M. G. Fehlings, A. Vaccaro, J. R. Wilson, A. Singh, and D. Cadotte, Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS), PLoS One, vol.7, issue.2, p.32037, 2012.

M. G. Fehlings, D. Rabin, W. Sears, D. W. Cadotte, and B. Aarabi, Current Practice in the Timing of Surgical Intervention in Spinal Cord Injury, Spine, vol.35, issue.21S, pp.166-173, 2010.

J. W. Rowland, G. W. Hawryluk, B. Kwon, and M. G. Fehlings, Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon, Neurosurg Focus, vol.25, p.2, 2008.

M. B. Bracken, M. J. Shepard, T. R. Holford, L. Leo-summers, and E. F. Aldrich, Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study, JAMA, vol.277, pp.1597-604, 1997.

M. B. Bracken, M. J. Shepard, T. R. Holford, L. Leo-summers, and E. F. Aldrich, Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the third National Acute Spinal Cord Injury randomized controlled trial, J Neurosurg, vol.89, pp.699-706, 1998.

R. J. Hurlbert, M. N. Hadley, B. C. Walters, B. Aarabi, and S. S. Dhall, Pharmacological therapy for acute spinal cord injury, Neurosurgery, vol.72, pp.93-105, 2013.

B. K. Kwon, W. Tetzlaff, J. N. Grauer, J. Beiner, and A. R. Vaccaro, Pathophysiology and pharmacologic treatment of acute spinal cord injury, Spine J, vol.4, issue.4, pp.451-64, 2004.

P. Ferretti, F. Zhang, O. Neill, and P. , Spinal Cord Regenerative Ability Through Phylogenesis and Development: Lessons to Be Learnt, vol.226, pp.245-256, 2003.

N. R. Saunders, P. Kitchener, G. W. Knott, J. G. Nicholls, and A. Potter, Development of walking, swimming and neuronal connections after complete spinal cord transection in the neonatal opossum, Monodelphis domestica, J Neurosci, vol.18, pp.339-55, 1998.

R. Didier, R. Meiniel, and A. Meiniel, Monoclonal antibodies as probes for the analysis of the secretory ependymal differentiation in the subcommissural organ of the chick embryo, Dev Neurosci, vol.14, pp.44-52, 1992.

A. Barreiro-iglesias, R. Villar-cerviñ-o-v,-anadón, and M. C. Rodicio, A monoclonal antibody as a tool to study the subcommissural organ and Reissner's fiber of the sea lamprey: an immunofluorescence study before and after a spinal cord transection, Neurosci Lett, vol.464, pp.34-42, 2009.

C. Lehmann and W. W. Naumann, Axon pathfinding and the floor plate factor Reissner's substance in wildtype, cyclops and one-eyed pinhead mutants of Danio rerio, Brain Res Dev Brain Res, vol.154, pp.1-14, 2005.

A. Meiniel, SCO-spondin. A glycoprotein of the subcommissural organ/ Reissner's fiber complex: evidence of a potent activity on neuronal development in primary cell cultures, Microsc Res Tech, vol.52, pp.484-95, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01918635

K. Stanic, H. Montecinos, and T. Caprile, Subdivision of chick diencephalic roof plate: implication in the formation of the posterior commissure, Dev Dyn, vol.239, pp.2584-2593, 2010.

H. Monnerie, B. Dastugue, and A. Meiniel, Reissner's fiber promotes neuronal aggregation and influences neuritic outgrowth in vitro, Cell Tissue Res, vol.287, pp.285-295, 1997.

J. C. Adams and R. P. Tucker, The thrombospondin type 1 repeat (TSR) superfamily: Diverse proteins with related roles in neuronal development, Dev Dyn, vol.218, pp.280-299, 2000.

S. Gobron, I. Creveaux, R. Meiniel, R. Didier, and A. Herbet, Subcommissural organ/Reissner's fiber complex: characterization of SCOspondin, a glycoprotein with potent activity on neurite outgrowth, Glia, vol.32, pp.177-91, 2000.

A. Meiniel, R. Meiniel, N. Gonçalves-mendes, I. Creveaux, and R. Didier, The thrombospondin type 1 repeat (TSR) and neuronal differentiation: roles of SCO-spondin oligopeptides on neuronal cell types and cell lines, Int Rev Cytol, vol.230, pp.1-39, 2003.

H. Monnerie, B. Dastugue, and A. Meiniel, Effect of synthetic peptides derived from SCO-spondin conserved domains on chick cortical and spinal-cord neurons in cell cultures, Cell Tissue Res, vol.293, pp.407-425, 1998.

Y. Duchossoy, L. Kassar-duchossoy, D. Orsal, O. Stettler, and J. C. Horvat, Reinnervation of the biceps brachii muscle following cotransplantation of fetal spinal cord and autologous peripheral nerve into the injured cervical spinal cord of the adult rat, Exp Neurol, vol.167, pp.329-369, 2001.

D. M. Basso, M. Beattie, and J. C. Bresnahan, A sensitive and reliable locomotor rating scale for open field testing in rats, J Neurotrauma, vol.12, pp.1-21, 1995.

D. M. Basso, M. S. Beattie, and J. C. Bresnahan, Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection, Exp Neurol, vol.139, pp.244-56, 1996.

K. Gale, H. Kerasidis, and J. R. Wrathall, Spinal cord contusion in the rat: behavioral analysis of functional neurologic impairment, Exp Neurol, vol.88, pp.123-134, 1985.

M. Von-euler, A. Seiger, and E. Sundström, Clip compression injury in the spinal cord: a correlative study of neurological and morphological alterations, Exp Neurol, vol.145, pp.502-510, 1997.

U. L. Sedy´jsedy´sedy´j, P. Jendelová, and E. Syková, Methods for behavioral testing of spinal cord injured rats, Neurosci Biobehav Rev, vol.32, pp.550-80, 2008.

D. J. Donnelly and P. G. Popovich, Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury, Exp Neurol, vol.209, pp.378-88, 2008.

F. Bao, Y. Chen, K. A. Schneider, and L. C. Weaver, An integrin inhibiting molecule decreases oxidative damage and improves neurological function after spinal cord injury, Exp Neurol, vol.214, pp.160-167, 2008.

M. Bamdad, D. Volle, B. Dastugue, and A. Meiniel, a1b1-integrin is an essential signal for neurite outgrowth induced by thrombospondin type 1 repeats of SCOspondin, Cell Tissue Res, vol.315, pp.15-25, 2004.

E. A. Chernoff, Spinal cord regeneration: a phenomenon unique to urodeles?, Int J Dev Biol, vol.40, pp.823-854, 1996.

A. Meiniel, R. Meiniel, R. Didier, I. Creveaux, and S. Gobron, The subcommissural organ and Reissner's fiber complex. An enigma in the central nervous system, Prog Histochem Cytochem, vol.30, pp.1-66, 1996.

K. Meletis, F. Barnabé-heider, M. Carlén, E. Evergren, and N. Tomilin, Spinal cord injury reveals multilineage differentiation of ependymal cells, PLoS Biol, vol.22, issue.6, 2008.

G. Estivill-torrus, T. Vitalis, P. Fernandez-llebrez, and D. J. Price, The transcription factor Pax6 is required for development of the diencephalic dorsal midline secretory radial glia that forms the subcommissural organ, Mech Dev, vol.109, pp.215-224, 2001.

J. D. Hilario, L. R. Rodino-klapac, C. Wang, and C. E. Beattie, Semaphorin 5A is a bifunctional axon guidance cue for axial motoneurons in vivo, Dev Biol, vol.326, pp.190-200, 2009.

G. Huber, D. Alaimo-beuret, and A. Matus, MAP3: characterization of a novel microtubule-associated protein, J Cell Biol, vol.100, pp.496-507, 1985.

M. Toda, T. Shirao, and K. Uyemura, Suppression of an actin-binding protein, drebrin, by antisense transfection attenuates neurite outgrowth in neuroblastoma B104 cells, Brain Res Dev Brain Res, vol.114, pp.193-200, 1999.

X. Q. Gu and S. G. Waxman, Action potential-like responses in B104 cells with low Na+ channel densities, Brain Res, vol.735, pp.50-58, 1996.
DOI : 10.1016/s0006-8993(96)00604-x

R. F. Tyndale, T. G. Hales, R. W. Olsen, and A. J. Tobin, Distinctive patterns of GABAA receptor subunit mRNAs in 13 cell lines, J Neurosci, vol.14, pp.5417-5445, 1994.

S. Yoo, M. P. Nguyen, M. Fukuda, G. D. Bittner, and H. M. Fishman, Plasmalemmal sealing of transected mammalian neurites is a gradual process mediated by Ca(2+)-regulated proteins, J Neurosci Res, vol.74, pp.541-51, 2003.

C. E. Hill, M. S. Beattie, and J. C. Bresnahan, Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat, Exp Neurol, vol.171, pp.153-69, 2001.

T. Liebscher, L. Schnell, D. Schnell, J. Scholl, and R. Schneider, Nogo-A Antibody Improves Regeneration and Locomotion of Spinal Cord-Injured Rats, Ann Neurol, vol.58, pp.706-719, 2005.
DOI : 10.1002/ana.20627

E. J. Bradbury and S. B. Mcmahon, Spinal cord repair strategies: why do they work?, Nat Rev Neurosci, vol.7, pp.644-53, 2006.
DOI : 10.1038/nrn1964

S. Zisman, K. Marom, A. O. Rinsky-halivni, L. Gai, and U. , Proteolysis and membrane capture of F-spondin generates combinatorial guidance cues from a single molecule, J Cell Biol, vol.178, pp.1237-1286, 2007.

D. M. Snow, J. D. Smith, A. T. Cunningham, J. Mcfarlin, and E. C. Goshorn, Neurite elongation on chondroitin sulfate proteoglycans is characterized by axonal fasciculation, Exp Neurol, vol.182, pp.310-331, 2003.
DOI : 10.1016/s0014-4886(03)00034-7

Z. L. Chen, V. Haegeli, H. Yu, and S. Strickland, Cortical deficiency of laminin gamma1 impairs the AKT/GSK-3b signaling pathway and leads to defects in neurite outgrowth and neuronal migration, Dev Biol, vol.327, pp.158-168, 2009.

R. J. Mckeon, A. Höke, and J. Silver, Injury-Induced Proteoglycans Inhibit the Potential for Laminin-Mediated Axon Growth on Astrocytic Scars, Exp Neurol, vol.136, pp.32-43, 1995.

A. Buss, K. Pech, B. A. Kakulas, D. Martin, and J. Schoenen, Growthmodulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury, Brain, vol.130, pp.940-53, 2007.
DOI : 10.1093/brain/awl374

URL : https://academic.oup.com/brain/article-pdf/130/4/940/772995/awl374.pdf

A. L. Hawthorne, H. Hu, B. Kundu, M. P. Steinmetz, and C. J. Wylie, The unusual response of serotonergic neurons after CNS Injury: lack of axonal dieback and enhanced sprouting within the inhibitory environment of the glial scar, J Neurosci, vol.31, pp.5605-5621, 2011.

V. Dietz and A. Curt, Neurological aspects of spinal-cord repair: promises and challenges, Lancet Neurol, vol.5, pp.688-94, 2006.

G. Metz, A. Curt, H. Van-de-meent, I. Klusman, and M. E. Schwab, Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury, J Neurotrauma, vol.17, pp.1-17, 2000.

O. Raineteau and M. E. Schwab, Plasticity of motor systems after incomplete spinal cord injury, Nat Rev Neurosci, vol.2, pp.263-73, 2001.

G. Bignami, Economical test methods for developmental neurobehavioral toxicity, Environ Health Perspect, vol.104, pp.285-298, 1996.
DOI : 10.2307/3432648

R. Gerlai and N. S. Clayton, Analysing hippocampal function in transgenic mice: an ethological perspective, Trends Neurosci, vol.22, pp.47-51, 1999.
DOI : 10.1016/s0166-2236(98)01346-0

K. Fouad, G. Metz, D. Merkler, V. Dietz, and M. E. Schwab, Treadmill training in incomplete spinal cord injured rats, Behav Brain Res, vol.115, pp.107-113, 2000.
DOI : 10.1016/s0166-4328(00)00244-8

T. Seki, K. Hida, M. Tada, I. Koyanagi, and Y. Iwasaki, Graded contusion model of the mouse spinal cord using a pneumatic impact device, Neurosurgery, vol.50, pp.1075-1081, 2002.

V. E. Amassian and R. Ross, Development in the kitten of control of contact placing by sensorimotor cortex, J Physiol, vol.230, pp.55-56, 1973.

H. Forssberg, S. Grillner, and A. Sjöström, Tactile placing reactions in chronic spinal kittens, Acta Physiol Scand, vol.92, pp.114-120, 1974.

J. M. Donatelle, Growth of the corticospinal tract and the development of placing reactions in the postnatal rat, J Comp Neurol, vol.175, pp.207-232, 1977.

R. L. Roof, G. P. Schielke, X. Ren, and E. D. Hall, A comparison of long-term functional outcome after 2 middle cerebral artery occlusion models in rats, Stroke, vol.32, pp.2648-57, 2001.

N. S. Bradley, J. L. Smith, and J. R. Villablanca, Absence of hind limb tactile placing in spinal cats and kittens, Exp Neurol, vol.82, pp.73-88, 1983.

F. M. Bareyre, M. Kerschensteiner, O. Raineteau, T. C. Mettenleiter, and O. Weinmann, The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats, Nat Neurosci, vol.7, pp.269-77, 2004.

G. Courtine, B. Song, R. R. Roy, H. Zhong, and J. E. Herrmann, Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury, Nat Med, vol.14, pp.69-74, 2008.

Q. Cao, Y. P. Zhang, C. Iannotti, W. H. Devries, and X. M. Xu, Functional and electrophysiological changes after graded traumatic spinal cord injury in adult rat, Exp Neurol, vol.191, pp.3-16, 2005.

J. D. Guest, E. D. Hiester, and R. P. Bunge, Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury, Exp Neurol, vol.192, pp.384-93, 2005.

C. S. Barros, T. Nguyen, K. S. Spencer, A. Nishiyama, and H. Colognato, ) b1 integrins are required for normal CNS myelination and promote AKTdependent myelin outgrowth, Development, vol.136, pp.2717-2741, 2009.