From the expression
of the dynamics (2.3), the solution x(·) = z(·, ζ,DM ) is clearly positive for any t ≥ 0, and by Assumption
2.3, one gets ẋi(t) < 0 for any t ≥ 0, thus zi(·, ζ,DM ) is decreasing for i = 1, 2. Consider then the function
q2 := x2/x1. A straightforward computation of its derivative yields

q̇2 =
(
µ2(sin − x1(t)− x2(t))− µ1(sin − x1(t)− x2(t))

)
q2.

By Assumption 2.2, one has µ2(sin)−µ1(sin) < 0. Since x(·) converges to 0, we deduce that there exist η > 0
and tM > 0 such that q̇2(t) < −ηq2(t) for any time t > tM . This proves that q2(·) converges asymptotically
to 0 and that trajectories are tangent to the x1-axis at (0, 0).

We are now in a position to introduce the following notation that will be used hereafter (see Fig. 2):

• Consider the point P̂ r := (xr1, sin − xr1) on the boundary of S and set

x̂(·) := z(·, P̂ r, DM ).

• The forward semi-orbit of (2.3) with D = DM passing through P r is denoted by (see Fig. 2):

γ̂+ := {x̂(t) ; t ≥ 0}.

• In view of Lemma 3.2, x̂1(·) is decreasing and thus reaches x̄1 in finite time. Hence, there are t̂ > 0 and
δ > 0 satisfying:

t̂ := inf{t > 0; x̂1(t) < x̄1} and δ := x̂2(t̂).

xr
1

x2

x1

x̄1

δ
P̂ r

sin

sin

γ̂+

Figure 2: Phase portrait of (2.3) with constant D = DM and plot of the points P̂ r, (x̄1, δ), and the semi-orbit
γ̂+.
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3.3 Properties of the reduced dynamics with constant D = Dm

We now turn to asymptotic properties of (2.3) with D = Dm. In the sequel, we shall use the notation

xmi := sin − λi(Dm), i = 1, 2.

The scalar product in R2 is written a · b with a, b ∈ R2 and ‖a‖ denotes the euclidean norm of a vector a ∈ R2.

Lemma 3.3. The system (2.3) with D = Dm possesses the following properties.

(i) It admits exactly three equilibria in S : E0 := (0, 0), Em1 := (xm1 , 0) and Em2 := (0, xm2 ) which are
respectively an unstable node, a saddle point, and a stable node.

(ii) One has xm1 < xm2 and the “strip” Sm1,2 defined as

Sm1,2 := {x ∈ S ; x1 + x2 ∈ [xm1 , x
m
2 ]} ,

is invariant (by (2.3) with D = Dm).

(iii) The edge (0, sin]×{0} is the stable manifold of (2.3) with D = Dm at Em1 on S. The unstable manifold
at Em1 in the domain S is denoted by Wu(Em1 ): it connects Em1 to Em2 and satisfies Wu(Em1 ) ⊂ Sm1,2.

Proof. Inequality (2.5) and the monotonicity of the functions µi(·) (Assumption 2.1) imply that there are two
equilibria of (2.3) in S that are distinct of the origin and on the axes. They are uniquely defined by Em1 and
Em2 . The Jacobian matrix at Em1 and Em2 are respectively given by

J(Em
1 ) :=

[
−µ′1(sin − xm1 )xm1 −µ′1(sin − xm1 )xm1

0 µ2(sin − xm1 ) −Dm

]
, J(Em

2 ) :=

[
µ1(sin − xm2 ) −Dm 0
−µ′2(sin − xm2 )xm2 −µ′2(sin − xm2 )xm2

]
.

The point Em1 is a saddle point because the eigenvalues of J(Em1 ) are of opposite sign, Em2 is a stable node
because the eigenvalues of J(Em2 ) are negative, and E0 is clearly an unstable node which proves (i). It is worth
noting that the unstable manifold Wu(Em1 ) necessarily connects Em1 to Em2 by Lemma 3.1.

Let us now prove (ii). From Assumption 2.2, one has xm1 < xm2 . When x ∈ Sm1,2 is such that x1 +x2 = xm1 ,
one has ẋ1 = 0 and ẋ2 > 0 whereas if x1 + x2 = xm2 , one has ẋ1 < 0 and ẋ2 = 0. Hence Sm1,2 is invariant.

Let us finally prove (iii). The positive half axis x1 > 0 is clearly the stable manifold of (2.3) with D = Dm

at Em1 . Consider a non-null eigenvector v+ of J(Em1 ) associated with the positive eigenvalue µ2(sin−xm1 )−Dm,
and let n be an outward normal to Sm1,2 at Em1 . A straightforward calculation yields

v+ =

[
−1

1 + µ2(λ1(Dm))−Dm

xm
1 µ

′
1(λ1(Dm))

]
, n =

[
−1
−1

]
,

implying that

v+ · n = −µ2(λ1(Dm))−Dm

xm1 µ
′
1(λ1(Dm))

< 0.

One then concludes that the vector v+ points inward Sm1,2 at Em1 . On another hand, from the Theorem of
the stable and unstable manifolds [21], we know that Wu(Em1 ) is tangent to v+ at Em1 . Therefore, there is
a neighborhood V of Em1 in Sm1,2 such that Wu(Em1 ) ∩ V ⊂ Sm1,2, but, as Sm1,2 is invariant, we conclude that
Wu(Em1 ) ⊂ Sm1,2 as was to be proved.

Recall that the unstable manifold Wu(Em1 ) is a trajectory of (2.3) with D = Dm, and that (2.3) satisfies
ẋ1 < 0 on int Sm1,2. So, Wu(Em1 ) can be parametrized as a function x1 7→ wu(x1), x1 ∈ [0, xm1 ]. Hereafter,
hyp(wu) stands for the hypograph of wu and let D ⊂ S be defined as (see Fig. 3):

D := hyp(wu) ∩ S.

Note that the domain D is necessarily forward and backward invariant (for (2.3) with D = Dm) as its boundary
is a locus of trajectories. Similarly as with D = DM , let us introduce the following notation (see Fig. 3):

• Since there is a unique intersection point between Wu(Em1 ) and the line {x1 = xr1}, we set:

x̄2 = wu(xr1), (3.2)

one can also write (xr1, x̄2) = Wu(Em1 ) ∩ {x1 = xr1}.

7



• From Assumption 2.3, one has xr1 < xm1 , thus we can fix a point P̌ r := (xr1, x̌2,0) ∈ D such that:

0 < x̌2,0 < min(δ, xm1 − xr1), (3.3)

where x̌2,0 is small enough to ensure P̌ r ∈ D.

• The backward semi-orbit of (2.3) with D = Dm passing though P̌ r is denoted by:

γ̌− := {x̌(t) ; t ≤ 0},

where x̌(·) = z(·, P̌ r, Dm).

• Finally, define a positive parameter η > 0 as η := xm1 − xr1 − x̌2,0.

sin

x2

x1

xm
1

xm
1

xm
2

W uD

sinxr
1

x2

x1

x̄2

xm
1

xm
1

W u

γ̌−

xm
2

D

P̌ r

Figure 3: Left: phase portrait of (2.3) with constant D = Dm in the domain D whose boundary is the unstable
manifold Wu(Em1 ). Right: plot of the point P̌ r and the semi-orbit γ̌−.

Remark 3.1. (i) From Lemma 3.3 (i), any solution of (2.3) with D = Dm in D \ ([0, xm1 ] × {0}) converges
to Em2 . Note also that for (x1, x2) ∈ D \ {Em2 }, one has x1 + x2 < xm2 , which implies the inequality µ2(sin −
x1 − x2) > Dm. Hence, any solution x(·) in D \ {Em2 } satisfies ẋ2 > 0. Moreover, one has:

(x1, x2) ∈ {x ∈ D ; x1 > 0 and x1 + x2 < xm1 } ⇒ ẋ1 > 0,
(x1, x2) ∈ {x ∈ D ; x1 > 0 and x1 + x2 > xm1 } ⇒ ẋ1 < 0.

(ii) As Wu(Em1 ) is a trajectory, any solution of (2.3) with D = Dm crosses the line {x1 = xr1} at some point
(xr1, x2) such that x2 < x̄2.
(iii) Since D is backward invariant by (2.3) with D = Dm and P̌ r ∈ D, the inclusion γ̌− ⊂ D is fulfilled.

The next lemma will be useful to define a small ε > 0 and times T̂ and Ť (see Remarks 3.2 and 3.3 below).

Lemma 3.4. The curves γ̂+ and γ̌− intersect in the domain (0, x̄1)× (0, x̌2,0).

Proof. Consider the variable q̌1 = x̌1/x̌2 on the positive orthant. As previously, one has

˙̌q1 =
(
µ1(sin − x̌1(t)− x̌2(t))− µ2(sin − x̌1(t)− x̌2(t))

)
q̌1.

From Assumption 2.2, µ1(sin) − µ2(sin) > 0. As x̌(t) → (0, 0) when t → −∞, there exist ť < 0 and c′ > 0
such that

µ1(sin − x̌1(t)− x̌2(t))− µ2(sin − x̌1(t)− x̌2(t)) > c′, t ≤ ť,
which shows that q̌1(t) tends to 0 when t tends to −∞. Therefore γ̌− is tangent to the x2-axis at E0. As
γ̂+ is tangent to the x1-axis at E0 (Lemma 3.2), we deduce that the curve γ̌− is above the curve γ̂+, in a
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neighborhood of the point E0 in S. Since x̌1(0) = xr1 > x̄1 and x̌1(t) tends to 0 when t tends to −∞, there
exists t̄ < 0 such that

x̌1(t̄) = x̄1 with t̄ = sup{t < 0; x̌1(t) = x̄1}.
This means that x̌1(t) > x̄1 for all t ∈ (t̄, 0]. As x̌2(·) is increasing on D (cf. Remark 3.1), one has x̌2(t̄) < x̌2(0)
and from the choice of x̌2,0 = x̌2(0) < δ (see condition (3.3)), one gets x̌2(t) < δ, for all t ≤ 0 and in particular
at t = t̄. The point (x̄1, x̌2(t̄)) of γ̌− is thus below (x̄1, δ), which belongs to γ̂+. Therefore, γ̂+ and γ̌− have
to cross at some point x̌(Ť ) with Ť < t̄, which verifies 0 < x̌1(Ť ) < x̄1 and 0 < x̌2(Ť ) < x̌2,0.

Remark 3.2. Since γ̌− ⊂ D (cf. Remark 3.1), the intersection between γ̌− and γ̂+ is also contained in D.

Lemma 3.4 implies that for each choice of the point P̌ r, there is an intersection point

Pε := (x1, ε) ∈ D,

between γ̂+ and γ̌− such that
0 < x1 < x̄1 and 0 < ε < x̌2,0,

see Fig. 4. By construction, there are T̂ > 0 and Ť > 0 such that Pε = x̂(T̂ ) = x̌(−Ť ). Recall that E is by
definition

E := (0, x̄1]× (0, ε].

Since x̄1 < xr1 and ε < x̌2,0, the corner point (x̄1, ε) of E is below the curve γ̌−. Thus, one has also the
inclusion E ⊂ D (because γ̌− ⊂ D), see Fig. 4.

Remark 3.3. Given Dm, DM and xr1 that fulfill Assumption 2.3, the parameter ε can be chosen arbitrarily
small taking the parameter x̌2,0 in the definition of P̌ r small enough (recall (3.3)).

xm
1

ε
K(xr

1)

x̄1x1

γ̂+

γ̌−

W u

xm
1xr

1

x1

x2

sin

sin

Figure 4: Plot of the set E := (0, x̄1] × (0, ε] (in red) and the intersection point Pε = (x̄1, ε) between γ̂+ and
γ̌−. The set K(xr1) is depicted in blue.

3.4 Proof of Proposition 3.1

To help the reader, we provide in Appendix 1 a list of the notations used in Section 3.
We start by giving the following definition.

Definition 3.5. The ”southeast” order in R2 (denoted by 4) is defined as

∀(x, y) ∈ R2, x 4 y ⇐⇒ {x1 ≤ y1, x2 ≥ y2}.
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Notice that the dynamics (2.3) is competitive, and therefore (2.3) preserves the order 4 (see [23]): for any
admissible time-varying function D(·), one has:

∀(ζ1, ζ2) ∈ S, ζ1 4 ζ2 =⇒ z(t, ζ1, D(t)) 4 z(t, ζ2, D(t)), ∀t ≥ 0. (3.4)

We have now given the necessary definitions and properties so that we can give to the proof of Proposition
3.1.

Proof. For clarity, we present the proof in several steps.

Step 1. Fix an initial condition x0 ∈ K(xr1) with x2,0 < sin − xr1. As x0 /∈ E , we set D = DM . Accordingly to
Lemma 3.2, x(·) converges asymptotically to E0 and thus T1 := inf{t > 0 ; x(t) ∈ E} is well defined. Notice
that there are two ways to reach E :

(i) x1(T1) = x̄1 and x2(T1) < ε,

(ii) x1(T1) ≤ x̄1 and x2(T1) = ε.

Let us show that in both cases one has x1(T1) > x1. As x̄1 > x1 (recall Lemma 3.4), we get x1(T1) > x1 in
case (i). In case (ii), one can also write T1 = inf{t > 0 ; z2(t, x0, DM ) ≤ ε}. The order property (3.4) then
implies that

z(t, P̂ r, DM ) 4 z(t, x0, DM ), t ≥ 0.

As z(T̂ , P̂ r, DM ) = x̂(T̂ ) = (x1, ε), we deduce that

z1(T̂ , x0, DM ) ≥ x1, z2(T̂ , x0, DM ) ≤ ε.

From the definition of T1, one has T1 < T̂ (one gets T1 = T̂ if x0 = P̂ r) and thus x1(T1) = z1(T1, x0, DM ) ≥ x1.
If x1(T1) = x1, one should then have x2(T1) = ε, that is, z(·, x0, DM ) = z(·, P̂ r, DM ) which is not true. Hence,
we obtain as well x1(T1) > x1 as was to be proved. In addition, notice that Pε 4 x(T1). Since E ⊂ D, the
point x(T1) necessarily satisfies x(T1) ∈ D.

Step 2. At t = T1, we set D = Dm. We use again the order property (3.4):

Pε 4 x(T1) =⇒ z(t, Pε, Dm) 4 z(t, x(T1), Dm), ∀t ≥ 0, (3.5)

and, as we have shown that x1(T1) > x1, we obtain the inequalities

z1(Ť , x(T1), Dm) > z1(Ť , Pε, Dm) = xr1, z2(Ť , x(T1), Dm) ≤ z2(Ť , Pε, Dm) = x̌2,0.

Therefore one has x(T1 + Ť ) = z(Ť , x(T1), Dm) ∈ int K(xr1). One can then define a time T̄1 as:

T̄1 := inf{t > T1 ; x1(t) > xr1},

which is such that T̄1 ∈ (T1, T1 + Ť ). From the monotonicity of x2(·) in the set D (cf. Remark 3.1), one obtains

x2(T̄1) < x2(T1 + Ť ) = z2(Ť , x(T1), Dm) ≤ x̌2,0.

As x(T1) belongs to the set D with x1(T1) > 0, z(·, x(T1), Dm) converges asymptotically to the equilibrium
Em2 that lies on the x2-axis (cf. Remark 3.1). The time T2 > T1 + Ť such that x1(T2) = xr1, where x(t) :=
z(t − T1, x(T1), Dm), t ≥ T1, is thus well defined. Moreover one has x(T2) ∈ K(xr1) and x(T2) ∈ D as D is
invariant by (2.3) (for D = Dm).

Step 3. At time T2, we have shown that x(T2) belongs to the set K(xr1), and also to the set D which implies
that x2(T2) < sin − xr1. Therefore, we can consider x(T2) as a new initial condition and apply iteratively the
results of steps 1 and 2, defining an increasing sequence of times (Ti)i∈N. For i = 2k+ 1 (with k ∈ N), one has
x(T2k+1) ∈ E and, as in step 2, we can define T̄2k+1 ∈ (T2k+1, T2k+1 + Ť ) such that

x1(T̄2k+1) = xr1 with T̄2k+1 := inf{t > T2k+1 ; x1(t) > xr1}. (3.6)

As shown in step 2, we necessarily have
x2(T̄2k+1) < x̌2,0. (3.7)

10



Because T2k+2 > T2k+1 + Ť , we get that limi→+∞ Ti = +∞ which concludes that property (3.1) is fulfilled.

Note that if we chose x0 = P̂ r then one obtains T1 = T̂ (and then by the unicity of the solution x(T1) = Pε).
Furthermore, in this case, the time T̄1 is such that T̄1 = T1 + Ť with x(T̄ ) ∈ K(xr1), since x(T1) = x̌(−Ť ). The
time T2 > T̄1 that is the first exit time from K(xr1) is well defined with x2(T2) < sin − xr1.

Step 4. We now show that the time spent by x1(·) above the threshold xr1 is of infinite measure. For each
k ∈ N, one has, from the definition of T2k+2:

meas{t ∈ [T2k+1, T2k+2] ; x1(t) > xr1} = T2k+2 − T̄2k+1.

From Remark 3.1, one has ẋ1(t) > 0 when s(t) = sin− x1(t)− x2(t) > λ1(Dm). At time T̄2k+1, the inequality
(3.7) implies that s(T̄2k+1) > sin − xr1 − x̌2,0. We deduce that

s(T̄2k+1)− λ1(Dm) = s(T̄2k+1)− (sin − xr1 − x̌2,0) + η > η > 0. (3.8)

Next, let us define
τk := sup{θ > 0 ; s(T̄2k+1 + θ) > λ1(Dm)}.

Then, one has necessarily x1(t) > xr1 for any t ∈ [T̄2k+1, T̄2k+1 + τk] and one obtains the inequality

T2k+2 − T̄2k+1 > τk.

Let us now give a lower bound on the value of τk. From equations (2.3), the following properties hold true:

{
x1 > xr1,
s > λ1(Dm)

⇒

 s = sin − x1 − x2 < sin − xr1,
x1 = sin − s− x2 < sin − λ1(Dm) = xm1 ,
x2 = sin − s− x1 < sin − λ1(Dm)− xr1 = xm1 − xr1,

from which one can obtain a lower bound on the speed at which the variable s decreases (as long as s is above
λ1(Dm) and x1 above xr1):

ṡ = −µ1(s)x1 − µ2(x)x2 +Dm(sin − s)
≥ −µ1(sin − xr1)xm1 − µ2(sin − xr1)(xm1 − xr1) := −c′′.

Notice that c′′ > 0. By integrating the above inequality, one can conclude that s stays above λ1(Dm) for a
duration larger than (s(T̄2k+1)− λ1(Dm))/c′′. Thanks to (3.8), we can thus write

τk > M :=
η

c′′
> 0,

where M > 0 does not depend on k. Finally, we have shown that for each k ∈ N, one has

meas{t ∈ [0, T2k+2] ; x1(t) > xr1} > kM,

which shows that the time-varying D(·) is a weaky resilient removal rate as was to be proved.

Remark 3.4. (i) In the proof of Proposition 3.1 (step 1), we have seen that x1(T2k+1) > x1 for any k ∈ N.
Therefore, Proposition 3.1 remains valid if the set E is replaced by

Ẽ := (x1, x̄1]× (0, ε].

(ii) Notice also that the trajectory given by Proposition 3.1 reaches the set D at some time t ≤ T1, and then
remains in this set for any future time. Indeed, from Remark 3.1, the trajectory belongs to D on any time
interval [T2k+1, T2k+2] (with D = Dm). On a time interval [T2k+2, T2k+3], we have set D = DM , and we have
seen in Lemma 3.2 that x1(·) and x2(·) are decreasing (with D = DM ). So, the trajectory also remains in D
for t ∈ [T2k+2, T2k+3]. One then concludes that the trajectory remains in D as well as in {x1 > x1} (thanks to
point (i) above) over [T1,+∞)

(iii) Finally, note that at times T̄2k+1 and T2k+2, one has x1(T̄2k+1) = x1(T2k+2) = xr1 and

x2(T̄2k+1) < x2(T2k+2) < x̄2 < xm2 − xr1. (3.9)
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4 Convergence to periodic solutions

The goal of this section is to show that the weakly resilient removal rate defined by Proposition 3.1 generates
asymptotically positive periodic solutions of system (2.3). Before addressing this point, we shall first prove
the existence of a periodic solution of (2.3) associated with the time-varying D(·) given by Proposition 3.1.
To this end, let us introduce an operator O as

O : (0, sin − xr1] → (0, sin − xr1]
x2,0 7→ x2(T2)

where x(·) = (x1(·), x2(·)) is the unique solution of (2.3) for the initial condition (xr1, x02) and the time-
varying D(·) given by Proposition 3.1, parameters Dm, DM , and P̌ r being fixed. Notice that times Ti, i ≥ 1,
introduced in Proposition 3.1 depend on x2,0 (in particular T2). Hence, this operator slightly differs from the
Poincaré map used for instance in [12, 24] for finding periodic solutions of dynamical systems, for which the
period is fixed beforehand. We shall next examine properties of the operator O. Doing so, let us introduce
the following notation (see Fig. 5):

• Denote by γ̃ and γ̌, the orbits of (2.3) with D = Dm passing respectively by (xr1, x
m
1 − xr1) and P̌r.

• Observe that γ̃ is tangent to the segment {x1 = xr1} ∩ S at (xr1, x
m
1 − xr1). Because x̌(·) converges to Em2

(Lemma 3.3), there are exactly two intersection points between γ̌ and {x1 = xr1} ∩ S, namely P̌r and

Q̌r := (xr1, x2) with x2 > xm1 − xr1. (4.1)

• In the sequel, we denote by J the interval J := [x2, x̄2] (recall (3.2)).

 

 

γ̃

γ̌xm
1

x2

xr
1 xm

1

x2

sin

Q̌r

x1

Figure 5: Plot of the orbits γ̃ and γ̌ and the point Q̌r.

4.1 Properties of the operator O
In this section, we prove that O is continuous and decreasing. The continuity of O will follow from the
continuity property of the first entry time into a set, that is related to Petrov’s condition (see Appendix 2).

For initial condition (xr1, x2,0) with x2,0 ∈ (0, Sin− xr1], we denote T1(x2,0), T2(x2,0) the times T1, T2 given
by Proposition 3.1.

Proposition 4.1. The time-varying D(·) contructed in Proposition 3.1 fulfills the following continuity prop-
erties:

(i) Times T1 and T2 are Lipschitz continuous functions of initial x2,0.

(ii) The operator O is Lipschitz continuous and takes values in J .
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Proof. For a given x2,0 ∈ (0, sin − xr1], denote by x(·) the unique solution of (2.3) for the initial condition
(xr1, x02) and the time-varying D(·) given by Proposition 3.1.

Let us prove (i). For t ∈ [0, T1], one has D(t) = DM and T1 is defined as the first time that x(·) reaches
the set

T1 := {x ∈ S ; x1 ≤ x̄1 and x2 ≤ ε}.
For t ∈ (T1, T2), one has D(t) = Dm. We know that there exists T̄1 ∈ (T1, T1 + Ť ) such that x(·) crosses the
line {x1 = xr1} at time T̄1 with x2(T̄1) < x̌2,0 (see step 2 of the proof of Proposition 3.1). Therefore, the state
x(T̄1) is below the point P̌ r. As x(·) cannot cross the orbit of P̌ r (denoted γ̌) on (T̄1, T2), x(·) crosses the line
{x1 = xr1} at some time T2 such that

x2(T2) > x2. (4.2)

Hence, T2 can be defined as the first time t > T1 + Ť such that x(·) reaches the set

T2 := {x ∈ S ; x1 ≤ xr1 and x2 ≥ x2},

at time t. On the positive set S+ := {x ∈ S ; x1 > 0 ; x2 > 0}, that is invariant by (2.3), we are in a position
to introduce the first entry time functions:

R1(x0) := inf {t ≥ 0 ; z(t, x0, DM ) ∈ T1} , R2(x0) := inf {t ≥ 0 ; z(t, x0, Dm) ∈ T2} ,

with x0 ∈ S+. Then, for x2,0 ∈ (0, sin − xr1], Proposition 3.1 allows to write the composition

O(x2,0) = z2(T2 − T1 − Ť , x(T1 + Ť ), Dm), (4.3)

with 
T1 := R1(xr1, x2,0),
x(T1) := z(T1, (x

r
1, x2,0), DM ),

x(T1 + Ť ) := z(Ť , x(T1), Dm),
T2 := T1 + Ť +R2(x(T1 + Ť )),

thanks to the definitions of T1, T2, and Ť . From the continuous dependency of an ODE w.r.t. initial conditions,
(see, e.g., [21]), the maps x0 7→ z(t, x0, D) (for a fixed t) and t 7→ z(t, x0, D) (for a fixed x0) are Lipschitz
continuous, given a constant D ∈ [Dm, DM ]. Therefore, proving the Lipschitz continuity of T1 and T2 w.r.t
x2,0 essentially requires to prove the Lipschitz continuity of R1 and R2 over the set S+. Notice first that for
constant D = DM , resp. D = Dm, any solution in S+ converges asymptotically to a steady state that belongs
to the interior of T1, resp. T2. Therefore, the targets T1 and T2 can be reached in a finite horizon from any
initial condition in S+, and thus, R1, R2 are well defined with finite values in S+. To prove their Lipschitz
continuity, we shall use Theorem 4.1 recalled in Appendix 2, showing that the inward pointing condition (4.8)
is fulfilled on the boundary of T1 and T2 in S+.

Lipschitz continuity of R1. Observe first that T1 is convex, hence the (convex) normal cone to T1 at some
point x ∈ S+ of its boundary is given by the expression

NT1(x) =

 R+ × {0}, x1 = x̄1, x2 < ε,
{0} × R+, x1 < x̄1, x2 = ε,
R+ × R+, x1 = x̄1, x2 = ε.

Then, we can easily check that

{x1 = x̄1, x2 ≤ ε} ⇒ f1(x,DM ) < φ1 := (µ1(sin)−DM )x̄1 < 0,

{x1 ≤ x̄1, x2 = ε} ⇒ f2(x,DM ) < φ2 := (µ2(sin − ε)−DM )ε < 0.

From the preceding inequalities, we deduce that for any point x on the boundary of T1 in S+, one has

f(x,DM ) · ν < min(φ1, φ2)‖ν‖, ν ∈ NT1(x) \ {0}.

This allows us to conclude that R1 is Lipschitz continuous over S+, thanks to Theorem 4.1.
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Lipschitz continuity of R2. Observe that T2 is also convex, hence the (convex) normal cone to T2 at some
point x ∈ S+ of its boundary is given by the expression

NT2(x) =

 R+ × {0}, x1 = xr1, x2 > x2,
{0} × R−, x1 < xr1, x2 = x2,
R+ × R−, x1 = xr1, x2 = x2.

One can easily that the following properties are fulfilled:

{x1 = xr1, x2 > x2} ⇒ f1(x,Dm) < ψ1 := f1((xr1, x2), Dm),

{x1 < xr1, x2 = x2} ⇒ f2(x,Dm) > ψ2 := f2((xr1, x2), Dm),

{x1 = xr1, x2 = x2} ⇒ f(x,Dm) · ν = ψ1ν1 + ψ2ν2.

As a consequence of (3.9), (4.1) and (4.2), note that one has xm1 − xr1 < x2 < xm2 − xr1. This allows us to
conclude that ψ1 < 0 and that ψ2 > 0 yielding the inequality

f(x,Dm) · ν ≤ min(ψ1,−ψ2)‖ν‖, ν ∈ NT2(x) \ {0},

for any x on the boundary of the set T2 in S+. This proves the Lipschitz continuity of R2 on S+ using again
Theorem 4.1. We conclude that both T1 and T2 are Lipschitz continuous w.r.t x2,0.

Let us prove now (ii). Recall that O can be written as function of T1 and T2 (see (4.3)). As T1 and T2 are
Lipschitz continuous w.r.t x2,0 then O as well. Combining (3.9) and (4.2) gives that O(x2,0) ∈ J as was to be
proved.

Remark 4.1. Since T1 and T2 are continuous then times Ti, i ≥ 3, introduced in Proposition 3.1 are also
continuous functions of x2,0.

Let us now study the monotonicity of the operator O.

Proposition 4.2. The operator O is decreasing.

Proof. Take two points x±2,0 ∈ (0, sin − xr1] such that x−2,0 < x+2,0, and let us show that O(x−2,0) > O(x+2,0).
Denote by x+(·), x−(·) the solutions generated by the time-varying D(·) given by Proposition 3.1 and for the
initial conditions x+(0) = (xr1, x

+
2,0) and x−(0) = (xr1, x

−
2,0) respectively. One can then write x+(0) 4 x−(0).

For convenience, we denote by T+
1 , T+

2 and T−1 , T−2 the times T1, T2 (as in Proposition 3.1) associated with
x+(·) and x−(·) respectively, and let us set

T̄+
1 := inf{t > T+

1 ; x+1 (t) > xr1} and T̄−1 := inf{t > T−1 ; x−1 (t) > xr1}.

First, let us note that the time-varying removal rate given by Proposition 3.1 satisfies D(t) = DM for both
trajectories in a neighborhood of t = 0. Using the order property (3.4), one can then write

z(t, x+(0), DM ) 4 z(t, x−(0), DM ), t ≥ 0. (4.4)

Thanks to this property, we must have T+
1 ≥ T−1 (otherwise, x+ reaches E at some time T+

1 < T−1 implying a
contradiction with (4.4)). Therefore one gets (recall that trajectories with D = DM decrease), we obtain the
inequality

x+1 (T+
1 ) = z1(T+

1 , x
+(0), DM ) ≤ z1(T−1 , x

+(0), DM ) ≤ z1(T−1 , x
−(0), DM ) = x−1 (T−1 ).

Since the orbits of (2.3) with D = DM do not intersect, we also obtain that x+2 (T+
1 ) ≥ x−2 (T−1 ) which

implies that x+(T+
1 ) 4 x−(T−1 ). Because x+1 (T+

1 ) < x−1 (T−1 ), the time needed by x+(·) to reach the liner
{x1 = xr1} from x+1 (T+

1 ) is greater than the time of x−(·) to reach the line {x1 = xr1} from x−1 (T−1 ). This gives
T̄+
1 − T+

1 ≥ T̄−1 − T−1 .
We now consider x+(T+

1 ) and x−(T−1 ) as initial conditions for (2.3) with D = Dm. Then one gets

z(t, x+(T+
1 ), Dm) 4 z(t, x−(T−1 ), Dm), t ≥ 0.
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In the same way as previously, we deduce the inequality:

x+2 (T̄+
1 ) = z2(T̄+

1 − T+
1 , x

+(T+
1 ), Dm) ≥ z2(T̄−1 − T−1 , x+(T+

1 ), Dm) ≥ z2(T̄−1 − T−1 , x−(T−1 ), Dm) = x−2 (T̄−1 ).

Since the orbits of (2.3) with D = Dm do not intersect, one necessarily has x+2 (T̄+
1 ) > x−2 (T̄−1 ) (and also

x+1 (T̄+
1 ) = x−1 (T̄−1 )). Finally, D is constant equal to Dm for both trajectories until the first instant at which

one of the two trajectory leaves the set K(xr1). Since x+(T̄+
1 ) is above x−(T̄−1 ), the point x−(T−2 ) is necessarily

above x+(T+
2 ), that is

x−2 (T−2 ) > x+2 (T+
2 ),

which implies the desired inequality O(x+2,0) < O(x−2,0).

4.2 Existence and attractivity of periodic solutions

In this section, we study how for any initial condition, the time-varying removal rate D(·) given in Proposition
3.1 allow system (2.3) to synchronize with a periodic solution (i.e. any solution of (2.3) associated with D(·)
converges asymptotically to a periodic solution).

4.2.1 Existence of periodic solutions

The existence of a weakly resilient periodic trajectory follows from the previous results about the operator O.

Corollary 4.1. There exists a unique positive periodic solution x?(·) associated with the time-varying D(·)
given by Proposition 3.1 such that x?(0) = (xr1, x

?
2,0) with x?2,0 satisfying O(x?2,0) = x?2,0.

Proof. Consider the function ϕ : (0, sin − x1,r]→ R defined as

ϕ(x2) := O(x2)− x2, x2 ∈ (0, sin − x1,r].

From Propositions 4.1 and 4.2, ϕ(·) is continuous and decreasing. Moreover, it verifies ϕ(x2) > 0 for x2 < x2
and ϕ(x2) < 0 for x2 > x̄2 (because O is with values in J). We can then conclude that ϕ(·) possesses a
unique zero in the interval (0, sin − x1,r], or equivalently that there exists a unique fixed point x?2,0 of O. The
solution x?(·) for the initial condition (xr1, x

?
2,0) verifies x?(T ?2 ) = x?(0), where T − 2? is equal to the time T2

generated by the time-varying D(·) given in Proposition 3.1, and is thus T ?2 -periodic. We conclude that x?(·)
is the unique periodic solution such that x?1(0) = xr1 and O(x?2(0)) = x?2(0).

4.2.2 Attractivity of the periodic solution

Due to the particular structure of the non-autonomous dynamics (the times Ti are not known explicitly), it
appears that determining explicitly a bound on the Lipschitz rank of O is quite difficult. However, in all the
simulations we performed, the operator O appears to be contractive, providing ε to be sufficiently small. We
thus posit the following conjecture.

Conjecture 4.1. For ε sufficiently small, the operator O is contractive on J .

Proposition 4.3. Under the conjecture, for ε sufficiently small an any initial condition in K(xr1), the solution
x(·) generated by the time-varying D(·) given in Proposition 3.1 converges asymptotically to the periodic
solution x?(·) up to a time shift σ̄:

lim
t→+∞

x(t+ σ̄)− x?(t) = 0.

Proof. Fix an initial condition in K(xr1). From Proposition 3.1 we know that the solution x1(·) reaches xr1 in
finite time. Let t0 be the first time t for which x1(t0) = xr1 and let x2,0 = x2(t0). We can then consider, without
any loss of generality, (xr1, x2,0) as initial condition. Let Ti be the sequence of times given by Proposition 3.1.
The trajectory x(·) is then solution of the non-autonomous dynamics ẋ = F (t, x) with

F (t, x) =

{
f(x,DM ), t ∈ [T2k, T2k+1)
f(x,Dm), t ∈ [T2k+1, T2k+2)

(k ∈ N)

As O is contractive, ona has the following limit

lim
k→+∞

x2(T2k) = lim
k→+∞

Ok(x2,0) = x?2,0. (4.5)
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Let T ?i be the sequence of times given by Proposition 3.1 for the initial condition x?0 = (xr1, x
?
2,0) and posit

F ?(t, x) =

{
f(x,DM ), t ∈ [T ?2k, T

?
2k+1)

f(x,Dm), t ∈ [T ?2k+1, T
?
2k+2)

(k ∈ N)

Clearly, on has T ?i+2 = T ?i + T ?2 i.e. F ? is a T ?2 -periodic dynamics.
We define now the following functions

F̃ (τ, x) =
Ti+1 − Ti
T ?i+1 − T ?i

F (τ, x), τ ∈ [T ?i , T
?
i+1)

g(t) = T ?i +
T ?i+1 − T ?i
Ti+1 − Ti

(t− Ti), t ∈ [ti, Ti+1)

Clearly, the solution x(·) of ẋ = F (t, x) satisfies x(t) = x̃(g(t)) for any t ≥ 0, where x̃(·) is solution of

dx̃

dτ
(τ) = F̃ (τ, x̃(τ)), x̃(0) = x(0).

Thanks to the continuity property of Ti (see Proposition 4.1 and Remark 4.1) and (4.5), one concludes that

lim
k→+∞

T2k+i − T2k = lim
k→+∞

Ti(x2(T2k)) = Ti(x
?
2,0), i = 1, 2, (4.6)

which gives
lim

k→+∞
T2(k+1) − T2k = T2(x?2,0) = T ?2 , (4.7)

and
lim

k→+∞
T2k+i+1 − T2k+i = Ti+1(x?2,0)− Ti(x?2,0), i = 0, 1.

Then, one has

lim
i→+∞

Ti+1 − Ti
T ?i+1 − T ?i

= 1

and deduce that F̃ is an asymptotically periodic dynamics with F ? as limit (see Definition 4.2 in Appendix
3). Moreover, one has

lim
k→+∞

x̃(kT ?2 ) = x(T2k) = x?0.

Therefore, we can apply the Theorem 4.3 (from [27], recalled in Appendix 3) which gives

lim
t→+∞

x̃(t)− x?(t) = 0

and we have obtained thus the following limit

lim
t→+∞

x(t)− x?(g(t)) = 0.

We show now that the time shift σ(t) := t − g(t) admits a limit σ̄. Notice that one has δ(Ti) = Ti − T ?i for
any i. Therefore, it is enough to prove that the sequence uk = T2k − T ?2k converges.

As O is contractive on J , there exists α ∈ (0, 1) such that

|x2(T2(k−1))− x?2,0| = |O(x2(T2(k−2))− x?2,0| ≤ αk−1|x2,0 − x?2,0|, k > 1

As the map x2,0 7→ T2 is Lipschitz continuous (cf Proposition 4.1), say of rank L, one obtains

|uk − uk−1| = |T2(x2(T2(k−1))− T ?2 | ≤ Lαk−1|x2,0 − x?2,0|

and let us finally show that uk is a Cauchy sequence. For any n > 1 and k > 1, one has

|un+k − un| ≤ L
k−1∑
i=0

αn+i|x2,0 − x?2,0| = Lαn
1− αk|
1− α |x2,0 − x

?
2,0|

As α < 1, on obtains that |un+k − un| tends to 0 when n tends to ∞ uniformly in k. We conclude that the
Cauchy sequence uk admits a limit, which gives the asymptotic shift σ̄.
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Appendix 1: list of notations

We remind in the next table all the parameters used in Section 3 and 4.

Notation Definition

P̂ r (xr1, sin − xr1)

x̂(·) z(·, P̂ r, DM )
D = DM γ̂+ {x̂(t) ; t ≥ 0}

t̂ inf{t > 0 ; x̂1(t) < x̄1}
δ x̂2(t̂)
x̌2,0 x̌2(0) with x̌2(0) < min(xm1 − xr1, δ)
P̌ r (xr1, x̌2,0)
x̌(·) z(·, P̌ r, Dm)

D = Dm γ̌− {x̌(t) ; t ≤ 0}
γ̌ {x̌(t) ; ∀t}
x̄2 Wu(Em1 ) ∩ {x1 = xr1}
η xm1 − xr1 − x̌2,0
Pε (x1, ε) intersection between γ̂+ and γ̌−

T̂ such that x̂(T̂ ) = Pε
Ť such that x̌(−Ť ) = Pε
E (0, x̄1]× (0, ε]
Q̌r (xr1, x2) intersection, different from P̌ r,

between γ̌ and {x1 = xr1} ∩ S

Appendix 2: Petrov’s condition

We recall here a result about the continuity of the first entry time function (see Theorem 8.25 in [11]), that
is stated here for a non-controlled dynamics. Let g : Rn → Rn be a mapping of class C1 with linear growth,
and denote by y(·, y0) the unique solution of the Cauchy problem:{

ẏ = g(y),
y(0) = y0,

defined over R+. Hereafter, we are given a non-empty compact subset T of Rn and for y ∈ T , the set Np
T (y)

stands for the proximal normal cone to the set T at the point y (see [10]). The standard inner product is
written a · b for a, b ∈ Rn, and ‖a‖ denotes the euclidean norm of the vector a.

Theorem 4.1. Suppose that the Petrov condition

∃γ < 0, ∀y ∈ ∂T , ∀ν ∈ Np
T (y) \ {0}, g(y) · ν < γ‖ν‖, (4.8)

is fulfilled. Then, the first entry time function

R(y0) := inf {t ≥ 0 ; y(t, y0) ∈ T } , y0 ∈ Rn,

is Lipschitz continuous in its open domain {y0 ∈ Rn ; R(y0) < +∞}.

If T is convex, the set Np
T (y) coincides with the convex normal cone (see, e.g., [10]) defined for y ∈ T as:

NT (y) := {q ∈ Rn ; q · (z − y) ≤ 0, ∀z ∈ T }.

Appendix 3: Asymptotically periodic systems

We recall first the definition of asymptotically periodic semi-flows in Rn.
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Definition 4.2. A non-autonomous semiflow Φ: {(t, s); 0 ≤ s ≤ t <∞}×Rn 7→ Rn is asymptotically periodic
with limit ω-periodic semi-flow T (t): Rn 7→ Rn, t ≥ 0 if

Φ(tj + njω, njω, xj)→ T (t)x, j →∞

for any sequences tj → t, nj →∞, xj → x when j →∞, with x, xj in Rn.

The following result can be found in [27] (Theorem 3.1).

Theorem 4.3. Let Φ: {(t, s); 0 ≤ s ≤ t <∞}× Rn 7→ Rn be an asymptotically periodic semi-flow with limit
ω-periodic semi-flow T (t): Rn 7→ Rn, t ≥ 0. Denote Tn(x) = φ(nω, 0, x) and S(x) = T (ω)x, n ≥ 0, x ∈ Rn.
If A0 is a compact subset of Rn invariant by the semi-flow S and y ∈ Rn is such that d(Tn(t), A0)→ 0 when
n→∞ then

lim
t→+∞

d(Φ(t, 0, y), T (t)A0) = 0.
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[18] J. Monod, La technique de culture continue: Théorie et applications, Ann. Inst. Pasteur, Lille, 79,
390–410, 1950.

[19] S. Nakaoka and Y. Takeuchi, How can three species coexist in a periodic chemostat? Mathematical
and Numerical Study, Proceedings of the 9th International Conference “Difference Equations and Discrete
Dynamical Systems”, L. Allen, B. Aulbach, S. Elaydi, R. Sacker (Editors), Los-Angeles (USA), 2–7 Aug.
2004, World Scientific, 121–133, 2005.

[20] Q.-L. Peng and H.I.Freedman, Global Attractivity in a Periodic Chemostat with General Uptake
Functions, Journal of Mathematical Analysis and Applications, 249(2), 300–323, 2000.

[21] L. Perko, Differential equations and dynamical systems, Springer 2013.

[22] H. L. Smith, Competitive coexistence in an oscillating chemostat, SIAM Journal on Applied Mathematics,
40, 498–522, 1981.

[23] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooper-
ative Systems, AMS Mathematical Surveys and Monographs, Vol. 41, 2008.

[24] H. Smith, P. Waltman, The theory of chemostat, dynamics of microbial competition, Cambridge Studies
in Mathematical Biology, Cambridge University Press, 1995.

[25] F. Wang and G. Pang, Competition in a chemostat with Beddington DeAngelis growth rates and periodic
pulsed nutrient, Journal of Mathematical Chemistry, 44(3), 691–710, 2008.

[26] G. Wolkowicz and X.-Q. Zhao, N-species competition in a periodic chemostat, Differential Integral
Equations 11, 465–491, 1998.

[27] X.-Q. Zhao, Asymptotic behavior for asymptotic periodic semiflows with applications, Communications
on Applied Nonlinear Analysis, 3(4), 43–66, 1996.

19


	Introduction
	Assumptions and definition of weak resilience
	Construction of a weakly resilient removal rate
	Synthesis of a weakly resilient removal rate
	Properties of the reduced dynamics with constant D=DM
	Properties of the reduced dynamics with constant D=Dm
	Proof of Proposition 3.1

	Convergence to periodic solutions
	Properties of the operator O
	Existence and attractivity of periodic solutions
	Existence of periodic solutions
	Attractivity of the periodic solution



