
HAL Id: hal-02068056
https://hal.science/hal-02068056

Submitted on 14 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing the Rank of Large Sparse Matrices over
Finite Fields

Jean-Guillaume Dumas, Gilles Villard

To cite this version:
Jean-Guillaume Dumas, Gilles Villard. Computing the Rank of Large Sparse Matrices over Finite
Fields. Computer Algebra in Scientific Computing (CASC) 2002, Victor G. Ganzha, Ernst W. Mayr,
Evgenii V. Vorozhtsov, Sep 2002, Yalta, Ukraine. pp.47–62. �hal-02068056�

https://hal.science/hal-02068056
https://hal.archives-ouvertes.fr

Computing the Rank of Large Sparse Matrices over Finite
Fields

Jean-Guillaume Dumas1 and Gilles Villard2

1 Laboratoire de Modélisation et Calcul. B.P. 53, 38041 Grenoble, France.
2 Laboratoire de l’Informatique du Parallélisme, Allée d’Italie, F69364 Lyon, France.

Jean-Guillaume.Dumas@imag.fr Gilles.Villard@ens-lyon.fr

Abstract. We want to achieve efficient exact computations, such as the rank, of sparse matrices
over finite fields. We therefore compare the practical behaviors, on a wide range of sparse matrices of
the deterministic Gaussian elimination technique, using reordering heuristics, with the probabilistic,
blackbox, Wiedemann algorithm. Indeed, we prove here that the latter is the fastest iterative variant
of the Krylov methods to compute the minimal polynomial or the rank of a sparse matrix.

1 Introduction

Many applications of computer algebra require the most effective algorithms for the computation of
normal form of matrices. An essential linear algebra part of these is often the computation of the rank
of large sparse matrices; for example, many methods for factoring integers require the solution of large
sparse linear systems [24], the integer Smith form arising in the computation of homology groups [27] can
be determined using rank computations [13], image compression, robotics use computation of Gröbner
basis where huge sparse linear systems must be solved [16].

We first recall some Gaussian elimination strategies (§2) and propose a new reordering heuristic.
Some experimental results with these are presented in (§2.2). Then we produce a fast preconditioning
for the Wiedemann iterative method in order to compute the rank of a matrix via minimum polynomial
computation (§3). We will then compare both methods using a discrete logarithm based arithmetic (§4).
In §2.2 and §4 we will also present some results concerning matrices arising in the computation of Gröbner
basis for image compression or robotics (GB project [16]) and in the determination of homology groups
of simplicial complexes [5]. All the matrices used are available on the Sparse Integer Matrices Collection
(www-lmc.imag.fr/lmc-mosaic/Jean-Guillaume.Dumas/simc.html).

2 Gaussian Elimination

2.1 Reordering Techniques

There exists many numerical methods to reduce fill-in during Gaussian elimination. Unfortunately, Yan-
nakakis showed that finding the minimal fill-in (or equivalently the best pivots) is an NP-complete task
[35]. Therefore many heuristics has been developed. In numerical algorithms, there are two mainly used
methods. One considers the matrix as an adjacency of a graph and uses minimal degree ordering to
choose the pivot node [4]. Another one uses a cost function: at step k, ri(k) is the number of non-zero
elements within row i and cj(k) is the number of non-zeroes within column j. Markowitz’ version chooses
to eliminate with the row and columns that minimize the function (ri(k) − 1)(cj(k) − 1). Zlatev [37],
Duff and Reid [8] or Amestoy and Davis [2] have conducted many experiments on this subject. There
is a third class of heuristics, namely the “nested dissection”[1, 18, 23]. This method reduces fill-in from
20 to 30% in some cases when compared to minimum degree ordering. But it needs a costly symbolic
pre-factorization which often induces some overhead. Moreover it is not easily usable with non-symmetric,
non-invertible matrices. Anyway, all these methods are adapted to numerical methods (the matrices are
then very often supposed invertible !) and therefore do not take into account the values. For instance an
elimination operation (aij = aij + δi ∗ akj) cannot produce new zeroes when done numerically. That is
why pre-factorization is efficient. On the other hand, when dealing with small finite fields, new zeroes
appears very often. We then propose a new heuristic to take those new zeroes into account.

In the following, we will denote by Ω the number of non zero elements of a m× n matrix, and by $
(= Ω

m) the average number of non zero elements per row.

2

In symbolic computations, LaMacchia and Odlyzko [24] considered fill-in modulo 2 and proposed
a heuristic adapted to integer factorization, further developed by S. Cavallar [6]. We here propose a
heuristic, using some of the ideas of LaMacchia and Odlyzko together with a linear Markowitz’ cost
function.

(1) We first try to reduce the size of the matrix by suppressing rows or columns containing at most
one non-zero element.

(2) Then, because apparition of new zeroes cannot be predicted, we minimize fill-in only locally.
Moreover, in order to reduce the overhead of a total cost function, we instead choose the pivot with

the following heuristic: at step k, we choose a row i with a minimal number of non-zero elements. Then
we choose in this row the column with minimal number of elements. Therefore the pivot choice only
requires m + ri(k) ≤ m + n tests per step, whereas classical Markowitz’ function requires Ω = m$ tests
and multiplications in the first steps and soon become quadratic as the matrix fills in. The idea is close
to the local minima proposed by Rothberg[30] for numerical Cholesky.

To be able to choose a row at a low cost, we use a compressed row format and maintain a vector of
column density (in the following algorithm, column degrees are stored in Dj and computed lines 6, 15
and 20).

Algorithm 1 Symbolic-Reordering

Input : – a matrix A ∈ IFm×n.
Output : – the rank of A over IF.
1 : r = 0
2 : While there exists a row with only one non-zero element, akj 6= 0 Do
3 : ++r
4 : Remove row k and column j from A.
5 : For j = 1 to n Do
6 : Compute Dj , number of non-zero elements in column j.
7 : While there exists a column with only one non-zero element, akj 6= 0 Do
8 : ++r
9 : Remove row k and column j from A.
10 : Λ = {k, ∃j, akj 6= 0}
11 : While Λ 6= ∅ Do
12 : ++r
13 : Choose and remove k ∈ Λ such that |A[k]| is minimal.
14 : For all j such that akj 6= 0 Do
15 : Decrement Dj

16 : Choose j such that akj 6= 0 and Dj is minimal.
17 : For all i ∈ Λ such that aij 6= 0 Do
18 : A[i] = A[i]− aij

akj
A[k].

19 : For h == 1 to n Do
20 : Decrement or increment Dh whenever aih has changed.
21 : Remove from Λ the indices corresponding to new empty rows.
22 : Return r.

Theorem 1. Let A be a sparse matrix in IFm×n of rank r with at most $ non-zero elements per row.
Algorithm 1 requires 2

∑r
k=1(m−k)min{$2k, n−k} field operations and the same order of memory space

in the worst case.

Proof. We consider that each step doubles the number of elements per row. This gives at most min{$2k, n−
k} elements per row at step k.

We can quantify fill-in using this theorem. Indeed, as we can see e.g. on figure 1, there are two phases:
the first one lasts as long as the remaining (m−k)× (n−k) matrix is sparse. The number of sparse steps
is s, usually in the order of log2(n

$) since $2log2(
n
$) = n > n − k. This phase is fast since its steps are

linear but does not last long. Its overall cost is only quadratic:

2$2s(m− s + 1) < 2n(m− s + 1).

The second phase is slow since each step is now quadratic, thus yielding a cubic overall cost:

1
3
(r + 1− s)

(
3n(m− r − s) + 3m(n− r − s) + 2r2 +O(r)

) ≤ 2
3
rmn.

3

Fig. 1. Fill-in curve for different reordering strategies on matrix mk12.b4, 62370x51975 with rank 39535

2.2 Experimental Results

We used several class of matrices from different kind of applications. In order to make some comparisons
we present results using gains: if tpsno (respectively opno) is the execution time (resp. the number of
arithmetic operations) without reordering and tpsre (resp. opre) are the time and operations with re-
ordering, we normalize the gains as follows: gain(time) = 100 ∗ tpsno−tpsre

tpsno
, gain(op) = 100 ∗ opno−opre

opno
.

A gain close to 0 is still an improvement when a negative value is a loss. The maximal gain is 100.

Experiments have been conducted over Zp, the prime field with p elements or over GF(pk), one of its
extension fields. We used a tabulated finite field implementation [11] so that the arithmetic cost of the
basic operations remains nearly the same for prime fields and their extensions as long as the cardinality
remains within machine word size. However, since zero appears more frequently e.g. over Z3 or GF(4)
than over Z65521 or GF(65536), we have conducted experiments with those two extreme kinds of word size
finite fields.

Random matrices. We first ran our algorithms on random matrices on identical machines (133 MHz,
ultra-SPARC II), in order to give an idea of the overall performances. Figure 2 presents the result of our
heuristic for several matrices of dimension 1000 to 5000 with 1 to 70 non zero elements.

(1) We see on figure 2 that for extremely sparse matrices (1 or 2 elements per row), our heuristic is
nearly optimal. Clearly this is due to LaMacchia and Odlyzko’s trick.

(2) Then, between 2 and 4 elements per row, we win a little less: for very sparse and quite small
matrices, fill-in is not important even without reordering.

(3) Now, as soon as the average number of non-zeroes per row is bigger than 3, we drastically reduce
fill-in.

(4) Moreover, we remark a slight difference between Z3 and Z65521: this because our heuristic is even
more efficient on small moduli.

Gröbner basis matrices. We now see that our heuristic can also reduce fill-in on denser matrices (used in
Gröbner basis computations [16]). Unfortunately, for one of those (f855 mat9), the gain is not sufficient
to compensate the strategy overhead. In the other cases we have speed-ups bigger than 20%.

4

Fig. 2. Reordering gains on random matrices

5

Table 1. Reordering gains for Gröbner matrices

Matrix Elements Dimensions Rank Gain modulo 65521 (%)
Non zero Operations Time

robot24c1 mat5 12.39% 404 x 302 262 51.28 30.59
rkat7 mat5 7.44% 694 x 738 611 69.50 41.78
f855 mat9 2.77% 2456 x 2511 2331 19.88 -10.22
cyclic8 mat11 9.37% 4562 x 5761 3903 37.57 20.92

Homology matrices. We then used matrices of homology groups of simplicial complexes[5, 3, 29, 14]. These
matrices are almost diagonal. therefore, reordering induces a slight overhead in many cases. The figure 3

Fig. 3. Reordering gains on some Homology matrices

presents performances for 37 of those matrices. For instance there are 5 matrices having more than 90%
operation gain. These very sparse matrices have a quite long linear phase and then in a few steps fill-in
is spectacular. On figure 1 we test slight changes of pivot and we can see that the required memory can
vary from 130 to 590 Mb with the same matrix. Reordering those very peculiar matrices is then very
unstable and no good general heuristic has been found yet.

BIBD Matrices. This test matrices come from combinatorics. They are very rectangular matrices of
Balanced Incomplete Block Design [33]: once again when there is a very small number of rows, the steps
remains linear and reordering is not useful as one can see on figure 4. Those tests are useful anyway
to evaluate the overhead of our heuristic. Indeed, for the BIBD, there is no operation gain. The time
overhead is therefore only due to our reordering. Because this overhead is close to 70%, we estimate that
our reordering induces a time factor of 1.7. We see in next paragraph that this remains acceptable when
compared to Markowitz’ heuristic for instance.

Comparison with Markowitz’ function. To compare our heuristic with other strategies, we have imple-
mented Markowitz’ total pivot, still using LaMacchia and Odlyzko’s trick. In practice, we see on table 2
that Markowitz is always slower. This is true even though for several matrices Markowitz method enables
a higher reduction of fill-in.

6

Fig. 4. Reordering gain on BIBD matrices

Table 2. Our linear cost function versus Markowitz’

Matrix Gain modulo 65521 (%) Matrix Gain modulo 65521 (%)
Operations Time Operations Time

robot24 m5 3.99 26.09 n2c6.b4 27.93 68.66
rkat7 m5 -19.06 44.12 n2c6.b5 74.21 85.77
f855 m9 -56.24 71.96 n2c6.b6 45.30 77.52
cyclic8 m11 -76.72 42.61 n2c6.b7 23.63 80.69
bibd.14.7 -3.80 55.77 n3c6.b5 41.66 78.78
bibd.15.7 6.01 51.61 n3c6.b7 31.73 78.07
bibd.16.8 -1.55 47.01 n3c6.b8 84.02 88.65
bibd.17.4 10.30 72.73 n3c6.b9 1.41 78.76
bibd.17.8 -5.69 45.86 n4c5.b3 44.14 62.50
bibd.18.9 -0.30 53.81 n4c5.b4 64.18 78.35
bibd.19.9 -12.38 53.95 n4c5.b5 61.70 83.58
bibd.20.10 5.49 60.20 n4c5.b6 48.34 82.52
bibd.22.8 5.26 60.82 n4c5.b7 41.30 86.77
bibd.81.3 31.60 91.31 n4c5.b8 21.35 82.24
ch6-6.b3 48.46 76.32 n4c5.b9 21.45 71.43
ch6-6.b4 47.72 78.16 n4c6.b3 19.78 65.46
mk9.b2 45.92 57.14 n4c6.b4 67.58 63.72
mk9.b3 8.95 42.86 n2c6.b8 16.82 62.07
mk10.b2 46.58 44.44 n4c6.b13 19.96 85.41
mk10.b3 69.75 77.94 n4c6.b14 3.85 70.59
mk11.b2 34.46 61.67
mk11.b3 66.19 62.81

7

Comparison with SuperLU. Finally, on table 3 we compare our method to a generic version1 of the
“SuperLU” numerical code2.

Table 3. Our linear cost function versus SuperLU, on a PIII, 1Gb, 1GHz, (timings in seconds)

Matrix Ω, n×m, r Linear SuperLU

cyclic8 m11 2462970, 4562x5761, 3903 257.33 448.38

bibd 22 8 8953560, 231x319770, 231 100.24 594.29

n4c6.b12 1721226, 25605x69235, 20165 188.34 1312.27
ch7-7.b5 211680, 35280x52920, 29448 2179.62 Memory Thrashing
ch7-8.b5 846720, 141120x141120, 92959 5375.76 Memory Thrashing

TF13 11185, 1121x1302, 1121 3.18 3.54
TF14 29862, 2644x3160, 2644 50.58 50.34
TF15 80057, 6334x7742, 6334 734.39 776.68
TF16 216173, 15437x19321, 15437 18559.40 15625.79

We can see that our method is really competitive and supports a higher memory demand.

3 Blackboxes and Diagonal Scaling

We present here an iterative method for computing the rank, i.e. we do not modify the matrix, only
some matrix-vector products are needed. When a matrix is only used this way we call it a “Blackbox”.
Therefore an algorithm viewing matrices as blackboxes will not suffer from any fill-in.

We will first recall that we have access to the rank of a square matrix via its minimum polynomial
when this matrix is well preconditioned [22]. We actually use a faster and more generic randomization:

Theorem 2. [15, Theorem 6.2] Let S be a finite subset of a field F that does not include 0. Let A ∈ Fm×n

having rank r. Let D1 ∈ Sn×n and D2 ∈ Sm×m be two random diagonal matrices then degree(minpoly(D1×
At ×D2 ×A×D1)) = r, with probability 1− 11.n2−n

2|S| .

Informally this follows since first for a square matrix A, DA will generically have its characteristic
polynomial be a power of X times its minimum polynomial [7]. Then At.A is symmetric and will therefore
have no zero blocks on its Jordan form. No power of X can then occur in its minimum polynomial. And
then At.D.A will generically suppress self-orthogonality within rows and keep the rank unchanged. To
conclude, the probability follows from Schwartz-Zippel lemma [36].

3.1 Wiedemann’s Algorithm

Then we use Wiedemann’s algorithm [34] to compute the minimum polynomial and therefore the rank
when used with a good preconditioning. Wiedemann’s algorithm is a shift-register synthesis [26] using
some projection of the powers of the matrix as a sequence:

Algorithm 2 Diagonally scaled Wiedemann

Input : – a sparse matrix A in IFm×n of rank r.

Output : – the rank of A over IF with probability 1− 11.n2−n
2|F | .

Blackbox realization
1 : Select random D1 ∈ IFm×m and D2 ∈ IFn×n as stated above.

[Blackbox Initialization with explicit multiplication by the diagonals]
2 a : Compute B = D1 ∗A ∗D2, the matrix whose entries are D1iiAijD2jj .

[Blackbox Initialization otherwise]

1 www-sop.inria.fr/galaad/logiciels/synaps
2 www.nersc.gov/∼xiaoye/SuperLU

8

2 b : Form the true Blackbox composition C = D2A
tD1AD2

Wiedemann Sequence Initialization
3 : Set u ∈ IFn a random vector.
4 : set S0 = ut.u

Berlekamp/Massey Initialization
5 : set b = 1; e = 1;L = 0;ϕ = 1 ∈ IF[X];ψ = 1 ∈ IF[X];

6 : For k = 0 to 2 min(m,n) Do
Berlekamp/Massey shift register synthesis

7 : δ = Sk +
PL

i=1 ϕiSk−i 2 k
2

8 : If (δ == 0) Then
9 : ++e
10 : Else, if 2L > k Then
11 : ϕ = ϕ− δ

b
Xeψ 2 k

2

12 : ++e
13 : Else
14 : ϕ = ϕ− δ

b
Xeψ // ψ = ϕ 2 k

2

15 : L = k + 1− L; b = δ; e = 1

Early termination
16 : If e > TerminationThreshold Then Break.

[Next coefficient, non-symmetric case]
17 a : If k even Then
18 a : v = Au Ω
19 a : Sk+1 = vT v 2m
20 a : Else {or}
21 a : u = AT v Ω
22 a : Sk+1 = uTu 2n

[Next coefficient, symmetric case]
17 b : If k even Then
18 b : v = Au Ω
19 b : Sk+1 = uT v 2n
20 b : Else {or}
21 b : u = v
22 b : Sk+1 = uTu 2n

Las Vegas Check
23 : Set z ∈ IFn a random vector.

[Apply ϕ to AtA and z, non-symmetric case]
24 a : w = ϕ(AtA).v

[Apply ϕ to A and z, symmetric case]
24 b : w = ϕ(A).v
25 : If w == 0 Then
26 : Return degree(ϕ)− valuation(ϕ).
27 : Else
28 : “Failure”

Remark 1. As first observed by Lobo [20], when the matrix has rank r < min(n, m) this algorithm
will produce the minimal polynomial after only 2r steps. Therefore one can heuristically stop it when φ
remains the same after a certain number of steps. This is done via the EarlyTerminationThreshold within
algorithm 2. The number of matrix-vector computations can therefore be drastically reduced in some
cases. This argument is heuristic in general but provable for the Lanczos algorithm on preconditioned
matrices over suitably large fields [15, also Eberly (private Communication 2000)]

Remark 2. We present here both the generic algorithm when explicit multiplication by a diagonal is
possible and one with true Blackbox. The cost of a matrix-vector product is reduced in the former case
but the size of the set of random choices is divided by 2 since it is equivalent to selecting a random
diagonal matrix in the set of squares of F .

9

Theorem 3. Let A be a matrix in IFm×n of rank r. Algorithm 2 is correct and requires 2r matrix-vector
products with 4r2+2r(n+m) supplementary field operations. It also requires 5n memory space in addition
to the matrix storage.

Proof. For correctness of the minimum polynomial see [26, 34]. For correctness of the rank use theorem
2. Now for arithmetic complexity : the loop ends when the degree of the polynomial reaches r (i.e.
when k = 2r) according to remark 1. Loop k has a cost of L = k

2 “gaxpy” operations for discrepancy
computation, another k

2 for the polynomial update, a matrix-vector products, and a n or m-dotproduct.
The additional complexity is therefore

∑2r−1
k=0 4k

2 + 2n+m
2 = 4r2− 2r + 2nr + 2mr. We conclude with the

memory complexity : one vector is needed to store S, two vectors are needed to compute the matrix-vector
products and only two polynomials are required to perform the shift-register step. Indeed, the fact that
the shifting degree, x, is greater than one allows us to perform the polynomial updates in place.

In the case where A is sparse with Ω non-zero elements (and $ = Ω
n , the average number of non-

zero elements per row, is a constant), the total cost of this algorithm is 4r(Ω + r + n) = O(rn). So
asymptotically this algorithm is better than Gaussian elimination which has a worst case arithmetic
complexity in O(rn2). However the constant factor of 4$ + 8 is not negligible when one considers that
Gaussian elimination has a low cost in its first steps. This cost is then growing up to 2

3rn2 according to
the fill-in.

Remark 3. For the symmetric case there are only n-dotproducts. Therefore if n > m it is better to
form this other Blackbox : B = D1AD2A

tD1. Indeed, in view of the following lemma 1, the minimal
polynomial will have the same degree (or only a difference of 1) and therefore the number of iterations
will not change.

Lemma 1. Let A ∈ Rm×n and B ∈ Rn×m be two rectangular matrices. Then the minimal polynomials
of AB and BA are equal or differ by a factor of X.

Proof. Let mAB(X) and mBA(X) be respectively the minimal polynomials of AB and BA. The Cayley-
Hamilton theorem [17, Theorem IV.§4.2] states that mAB(AB) = 0. Then, by multiplying on both sides
by B and A we have BmAB(AB)A = 0 which means that (XmAB)(BA) = 0. Since mBA is the minimal
polynomial of BA it follows that mBA divides XmAB . We can similarly prove that mAB |XmBA. Then
either mAB = XmBA or mAB = mBA or XmAB = mBA.

3.2 Other Krylov Methods

The minimum polynomial fA,u of a vector u is computed as a linear dependency between the iterates
u,Au, A2u, In the Krylov/Wiedemann approach, the dependency is found by applying the Berlekamp-
Massey algorithm to the sequence vTu, vTAu, vTA2u, . . . for a random vector v. We let d be the degree
of the minimum linear generating polynomial fA,u

v (x) = xd − fd−1x
d−1 − . . . − f1x − f0 of the latter

sequence, meaning that vTAd+iu = fd−1(vTAd+i−1u) + . . . + fi+1(vTAu) + fi(vTu), i ≥ 0. Then fA,u
v (x)

always divides fA,u and, furthermore, with high probability, fA,u
v (x) = fA,u [34]. The Berlekamp-Massey

algorithm will compute fA,u
v (x) after processing the first 2d elements of the sequence. The generation of

the sequence is distinguished from the computation of the linear recurrence. In the Lanczos approach,
these tasks are intermixed into a unique iteration. While the vectors in the Krylov subspace are gen-
erated and orthogonalized, the coefficients of the recurrence are computed on the fly as dot products.
For a unifying study of both approaches over finite fields we refer to [25]. With high probability, the
minimum polynomial fA,u of a random vector u is the minimum polynomial fA of A [34, 22]. The basic
implementation computes the minimum polynomial of A using Wiedemann’s algorithm and two random
vectors u and v to generate the sequence {vTAiu}0≤i≤2n−1. The algorithm is randomized of the Monte
Carlo type. As first observed by Lobo, the cost can be reduced by early termination. As soon as the linear
generator computed by Berlekamp-Massey process remains the same for a few steps (as indicated by dis-
crepancies of zero) then the minimum polynomial is known. The argument is heuristic in the general case
but probabilistic when applied over large fields to preconditioned matrices with Lanczos’ algorithm [15].
A Monte Carlo check of the early termination is implemented by incorporating the application of the
computed polynomial to the vector u. From [25] and [9, Chap. 6], we give the dominant terms of the
arithmetic costs in Table 4. Terms between brackets give the number of memory locations required for
field elements. Early termination and randomized Monte Carlo algorithms correspond to bi-orthogonal
Lanczos algorithms with or without look-ahead. In both approaches, the number of matrix-vector prod-
ucts may be cut in half if the matrix is symmetric. Since the update of the linear generator is computed

10

by dot products instead of elementary polynomial operations, a Lanczos strategy may always have a
slightly higher cost for computing the minimum polynomial.

Table 4. Costs of Wiedemann and Lanczos algorithms for fA of degree d. A or AT can be applied to a
vector using at most Ω operations.

Early termination fA Monte Carlo fA

Wiedemann [5n] 2dΩ + 4d(n+ d) 2nΩ + 4n2 + 2d(n+ d)
Lanczos [3n] 2dΩ + 8dn 2nΩ + 4n2 + 4dn

4 David versus Goliath

In this section we report on some experiments comparing the behavior of Wiedemann’s algorithm and
Gauß’ algorithm.

4.1 Arithmetic

We first compare the respective implementations of our algorithms on a Sun UltraII 250 MHz. The idea
is to measure the number of millions of field operations (Mops) that each algorithm is able to perform in
a second.

Table 5. Million of field (65521 elements) OPerations per Second, dense dot product compared with Gauss and
Wiedemann.

machine ints Tabulated Field Gauß Wiedemann

Minimum 23.08 13.04 0 7.25
Average 23.08 13.04 1.82 8.67
Maximum 23.08 13.04 4.57 12.12

We therefore produce the performance obtained for all the matrices of section 2.2 and compare them
in table 5 together with a dense dot product with machine int or using a tabulated implementation of
a finite field (see [11]). Then, comparing the number of operations reached by our two algorithms, we
recall that sparse elimination requires many data structures manipulations and that reordering requires
a few more structures manipulations. Next thing to remark is that we achieve better performances when
measured in term of “Mops” with Blackbox methods than with elimination; we were able to run at
12.12 Mops in the best case. Indeed in Wiedemann algorithm there are sparse matrix-vector operations
which need structural manipulations but also a fairly important proportion of dense dot products and
polynomial multiplications.

Remark 4. In the following experiments we will present results for matrices of size greater than half the
size of the field. The conditions of theorem 3 do not hold anymore for the probabilities of success of
Wiedemann algorithm. However it seems clear that the probability estimates of 2 are too pessimistic
for most of the matrices. Indeed, we check our results with the deterministic Gauß algorithm whenever
it is possible. It appears that with a field of size 65521, Wiedemann’s algorithm simply never failed on
our matrices when the rows or columns containing only one entry were removed. We therefore present
timings associated with correct Wiedemann answers when the Gaussian elimination result is present. For
some other matrices, Gaussian elimination ran out of memory and we don’t know the correct answer.
Some experiments with arbitrary precision integers and larger fields will have to be conducted to check
correctness. Anyway we present the timings associated to these matrices with the restriction that the
rank might not be correct.

11

4.2 Matrices

Random matrices We first produce in figure 5 the results obtained for random matrices. We see that
for very sparse matrices Gaussian elimination is far better since it has nearly nothing to do! Anyway,
and even for small matrices, as soon as the fill-in is no longer negligible Wiedemann algorithm takes the
advantage.

Fig. 5. Compared timings of elimination and iterative techniques on random matrices.

This happens when $ is greater than 6. Moreover, this advantage remains until matrices are nearly
dense, say as long as $ < min{m;n}

3 (i.e. up to 30% sparse, when comparing arithmetic complexities in
theorems 1 and 3).

Gröbner and Homology matrices Also, for much more triangular matrices, Gaussian elimination has not
much to compute and is therefore better than Wiedemann’s algorithm. However, we note that for very
large matrices Wiedemann’s algorithm is able to execute whereas Gaussian elimination fails because of

12

memory thrashing. For these cases, where memory is the limiting factor, even the slightest fill-in can kill
elimination.

Table 6. Compared timings of elimination and iterative techniques on homology and Gröbner matrices.

Matrix Ω, n×m, r Gauß Wiedemann

robot24c1 mat5 15118,404x302,262 0.52 1.84
rkat7 mat5 38114, 694x738, 611 1.85 10.51
f855 mat9 171214, 2456x2511 , 2331 10.54 202.17
c8 mat11 2462970,4562x5761, 3903 671.33 4972.99

mk9.b3 3780,945x1260,875 0.26 2.11
ch7-7.b6 35280,5040x35280,5040 4.67 119.53
ch7-6.b4 75600, 15120x12600, 8989 49.32 412.42
ch7-7.b5 211680,35280x52920,29448 2179.62 4141.32
ch8-8.b4 1881600, 376320x117600 Memory Thrashing 33 hours

Incidence matrices These matrices are incidence matrices of unlabelled trees on n nodes versus unla-
belled forests on n nodes with n − 2 edges [28]. The major point here is that those matrices have an
average number of non zero elements growing from 6 to 18. Our analysis on random matrices shows that
Wiedemann is better on those. This is indeed the case as shown in table 7.

Table 7. Compared timings of elimination and Wiedemann on incidence matrices (in cpu seconds on an Intel
PIII 993 MHz and 1Gb).

Matrix Ω, n×m, r Gauß Wiedemann

n=10 622,99x107,99 0.01 0.02
n=11 1607,216x236,216 0.02 0.09
n=12 4231,488x552,488 0.22 0.62
n=13 11185,1121x1302,1121 4.37 4.45
n=14 29862,2644x3160,2644 61.57 27.21
n=15 80057,6334x7742,6334 1002.14 165.67
n=16 216173,15437x19321,15437 18559.4 1248.46
n=17 586218,38132x48630,38132 Memory Thrashing 7094.97
n=18 1597545,95368x123867,95368 Memory Thrashing 58893.6
n=19 4370721,241029x317955,241029 Memory Thrashing 359069

5 Block Algorithms and Parallelism

We have compared the sequential methods to compute the rank of large sparse matrices. Next question
is whether this comparison will remain when parallelizing the algorithms. In this section we sketch the
parallel strategies and infer their respective behaviors from a communication and time cost analysis.

5.1 Turbo

A way to compute the rank in parallel is to use an exact LU factorization (the effective computation of only
the U matrix is of course sufficient). A first idea is to use a parallel direct method on matrices stored by
rows (respectively columns). There, at stage k of the classical Gaussian elimination algorithm, eliminations
are executed in parallel on the n− k− 1 remaining rows; thus giving only a small grain. The next idea is
therefore to mimic numerical methods and use sub-matrices. Now, the problem is that usually, for symbolic
computation, these blocks are singular. To solve this problem one has mainly two alternatives. One is to
perform a dynamic cutting of the matrix and to adjust it so that the blocks are reduced and become

13

invertible. Such a method is shown by Ibarra et al [19]. They build an algorithm computing the rank of
an m× n matrix with arithmetic complexity O(mω−1n), where the complexity of matrix multiplication
is O(mω). Unfortunately, their method is not so efficient in parallel: it induces synchronizations and
significant communications at each stage in order to compute the block redistribution. Another method,
called Turbo, using singular static blocks in order to avoid these synchronizations and redistributions
has been proposed in [12]. This algorithm also has an optimal sequential arithmetic complexity and is
able to avoid 30% of the communications for dense matrices.

Still, the amount of communications remains fairly large even when compared to the arithmetic cost
on dense matrices. Those methods are therefore not suited at all to sparse matrices. Moreover, they
requires even more memory than the sequential versions. Therefore, there remains to design a direct
parallel method suited to sparse matrices and to study effective methods to reorder sparse matrices in
parallel.

5.2 Parallelization of Wiedemann’s Algorithm

An easy parallelization of Wiedemann’s algorithm is to cut A in cyclic bi-dimensional blocks and to
parallelize the matrix-vector and dot products [10, §4.1] and [9, §6.8.1]. Table 8 shows the acceleration

Table 8. Parallel Wiedemann on a Sun Ultra-II 4× 250 MHz, modulo 32749

Matrix $, n×m Sequential 4 processors Speed-up

bibd 22 8 38760, 231x319770 995.41 343.80 2.90
ch7-6.b4 5, 15120x12600 412.42 240.24 1.72
ch7-7.b5 6, 35280x52920 4141.32 1865.12 2.22
mk12.b4 5, 62370x51975 7539.21 2959.42 2.55
ch8-8.b4 5, 376320x117600 33 hours 10 hours 3.37
ch7-9.b5 6, 423360x317520 105 hours 34 hours 3.10
ch8-8.b5 6, 564480x376320 55 hours -

one can obtain this way. As for the direct parallel methods, these speed-ups are on symmetric multi
processor machines. Unfortunately, this does not work well on distributed architectures. Indeed on p
processors, one has to communicate a total of 2n

√
p values for each bi-dimensional matrix-vector product.

This volume of communication thus induces an insufficient overlapping. On distributed architectures the
solution is instead to use the iterative algorithms with several starting vectors as shown in next section.

5.3 Block Krylov Methods

In this section we focus on the block versions of the Krylov methods. These are variants of Lanczos or
Wiedemann’s approaches but using several initial vectors at the same time. Therefore computations are
grouped and the number of iterations is reduced. There are two main advantages. The probabilities of
success are improved in small finite fields [32]. Also, there is more parallelism (with exactly the same
number of matrix-vector products). However, the overall number of field operations is unfortunately
higher than for the classical versions. The most commonly used block variants are block Lanczos and
Coppersmith’s version of block Wiedemann. Just like in table 4, we give in table 9 the dominant terms
of the arithmetic costs from [21] and [9, Chap. 6.7].

Table 9. Costs of Coppersmith’s block Wiedemann and block Lanczos algorithms for fA of degree
d, using p initial vectors at the same time. A or AT can be applied to a vector using at most Ω operations.

Early termination fA

Coppersmith [4pn+ 2p2 + 2dp] 2dΩ + 4pd(n+ d)
Block Lanczos [3pn+ 3p2] 2dΩ + (8p+ 2)dn+O(dp2)

Coppersmith’s version of block Wiedemann’s algorithm uses blocks of vectors to perform several
matrix-vector products at the same time. Still the computation of the block generating polynomial (a
matrix polynomial) remains sequential. Together with its higher cost, this prevents us to use this paral-
lelization on our matrices. Indeed, the block algorithm is more interesting when the matrix-vector product

14

cost is dominating. With Ω = O(n) as is the case for our matrices, the matrix-vector products are faster
than the expensive matrix polynomial generation. More experiments have to be conducted with slightly
denser matrices, say with Ω in the O(n log(n)) range.

6 Conclusion

We have experimented with the currently known best methods for computing the rank of large sparse
matrices. We first validated an efficient heuristic for fill-in reduction in Gaussian elimination. We have then
seen that for certain highly structured matrices Gaussian elimination is still faster since it has relatively
little to do! On the other hand we can say that Wiedemann’s iterative algorithm is very practical. We
show also that this is the fastest iterative method to compute the rank. It has good behavior in general,
even for small matrices, and is the only solution for extremely large matrices. Moreover, an effective
parallelization on Symmetric Multi Processor machines is possible even though not fully expendable to
distributed architectures.

Therefore, there remains to extend the comparisons and developments of both the direct and iterative
parallel block versions.

Acknowledgements. We are grateful to Volkmar Welker, Jean-Charles Faugère, Mark Giesbrecht, Nicolas M.
Thiéry for their providing us with test matrices.

References

1. P. Amestoy, F. Pellegrini, and J. Roman. Hybridizing nested dissection and halo approximate minimum
degree for efficient sparse matrix ordering. In Proceeding of IRREGULAR’99, volume 1225, pages 986–995,
Puerto Rico, Apr. 1999. Lecture Notes in Computer Science.

2. P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algorithm. SIAM
Journal on Matrix Analysis and Applications, 17(4):886–905, Oct. 1996.

3. E. Babson, A. Björner, S. Linusson, J. Shareshian, and V. Welker. Complexes of not i-connected graphs.
Topology, 38(2):271–299, 1999.

4. P. Berman and G. Schnitger. On the performance of the minimum degree ordering for Gaussian elimination.
SIAM Journal on Matrix Analysis and Applications, 11(1):83–88, Jan. 1990.

5. A. Björner, L. Lovász, S. T. Vrećica, and R. T. Živaljević. Chessboard complexes and matching complexes.
Journal of the London Mathematical Society, 49(1):25–39, 1994.

6. S. Cavallar. Strategies in filtering in the number field sieve. Technical report, Centrum voor Wiskunde en
Informatica, May 2000. http://www.cwi.nl/ftp/CWIreports/MAS/MAS-R0012.ps.Z.

7. L. Chen, W. Eberly, E. Kaltofen, B. D. Saunders, W. J. Turner, and G. Villard. Efficient matrix precondi-
tioners for black box linear algebra. Linear Algebra and its Applications, 343-344:119–146, 2002.

8. I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Clarendon Press, Oxford,
UK, 1986.

9. J.-G. Dumas. Algorithmes parallèles efficaces pour le calcul formel : algèbre linéaire creuse et exten-
sions algébriques. PhD thesis, Institut National Polytechnique de Grenoble, France, Dec. 2000. ftp://-
ftp.imag.fr/pub/Mediatheque.IMAG/theses/2000/Dumas.Jean-Guillaume.

10. J.-G. Dumas. Calcul parallèle du polynôme minimal entier en Athapascan-1 et Linbox. In RenPar’2000.
Actes des douzièmes rencontres francophones du parallélisme, Besançon, France, pages 119–124, June 2000.

11. J.-G. Dumas, T. Gautier, and C. Pernet. Finite field linear algebra subroutines. In T. Mora, editor, Proceedings
of the 2002 International Symposium on Symbolic and Algebraic Computation, Lille, France. ACM Press, New
York, July 2002.

12. J.-G. Dumas and J.-L. Roch. A fast parallel block algorithm for exact triangularization of rectangular matrices.
In SPAA’01. Proceedings of the Thirteenth ACM Symposium on Parallel Algorithms and Architectures, Kreta,
Greece., pages 324–325, July 2001.

13. J.-G. Dumas, B. D. Saunders, and G. Villard. Integer Smith form via the Valence: experience with large
sparse matrices from Homology. In Traverso [31], pages 95–105.

14. J.-G. Dumas, B. D. Saunders, and G. Villard. On efficient sparse integer matrix Smith normal form compu-
tations. Journal of Symbolic Computations, 32(1/2):71–99, July–Aug. 2001.

15. W. Eberly and E. Kaltofen. On randomized Lanczos algorithms. In W. W. Küchlin, editor, Proceedings of
the 1997 International Symposium on Symbolic and Algebraic Computation, Maui, Hawaii, pages 176–183.
ACM Press, New York, July 1997.

16. J.-C. Faugère. Parallelization of Gröbner basis. In H. Hong, editor, First International Symposium on Parallel
Symbolic Computation, PASCO ’94, Hagenberg/Linz, Austria, volume 5 of Lecture notes series in computing,
pages 124–132, Sept. 1994.

17. F. R. Gantmacher. The Theory of Matrices. Chelsea, New York, 1959.
18. B. Hendrickson and E. Rothberg. Improving the run time and quality of nested dissection ordering. SIAM

Journal on Scientific Computing, 20(2):468–489, Mar. 1999.
19. O. H. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix decomposition algorithm and

applications. Journal of Algorithms, 3(1):45–56, Mar. 1982.
20. E. Kaltofen, W.-S. Lee, and A. A. Lobo. Early termination in Ben-Or/Tiwari sparse interpolation and a

hybrid of Zippel’s algorithm. In Traverso [31], pages 192–201.
21. E. Kaltofen and A. Lobo. Distributed matrix-free solution of large sparse linear systems over finite fields.

In A. Tentner, editor, Proceedings of High Performance Computing 1996, San Diego, California. Society for
Computer Simulation, Simulation Councils, Inc., Apr. 1996.

15

22. E. Kaltofen and B. D. Saunders. On Wiedemann’s method of solving sparse linear systems. In Applied
Algebra, Algebraic Algorithms and Error–Correcting Codes (AAECC ’91), volume 539 of Lecture Notes in
Computer Science, pages 29–38, Oct. 1991.

23. G. Karypis and V. Kumar. A fast and high quality mutilevel scheme for partitioning irregular graphs. SIAM
Journal on Scientific Computing, 20(1):359–392, Jan. 1999.

24. B. A. LaMacchia and A. M. Odlyzko. Solving large sparse linear systems over finite fields. Lecture Notes in
Computer Science, 537:109–133, 1991. http://www.research.att.com/∼amo/doc/arch/sparse.linear.eqs.ps.

25. R. Lambert. Computational aspects of discrete logarithms. PhD thesis, University of Waterloo, Ontario,
Canada, 1996. http://www.cacr.math.uwaterloo.ca/techreports/2000/lambert-thesis.ps.

26. J. L. Massey. Shift-register synthesis and BCH decoding. IEEE Transactions on Information Theory, IT-
15:122–127, 1969.

27. J. R. Munkres. Elements of algebraic topology, chapter The computability of homology groups, pages 53–61.
Advanced Book Program. The Benjamin/Cummings Publishing Company, Inc., 1994.

28. M. Pouzet and N. M. Thiéry. Invariants algébriques de graphes et reconstruction. Comptes Rendus de
l’Académie des Sciences, 333(9):821–826, 2001.

29. V. Reiner and J. Roberts. Minimal resolutions and the homology of matching and chessboard complexes.
Journal of Algebraic Combinatorics, 11(2):135–154, Mar. 2000.

30. E. Rothberg and S. C. Eisenstat. Node selection strategies for bottom-up sparse matrix ordering. SIAM
Journal on Matrix Analysis and Applications, 19(3):682–695, July 1998.

31. C. Traverso, editor. ISSAC’2000. Proceedings of the 2000 International Symposium on Symbolic and Algebraic
Computation, Saint Andrews, Scotland. ACM Press, New York, Aug. 2000.

32. G. Villard. A study of Coppersmith’s block Wiedemann algorithm using matrix polynomials. Technical
Report 975–IM, LMC/IMAG, Apr. 1997.

33. W. D. Wallis, A. P. Street, and J. S. Wallis. Combinatorics: Room Squares, Sum-Free Sets, Hadamard
Matrices, volume 292 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1972.

34. D. H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions on Information
Theory, 32(1):54–62, Jan. 1986.

35. M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal on Algebraic and Discrete
Methods, 2(1):77–79, Mar. 1981.

36. R. Zippel. Effective Polynomial Computation, chapter Zero Equivalence Testing, pages 189–206. Kluwer
Academic Publishers, 1993.

37. Z. Zlatev. Computational Methods for General Sparse Matrices, chapter Pivotal Strategies for Gaussian
Elimination, pages 67–86. Kluwer Academic Publishers, Norwell, MA, 1992.

