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Abstract

This paper studies the scheduling of jobs of di�erent families on parallel machines, where
not all machines are quali�ed (eligible) to process all job families. Originating from se-
miconductor manufacturing, an important constraint imposes that the time between the
processing of two consecutive jobs of the same family on a machine does not exceed a given
time limit. Otherwise, the machine becomes disquali�ed for this family. The goal is to mi-
nimize both the �ow time and the number of disquali�cations of job families on machines.
To solve this problem, an integer linear programming model and a constraint program-
ming model are proposed, as well as two improvement procedures of existing heuristics:
A Recursive Heuristic and a Simulated Annealing algorithm. Numerical experiments on
randomly generated instances compare the performances of each method.

Keywords: Scheduling, Parallel Machines, Time Constraints, Machine Quali�cations,
Constraint Programming, Integer Programming, Heuristics

1. Introduction

Nowadays, process industries are facing numerous challenges that are induced by con-
tinuous market changes, uncertainty in the demand, aggressive competition and recently
more complex manufacturing technologies. These challenges require companies to conti-
nuously improve their production management and control to remain economically via-
ble. To do so, several authors, such as Dauzère-Pérès and Lasserre (2002) and Gaudreault
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et al. (2011), point out the importance of integrating operational scheduling decisions with
tactical planning decisions. More recently, Yugma et al. (2015) show the opportunities re-
lated to integrating scheduling and process control in semiconductor manufacturing. This
paper tackles a problem in this latter context, by integrating process control constraints
when optimizing scheduling decisions.

The semiconductor industry is probably the most complex industry. Typical charac-
teristics of semiconductor fabrication facilities include numerous products, each requiring
hundreds of operations on hundreds of machines in di�erent workshops. Scheduling all
jobs in a semiconductor manufacturing facility is so complex that the problem needs to
be decomposed, i.e. jobs are scheduled in each workshop separately (see Moench et al.
(2011)). Still, in a workshop performing the same type of operations, machines are often
not identical, i.e. a machine can usually process a limited number of job families. For
instance, Yugma et al. (2012) and Jung et al. (2014), and more recently Knopp et al.
(2017), consider scheduling problems in the cleaning and di�usion workshop, while Ro-
tondo et al. (2015) consider the scheduling of jobs on wet-etch tools. Because it contains
the most expensive machines, a critical workshop in wafer manufacturing facilities is the
photolithography workshop. Scheduling approaches for this workshop have been proposed
for instance in Cakici and Mason (2007) and Bitar et al. (2016).

Advanced Process Control (APC) aims at controlling machines and processes to en-
sure product quality, mainly by reducing variability. APC is usually associated with
the combination of Statistical Process Control (SPC), Fault Detection and Classi�cation
(FDC), Run to Run (R2R) control, and more recently Virtual Metrology (VM) (see for
instance Moyne et al. (2000)). Although usually studied separately, scheduling and APC
are actually often related in semiconductor manufacturing (Yugma et al., 2015). In this
paper, we are considering constraints induced by R2R controllers in scheduling decisions,
and more speci�cally a maximum time constraint between two jobs of the same family
to be processed on a machine. As shown in the survey paper of Tan et al. (2015), R2R
control is becoming critical in high-mix semiconductor manufacturing processes.

A R2R controller is often associated with each machine and each job family, and uses
data from past process runs to adjust the settings of the machine for the next run (see
for example Musacchio et al. (1997) or Jedidi et al. (2011)). In order to keep the R2R
parameters updated and valid, a R2R controller should regularly receive data. Hence, as
presented in Obeid et al. (2014), an additional time constraint is de�ned on the scheduling
problem to impose that the execution of two jobs of the same family lies within a given
time interval on the same (quali�ed) machine. The value of this time threshold depends on
several criteria such as the process type (critical or not) and the machine type. If this time
constraint between two jobs of the same family is not satis�ed, a quali�cation procedure
is required for the machine to be able to process again the job family. This procedure
ensures that the machine works within a speci�ed tolerance and is usually time-consuming.
In this paper, we assume that quali�cation procedures are not scheduled either because
the scheduling horizon is not su�ciently long or because quali�cation procedures have to
be manually performed and/or validated by process engineers. Therefore, maintaining
machine quali�cations as long as possible is crucial. More precisely, it is important to
have as many remaining machine quali�cations as possible at the end of the schedule, so
that future jobs can also be scheduled. Note that de�ning the right quali�cations of job
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families to machines, studied for instance in Johnzén et al. (2011) and Rowshannahad
et al. (2015), is outside the scope of this paper. We assume that the current set of
quali�cations are the ones that should be maintained for current and future short-term
production mixes (i.e. number of jobs of each family). An extension of the approaches
proposed in this paper would consist in not penalizing losses of the current quali�cations
that become unnecessary.

It is also important to note that the time constraints considered in this paper are
di�erent from the time constraints, also called time windows or maximum time lags,
studied for instance in Wu et al. (2010), Klemmt and Moench (2012) and Sadeghi et al.
(2015). In this latter case, the maximum time to satisfy is between two operations, usually
performed on di�erent machines, in the route (sequence of operations) of a job and not
between two jobs on the same machine as it is the case in our problem.

To our knowledge, there are few articles dealing with scheduling decisions while inte-
grating R2R constraints. Li and Qiao (2008) and Cai et al. (2011) study related problems,
except that they allow quali�cation procedures to be performed, the number or the type
of machines is di�erent and the threshold is expressed in number of jobs instead of in
time. The scheduling problem addressed in this paper has been studied in Obeid et al.
(2014), where two Integer Linear Programs (IP1 and IP2) and two constructive heuris-
tics are proposed. In this paper, the objective remains the same, i.e. to schedule jobs on
non-identical parallel machines while satisfying time constraints and optimizing both the
sum of completion times and the number of quali�cation losses. To solve this problem,
we �rst propose a new Integer Linear Program IP3 that solves larger instances than IP1
and better models time constraints. Then, a CP model is presented to also solve exactly
the problem. Finally, two heuristics are introduced that improve the solutions obtained
in Obeid et al. (2014).

The paper is organized as follows. In Section 2, a more formal description of the
problem is given. Section 3 is dedicated to exact methods. The new ILP is �rst introduced,
and then the constraint programming model. Section 4 presents a Recursive Heuristic and
a Simulated Annealing algorithm. Section 5 provides and discusses experimental results.
Finally, conclusions and perspectives for future research are given in Section 6.

2. Problem description

The problem description and notations are taken from Obeid et al. (2014). This
problem takes as input a set of jobs, N = {1, . . . , N}, belonging to di�erent families, and
a set of machines,M = {1, . . . ,M}. The set of job families is denoted by F , and f(i) is
the family of job i. A machine m ∈ M can process a limited number of job families. If
m can process family f , m is said to be �quali�ed� (eligible) for f , andM(f) denotes the
subset of machines quali�ed for f .

Each family f is associated with a number nf of jobs to process, a processing time pf
needed to process a job of family f , a setup time sf and a time threshold γf . Between
two jobs of the same family, no setup time is required. The time threshold γf is used to
model time constraints, i.e. γf is the maximum time interval between two jobs of f on a
machine m to avoid losing the quali�cation of f on m. This time threshold is considered
on a start-to-start basis, i.e. the threshold is counted from the start of a job of family f
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to the start of the next job of f on machine m. If the constraint is not satis�ed at time
t, machine m becomes disquali�ed for family f and is no longer available to process jobs
of f (see Example 2.1).

Example 2.1. Figure 1 illustrates time constraints. In Figures (1a) and (1b), a job of a

given family is started during the time interval corresponding to its family, and hence the

machine remains quali�ed to process jobs of the same family for another time interval.

Figure (1c) represents the situation where a machine is no longer quali�ed to process a

job family because no job of the family is scheduled during the considered time interval.

Job Job

(a) Time threshold respected.

Job Job

(b) Time threshold respected.

Job Job

(c) Time threshold violated: The machine can

no longer schedule jobs of this family.

Figure 1: Illustration of time constraints.

The objective is to minimize both the sum of the completion times of jobs and the
number of machine disquali�cations. The objective considered through the paper is the
weighted sum of both objectives with parameters α, for the sum of completion times, and
β, for the number of machine disquali�cations.

At least two reasons are motivating the minimization of the number of machine disqua-
li�cations. First, scheduling problems are usually solved in a rolling horizon setting, and
it is thus interesting to preserve machine quali�cations for future jobs, in particular if the
scheduling horizon is relatively short. Second, the decision of qualifying a job family on
a machine is often taken by process engineers once the machine quali�cation is lost. And
quali�cation decisions are taken periodically by process engineers and not dynamically.
Hence, again, it is relevant to preserve machine quali�cations to avoid losing them for
an extended period of time. As discussed in the perspectives in Section 6, considering
automatic machine re-quali�cations when scheduling lots is a future research topic.

The problem is de�ned as Scheduling Problem with Time Constraints (PTC). It
is important to notice that minimizing the sum of completion times for all jobs and
minimizing the number of machine disquali�cations are two con�icting criteria. Indeed,
to maintain machine quali�cations, one needs to regularly change the job family scheduled
on machines, resulting in numerous setup times and then to a large value of the completion
time. This assertion is illustrated in Section 5.

3. Exact Methods

This section starts by brie�y recalling the two Integer Linear Programs ((IP1) and
(IP2)) presented in Obeid et al. (2014). Then, an improved Integer Linear Program
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(IP3) is presented, and �nally a Constraint Programming model for PTC is detailed.

3.1. Integer Linear Programming

The two models described in Obeid et al. (2014), as well as the model proposed in
this paper, are based on time-indexed variables. The time horizon T is discretized and
let T = {0, . . . , T − 1} be the set of intervals. In such formulation, �nding a good upper
bound on T is therefore crucial. Since PTC considers two objectives that are con�icting,
this bound is not easy to �nd. In the following formulations, the scheduling horizon is
taken as the sum of all processing times, plus the setup time multiplied by the number of
jobs per family. This is an extreme case where all jobs are scheduled on a single machine,
and where a setup time is required for each job, i.e. T =

∑
f∈F nf · (pf + sf ).

The �rst model, (IP1), is a job-based formulation where for each job i ∈ N , for each
time t ∈ T and for each machinem ∈M, a binary variable xmi,t models the start time of job
i. In addition, variable ymf,t is de�ned to model machine disquali�cations, i.e. ymf,t is equal
to 1 if and only if machine m is disquali�ed for family f at time t. Unfortunately, this
model can only solve small size instances and poorly considers time constraints. Indeed,
the model forces one and only one job of a family f to be scheduled in ]t−γf , t]. However,
in our problem, at least one job of f should be processed in ]t− γf , t] but several jobs of
f can be scheduled in this time interval.

To solve larger instances, a new model, called (IP2), is introduced in Obeid et al.
(2014). This formulation uses the fact that all jobs in a family can be interchanged in
an optimal solution. Thus, to model the job start times, a binary variable xmf,t is used to
model the start time of jobs of family f . That is, xmf,t is equal to 1 if and only if a job of
family f starts at time t on machine m. With this model, larger instances can be solved
but time constraints are still not modeled appropriately.

Indeed, in (IP2), the number of disquali�cations depends on the time horizon T and
on the makespan Cmax. One of the main consequences is that, with this modeling, a
machine can lose its quali�cation after Cmax, i.e. the maximum completion time of all
jobs. Thus, the solution determined by (IP2) may not be realistic.

Example 3.1. In Figure 2, the dashed part corresponds to the scheduled jobs. Hence,

Cmax is the maximum completion time of all jobs. Furthermore, T is an upper bound on

Cmax and can be pretty far from it. In this �gure, a job family f with a time threshold

smaller than T − Cmax is disquali�ed in (IP2).

Cmax T

Machine disquali�ca-

tions in this interval

Figure 2: Illustration of machine quali�cation lost in [Cmax, T ].
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The main goal of the new model (IP3) is to tackle the previous issue. This is done by
introducing a new binary variable Y m

f , which models the fact that machine m is disquali-
�ed for family f at the end of the schedule, i.e. Cmax. Hence, Y

m
f is now penalized in the

objective function instead of ymf,t in (IP2). New constraints are also added (Constraints
(8) below) to ensure that Y m

f is equal to 1 if m is disquali�ed for f at Cmax, i.e. if
∃t ∈ {0, . . . , Cmax} such that ymf,t = 1. Note that, if machine m is disquali�ed for family
f after Cmax, then Y

m
f = 0. Note also that the scheduling objective is not to minimize

Cmax. (IP3) is written below:

min. α ·
∑
f∈F

Cf + β ·
∑
f∈F

∑
m∈M

Y mf (1)

∑
m∈M(f)

T−pf∑
t=0

xmf,t = nf ∀f ∈ F (2)

∑
m∈M(f)

T−pf∑
t=0

(t+ pf ) · xmf,t ≤ Cf ∀f ∈ F (3)

ymf,t +

t∑
τ=t−pf+1

xmf,τ ≤ 1 ∀f ∈ F , ∀pf − 1 ≤ t ≤ T − pf , ∀m ∈M(f) (4)

nf · xmf ′,t +

t∑
τ=t−pf−sf′+1

xmf,τ ≤ nf

∀f 6= f ′ ∈ F2, ∀m ∈M(f) ∩M(f ′), ∀pf + s′f − 1 ≤ t ≤ T − pf ′ (5)

ymf,t +

t∑
τ=t−γf+1

xmf,τ ≥ 1 ∀f ∈ F , ∀t ≥ γf ∈ T , ∀m ∈M(f) (6)

ymf,t−1 ≤ ymf,t ∀f ∈ F , ∀t ∈ T \ {0}, ∀m ∈M(f) (7)

ymf,t−1 − 1 +
1

M · (T − t)
∑
f ′∈F

T−1∑
τ=t−p

f
′

∑
m′∈M(f ′)

xm
′

f ′,τ ≤ Y mf

∀t ∈ T \ {0}, ∀f ∈ F , ∀m ∈M(f) (8)

xmf,t ∈ {0, 1} ∀t ∈ T ,∀f ∈ F , ∀m ∈M(f) (9)

ymf,t ∈ {0, 1} ∀t ∈ T ,∀f ∈ F , ∀m ∈M(f) (10)

Y mf ∈ {0, 1} ∀f ∈ F , ∀m ∈M(f) (11)

In this formulation, the objective function (1) is the weighted sum of the sum of
completion times, i.e.

∑
f∈F Cf , and the number of disquali�cations,

∑
f∈F

∑
m∈M(f) Y

m
f .

Note that Cf is the sum of completion times of all jobs in family f and is therefore equal to∑
i∈N ; f(i)=f Ci. In our experiments, di�erent values for parameters α and β are considered

and the results are discussed in Section 5.
Constraints (2) ensure that exactly nf jobs of family f are scheduled. Constraints (3)

are used to determine the sum of completion times of family f . Constraints (4) model both
the fact that the execution of two jobs of the same family cannot occur simultaneously,
i.e.

∑t
τ=t−pf+1 x

m
f,τ ≤ 1 and the fact that a machine has to be quali�ed to process a job,

i.e. ymf,t = 0. Constraints (5) enforce the start of a job of a family f and the start of a
job of family f ′ to be separated by at least pf + s′f , i.e. the processing time of the job
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of f plus the setup time for the job of f ′. Constraints (6) make sure that if no jobs of
family f start on machine m during an interval ]t−γf , t], i.e.

∑t
τ=t−γf+1 x

m
f,τ = 0, then m

becomes disquali�ed for family f at time t. Constraints (7) maintain the disquali�cation
of a machine once it becomes disquali�ed.

Finally, Constraints (8) are the main di�erence between the model presented in this
paper and (IP2) in Obeid et al. (2014). These constraints prevent the number of disqua-
li�cations to depend on the scheduling horizon T . The constraints ensure that it is no
longer necessary to maintain a quali�cation on machine m if no job is started on any
machine in the remainder of the horizon, i.e. 1

M ·(T−t)
∑

f ′∈F
∑T−1

τ=t−p
f
′

∑
m′∈M(f ′) x

m′

f ′,τ = 0.

3.2. Constraint Programming

Traditionally, scheduling problems have been tackled with various approaches. In
the last 20 years, some methods based on arti�cial intelligence techniques have been
successfully used to deal with di�erent classes of scheduling problems, and in particular
Constraint Satisfaction (CS) (Brailsford et al., 1999). The implementation of algorithms
able to solve CS problems is known as Constraint Programming (Van Hentenryck, 1999).
CP is able to address optimization problems since they can be expressed as a sequence of
CS problems.

To date, there are several CP approaches that have been successfully employed to
tackle scheduling problems in manufacturing environments, such as batch plants (see Jain
and Grossmann (2001) and Maravelias and Grossmann (2004)). This section describes a
CP model set up to solve PTC. First, the variables of the model are introduced and then
the problem constraints are presented in detail.

In the CP model, the following set of variables are used:

• masterJobi, ∀i ∈ N : Interval variables that represent the jobs to schedule. Each va-
riablemasterJobi has a size pf(i) and its domain is dom(masterJobi) = {[s, e)|[s, e) ⊆
[0, T ), s+ pf(i) = e}.

• altJobsmi, ∀m ∈ M; ∀i s.t. m ∈ M(f(i)): Optional interval variables that model
the di�erent execution modes of a job (the di�erent machines on which it can be
scheduled). More precisely, such a variable is created for each machine m and for
each job i that can be executed on m. In the �nal solution, only one variable
altJobsmi is present for a job i and corresponds to the machine on which the job
is scheduled. The domain of these variable is dom(altJobsmi) = {[s, e)|[s, e) ⊆
[0, T ), s+ pf(i) = e}.

• disqualiffm, ∀f ∈ F ; ∀m ∈ M(f): Optional interval variables of size 0 that
are used to model machine disquali�cations. If the interval variable disqualiffm is
present in the �nal solution, then machine m becomes disquali�ed for processing
jobs of family f . The start time of the variable corresponds to the time at which
the machine becomes disquali�ed.

• Cmax: An integer variable that represents the end of the schedule. Its domain is
dom(Cmax) = {0, . . . , T}.
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The problem constraints are then presented one-by-one. The �rst set of constraints
concerns the assignment of jobs to machines. Alternative constraints are used to model
these features. Constraint alternative(A, {a1, . . . , an}) models an exclusive alternative
between {a0, . . . , an}. If time-interval A is executed, then exactly one of the time-intervals
{a0, . . . , an} is executed and A starts and ends together with the selected time interval.
Applying this constraint to our problem:

alternative(masterJobi, {altJobsmi | m ∈M(f(i))}), ∀i ∈ N (12)

To model the setup time, noOverlap constraints are used. This constraint ensures that
the execution of several interval variables do not overlap. It can also handle the setup time.

Let S be the matrix of setup times of the problem, i.e. (Sf ′,f ) =

{
0 if f = f ′,
sf otherwise.

Then, the following noOverlap constraint makes sure that, for all pairs of jobs (i, j) s.t.
both can be scheduled onm, either the start of altJobsmj occurs after the end of altJobsmj
plus sf(j) or the opposite:

noOverlap({altJobsmi | i s.t m ∈M(f(i))} , S), ∀m ∈M (13)

The next set of constraints ensure that all jobs are scheduled before Cmax:

endOf(masterJobi) ≤ Cmax, ∀i ∈ N (14)

Finally, three sets of constraints are added to model machine disquali�cations. The
�rst set guarantees that once a machine m is disquali�ed for a certain family f , no job of
family f is scheduled on m. In other words, if the interval variable disqualiffm is present
in the solution, then there is no job of family f on m after disqualiffm.

startOf(altJobsim) + γf(i) ≤ startOf(disqualiff(i)m),

∀i ∈ N , ∀m ∈M(f(i)) (15)

The second constraint set enforces a machine to become disquali�ed if there is no job
of family f scheduled on the machine during an interval of duration γf . More precisely,
if a job of family f is scheduled on machine m, then either another job of f is scheduled
in the next γf units of time or machine m becomes disquali�ed for family f . There is
another case to consider which is the case where the job of family f is executed at �the
end� of the schedule and then the disquali�cation occurs after the makespan. In this
case, the machine does not become disquali�ed. Given a machine m and a job i, let
tmi = startOf(altJobsmi) + γf(i).

presenceOf(altJobsmi)⇒

 ∨
i′ 6=i ; f(i)=f(i′)

(startOf(altJobsmi′) ≤ tmi)

∨
(
startOf(disqualiff(i)m) = tmi

)
∨ (Cmax ≤ tmi) , ∀i ∈ N , ∀m ∈M(f(i)) (16)
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The last set of constraints imposes that if there is no job of family f scheduled on a
quali�ed machine, then the machine becomes disquali�ed.

 ∨
i∈N ; f(i)=f

(startOf(altJobsmi) ≤ γf )

 ∨ (startOf(disqualiff(i)m) = γf
)
∨

(Cmax ≤ γf ) , ∀f ∈ F ,∀m ∈M(f) (17)

In our model, an additional constraint set is used to order the start time of jobs in the
same family. Those ordering constraints are not mandatory but break some symmetries
in the initial model.∧

j>i ; f(i)=f(j)

(startOf(masterJobi) < startOf(masterJobj)) , ∀i ∈ N (18)

The objective of the CP model is to minimize both the sum of completion times,
i.e. sum of endOf(masterJobi)), and the number of disquali�cations, i.e. the number
of interval variables disqualiffm in the solution. When either the �rst objective or the
second objective is prioritized, experiments have been conducted to compare the use of
the weighted sum of both objectives and of a lexicographical order. They show that
the model, as this is the case for CP in general, does not perform well when combining
objectives in a weighted sum. Therefore, in Section 5 and because one of the objectives
is always prioritized, only results with a lexicographical order are presented.

4. Heuristics

Two constructive heuristics are presented in Obeid et al. (2014): The Scheduling-
Centric Heuristic (SCH) and the Quali�cation-Centric Heuristic (QCH). SCH tries to
minimize the sum of completion times by minimizing the number of setup times in the
�nal solution, while QCH aims at minimizing the number of machine disquali�cations.
These heuristics are not described in this paper and the reader is referred to Obeid et al.
(2014) for more details.

As constructive heuristics each focusing on one of the criteria, SCH and QCH provide
good solutions but that can still be improved. This section presents two approaches
to improve the solutions provided by SCH and QCH: A Recursive Heuristic (RH) and a
Simulated Annealing (SA) algorithm. RH can be seen as a multi-start algorithm that aims
at diversifying the search while remaining very fast. SA is a standard neighborhood-based
metaheuristic that is known to be e�ective for numerous discrete optimization problems.

4.1. Recursive Heuristic

The general idea of the Recursive Heuristic is to slightly change the instance data to
modify the behavior of the heuristic and explore other solutions. More precisely, consider
a solution s obtained by any of the constructive heuristics (SCH or QCH). In s, although
some machines are becoming disquali�ed in the scheduling horizon, the heuristic tries
as much as possible to maintain these quali�cations, sometimes at the expense of other
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quali�cations. Therefore, if the machine is disquali�ed from the beginning of the schedule,
a better solution may be obtained. This reasoning can be extended to any subset of
disquali�ed machines in s. The pseudo-code for RH is displayed in Algorithm 1.

Algorithm 1: Recursive Heuristic
Data: An instance I of PTC
Result: A solution s for I or NONE if no solution is found
if HEURISTIC(I) found a solution then

s← HEURISTIC(I);
if s.disqualification > 0 then

stopIter ← 2s.disqualification;
cpt = 1;
while cpt ≤ stopIter do
I = DISQUALIFY (I, BINARY (cpt));
s′ ← HEURISTIC(I);
if s′.score < s.score then

s← s′;
cpt = cpt+ 1;

end if

end while

end if

return s
end if

else
return NONE

end if

In the algorithm, the function HEURISTIC returns a solution obtained by a given
heuristic on a given instance. s.disqualification is the number of disquali�cations in
solution s. This number is used as the stopping criterion of the algorithm. The function
BINARY transforms the integer cpt, which is a base-10 number, into the equivalent base-
2 number. This guarantees that all possible combinations of machine disquali�cations are
covered by the algorithm. The score of a solution s.score is based on the minimum of the
sum of disquali�cations prior to the sum of completion times.

Example 4.1. Consider the following instance of PTC:

N = 10,M = {m1,m2}, F = {f1, f2},
M(1) = {1},M(2) = {1, 2},
nf = {5, 5}, pf = {7, 5}, sf = {1, 5}, γf = {27, 24}.

When applying QCH on this instance, the solution in Figure 3 is obtained. The sum

of completion times is equal to 237 and the number of disquali�cations is equal to 2:
Machine 1 becomes disquali�ed for family 2 at time t = 18 + 24 = 42, and Machine 2
becomes disquali�ed for family 2 at time t = 10 + 24 = 34.

In the �rst iteration of the RH procedure, Machine 1 is removed fromM(2), i.e. jobs
of family 2 can no longer be scheduled on Machine 1. Applying QCH on this instance, the

solution in Figure 4 is obtained. The sum of completion times is now equal to 180 and

the number of disquali�cations is equal to 1: Machine 1 becomes disquali�ed for family 2
at time t = 24.
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Figure 3: Example of a solution obtained by QCH before applying RH.
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Figure 4: Example of a solution obtained by RH.

The complexity of the recursive heuristic RH is O(2|D| · (|N ||M ||F |)) (respectively
O(2|D| · (|N |2|M |2))) for SCH (respectively for QCH), with D the number of quali�cation
losses. Note that, for a large number of machine disquali�cations, RH may not be usable
in practice. However, since the number of pairs (machine, family) is not too large in the
considered instances and since one of the criteria is the minimization of the number of
disquali�cations, RH can be used to solve the problem.

4.2. Simulated Annealing algorithm

Simulated Annealing (SA) belongs to the class of randomized local search algorithms
and was developed by Kirkpatrick et al. (1983) to handle hard combinatorial problems.
SA has demonstrated its ability to solve scheduling problems (Teghem, 2002).

The limitations related to exact methods for PTC regarding the maximum number of
jobs, machines and families led to the need for a more �exible method that can deal with
large-scale instances. SA was chosen for this objective.

In a Simulated Annealing algorithm, an initial solution is used to generate a set of
neighbouring solutions, which is considered to �nd a solution which has a better score
than the score of the initial solution. To �nd the optimal or at least an improved solution,
the solution search space needs to be explored e�ectively since the number of solutions
is usually enormous. In SA, this exploration uses two major parameters which are: The
temperature, and the number of iterations at each temperature. Actually, while exploring
the solution space, we may step toward a solution which has a higher score than the
current one. Hence, if the objective function is to minimize a certain criterion, then this
solution should be ignored in a normal case. However, in SA, a worse solution is accepted
with a probability that depends on the temperature. The acceptance of worse solutions
helps to avoid the search to be stuck in a local optimum.

Other parameters of SA such as the cooling factor and the de�nition of a neighbouring
solution are described later in the paper. First, we describe how the neighbourhood of
a solution is generated, which impacts the e�ciency of SA. Based on our preliminary
experiments on neighbourhood structures, two di�erent ways of generating a neighbour
have been selected for our problem:
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• Intra-change insertion of jobs. A job on a given machine is selected from the jth
position and inserted before another job at the ith position on the same machine
(see Figure 5). Note that this move also covers another typical way of generating
neighbours, the Intra-change Swapping, where two jobs are selected randomly and
swapped on the same machine. Intra-change insertion is found to be more �exi-
ble since any swap move may be achieved by two insertions but the inverse is not
true. However, the di�culty in our neighbourhood generation lies in machine qua-
li�cations because some intra-change insertions may lead to an additional loss of
quali�cations and to a non feasible sequence of jobs on a given machine. Thus,
each time an intra-change insertion is performed, the obtained sequence is tested
for feasibility.

i j

(a) Before intra-change move of j.

j i

(b) After intra-change move of j: j is scheduled right before i.

Figure 5: Intra-change insertion.

• Inter-change insertion of jobs. Two job positions i and j are randomly selected on
two di�erent machines m and m′ respectively. Then job j is inserted right before
job i on machine m (see Figure 6). As for the intra-change insertion, the sequence
on both machines should be checked for feasibility. Moreover, in an inter-change
insertion, the problem of machines with no jobs after a move must be considered.
In some situations, there may still only be one job on a machine and an insertion of
this job on another machine leads to a machine with no jobs, thus the machine is not
used at all and the number of machines in this case is decreased by 1. To overcome
this di�culty, we check, each time a move is performed, whether the machine has
strictly more than one job. This guarantees that there is no machine being idle on
the whole scheduling horizon.

m i

m′
j

(a) Before inter-change insertion of j on m: i
is scheduled on m and j on m′.

m
j i

m′

(b) After inter-change insertion of j on m: j is
inserted before i on m.

Figure 6: Inter-change insertion.

In our implementation, 50% of the considered moves are intra-change insertions and
50% are inter-change insertions. Moves are randomly selected according to the uniform
law. If a move is impossible due to a constraint violation, the previous solution is restored
and another move is randomly selected.
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The SA algorithm starts with an initial solution s0 (found either by SCH or QCH in
our case), and then tries to �nd better solutions by searching in the neighbourhood of the
current solution and by applying a stochastic acceptance criterion. When a neighbour
(a new solution s) of s0 is selected, the di�erence ∆c = c(s) − c(s0) (c(.) is the score
obtained with α · (

∑
f∈F Cf ) + β · (

∑
f∈F

∑
m∈M(f) y

m
f,T ) as objective) is calculated. If ∆c

is negative, s has a better score than s0, and the neighbour s replaces the current solution
s0. Otherwise, the neighbour s is accepted with a probability based on the Boltzmann
distribution Paccept(∆f) = exp(∆f/kT ), where k is a constant and the temperature T is
a control parameter.

The main idea is to start with a �high� initial temperature To and then to decrease it
step by step. In our implementation, we start with an initial temperature T0 = 20, 000
and this temperature is gradually lowered following a geometrical function g(T ) = δT
with δ = 0.95.

Two other parameters need to be de�ned:

• The number of iterations at each temperature, Niter = 50.

• A stopping criterion for the algorithm, Nstop. The algorithm stops because either
the maximum number of temperature changes or the time limit of 600 seconds are
reached. Parameters such as initial temperature and cooling schedule are taken into
consideration for convergence to ensure that the temperature is su�ciently low when
the stopping rule is satis�ed. Experiments were conducted with di�erent stopping
rules, and 10, 000 temperature changes are used as the stopping criterion.

The pseudo code of the SA algorithm is given in Algorithm 2.

5. Numerical Experiments

Section 5.1 �rst describes the framework used for the experiments. The results obtai-
ned with the exact methods are presented and compared in Section 5.2. Section 5.3
discusses the results of the di�erent heuristics. This section also includes a comparison
between exact methods and heuristics. The impact of the time threshold duration is
analyzed in Sections 5.2 and 5.3.

5.1. Framework

5.1.1. Instance generation

The benchmark instances used to perform our experiments are inspired by the ones
of Obeid et al. (2014): 19 instance sets are generated with di�erent number of jobs (N),
machines (M), families (|F|) and quali�cation schemes. Each of the instance sets is a
group of 30 instances and are generated as follows.

First, we ensure that, at the beginning of the schedule, each family has at least one
machine on which it can be processed and each machine is quali�ed to process at le-
ast one job family. Furthermore, in order to ensure a minimal bias to �nd a solution,
the time thresholds of job families are chosen su�ciently large compared to their asso-
ciated processing times. Indeed, short time thresholds may lead to very quick machine
disquali�cations. Then, it will not be possible to process all jobs before machines become
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Algorithm 2: Simulated Annealing algorithm
Data: An instance I of PTC
Result: A solution s for I or NONE if no solution is found
if HEURISTIC(I) found a solution then

s← HEURISTIC(I);
currentTemp← T0;
repeat

cpt = 0;
repeat

s′ ← NEIGHBOR(s);
∆← c(s′)− c(s);
if ∆ < 0 then

s← s′;
end if

else

s← s′ with probability exp −∆
currentTemp ;

end if

cpt← cpt+ 1;

until cpt = Niter;
currentTemp← g(currentTemp);

until stopping criterion is met Nstop;
return s

end if

else
return NONE

end if

disquali�ed and then the instances will not be feasible. Thus, the initial family/machine
quali�cation scheme is de�ned as follows. The minimum time threshold has to be lar-
ger than the longest processing time, i.e. maxf∈F pf ≤ minf∈F γf . To ensure diversity,
each set of instances contains 10 instances with short time thresholds, 10 with medium
time thresholds and 10 with large time thresholds. Short time thresholds for a family
f are in [pf + pmax + smax + sf , pf + 2 · pmax + smax + sf ], with pmax = maxf∈F pf and
smax = maxf∈F sf . These values correspond respectively to the duration needed to process
one and two jobs of another family than f (see Figure 7). Then, medium time thresholds
lie in [pf + 2 · pmax + smax + sf , pf + 3 · pmax + smax + sf ] and large time thresholds in
[pf + 3 · pmax + smax + sf , pf + 4 · pmax + smax + sf ].

In addition, setup times are not chosen too large so that the risk of disqualifying a
machine due to a setup time insertion is �acceptable�, i.e. maxf∈F sf ≤ minf∈F pf .

Table 1 presents the parameters of the di�erent instance sets. In the �rst column of
Table 1, each instance type is indexed by a corresponding number (No.). These represen-
tative instance types summarize di�erent possibilities of combinations between number of
jobs N (second column), number of machines M (third column) and number of families
|F| (fourth column). The �fth column, max pf , gives the upper bound of the generated
processing times of all families in a given instance (pf ,∀f ∈ F). The maximum possible
sum of machine-family quali�cations M · |F| is given in the sixth column. Finally, the
seventh column provides the initial sum of quali�ed machines for all families f, |M(f)|
of a given instance.
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f f ′ f

pf smax pmax sf

lower bound on γf

(a) Lower bound on time threshold for short time thresholds.

f f ′ f ′ f

pf smax 2 · pmax sf

upper bound on γf

(b) Upper bound on the time threshold for short time thresholds.

Figure 7: Time threshold generation.

No. N M |F| max pf M ∗ |F|
∑
f∈F (|M(f)|)

1 20 3 4 10 12 8
2 20 3 5 10 15 9
3 20 4 2 10 8 6
4 20 4 3 10 12 7
5 20 4 4 10 16 11
6 20 4 5 10 20 13
7 30 3 2 10 6 4
8 30 3 3 10 9 7
9 30 3 4 10 12 8
10 30 3 5 10 15 13
11 30 4 4 10 16 10
12 30 5 5 10 25 14
13 40 3 3 10 9 5
14 50 3 3 10 9 6
15 60 3 4 10 12 9
16 60 3 5 10 15 11
17 70 3 5 10 15 12
18 70 4 4 10 16 9
19 70 4 5 10 20 14

Table 1: Instance type characteristics.
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5.1.2. Con�guration

The experiments are conducted on an Intel Xeon E3-1240 processor of 3.5 GHz with 4
cores and 32 GB with a 64-bit Windows 10 operating system. The ILP model was solved
using CPLEX 12.8 with 2 threads. The CP model was tested using CP Optimizer 12.8.
All heuristics are coded in C++. The time limit for all solution methods is set to 600
seconds.

Exact solution methods (ILP and CP) were tested:

1. While prioritizing the minimization of the sum of completion times, i.e. α = β = 1
and,

2. While prioritizing the minimization of the number of disquali�cations, i.e. α =
1, β = N · T .

The CP model is actually using the lexicographical order to model the priority between
criteria.

The Recursive Heuristic (RH) and the Simulated Annealing (SA) algorithm are tested
with SCH and QCH as constructive heuristics to obtain a �rst feasible solution. The use
of SCH corresponds to prioritizing the sum of completion times, while QCH corresponds
to prioritizing the second objective, i.e. the number of disquali�cations.

5.2. Exact Methods

5.2.1. ILP Results

In�uence of �rst solution. For each of the two objectives being prioritized, the model has
been solved with and without a �rst solution. When the sum of completion times (resp.
the number of disquali�cations) is prioritized, SCH (resp. QCH) is used to give the model
a �rst solution to improve. For the �rst case (priority to the sum of completion times),
the use of SCH has almost no impact on the quality of the solution of ILP and on the
computational time. However, the use of QCH improves the number of instances solved
by (IP3). These results are detailed in Table 2. In this table, the �rst column corresponds
to the instances types. The second and third columns compare the time needed to solve
the instances without (w/o) and with (w/) QCH. The fourth and �fth columns show the
di�erence between the percentage of instances solved, i.e. when at least one solution is
found, and �nally the sixth and seventh columns compare the percentage of instances
solved optimally.

As shown in Table 2 when the number of disquali�cations is prioritized, the use of QCH
improves the performance of (IP3). Indeed, the number of instances solved is larger when
QCH is used to compute a �rst solution. Therefore, in the following, when the sum of
completion times is prioritized, the model alone is used while, when it is the number of
disquali�cations which is prioritized, the model is used with QCH.

Detailed results of (IP3). Tables 3 and 4 present the detailed results obtained by (IP3).
In these tables, the �rst column corresponds to the instances types. The second column
presents the time needed to solve the instance. In this column, either the instances are
solved to optimality or the time limit of 600 seconds has been reached. The third column
details the percentage of solved instances, i.e. when at least one solution not necessarily
optimal is found. The fourth and �fth columns show the objective values. The number
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No.
Time (sec.) %solved %opt.

w/o QCH w/ QCH w/o QCH w/ QCH w/o QCH w/ QCH
1 119.7 120.4 100 100 97 93
2 250.9 265 100 100 77 70
3 15.2 21.2 100 100 100 100
4 43 36.9 100 100 97 100
5 199.5 184.5 100 100 80 77
6 187.1 189.3 100 100 80 77
7 54.3 41.5 100 100 97 97
8 419.5 425.2 100 100 43 43
9 431.2 450.5 100 100 40 40
10 563.7 562 100 100 10 10
11 325.7 323.3 100 100 57 60
12 332.7 326.4 100 100 50 53
13 204.5 202.4 100 100 83 80
14 529.4 530.5 100 100 17 17
15 600 600 93 97 0 0
16 600 600 87 90 0 0
17 600 600 47 83 0 0
18 600 600 87 93 0 0
19 600 600 60 93 0 0

Table 2: In�uence of using QCH to give a �rst feasible solution when optimizing with (IP3) (α = 1, β =
N · T ).

of setup times in the solution is given in the sixth column. Finally, the seventh column
presents the percentage of instances solved optimally.

No. Time (sec.) %solved
∑
f∈F Cf #disqualif. #setups %opt.

1 3.5 100 336 3.47 2.73 100
2 7.8 100 384 4.47 3.17 100
3 1.9 100 336 1.2 0.97 100
4 2.7 100 351 2.23 1.47 100
5 8.3 100 314 2.93 3.57 100
6 9.4 100 268 3.23 3.77 100
7 1.9 100 894 1.73 0.7 100
8 22 100 956 3.9 2.7 100
9 30.5 100 816 4.57 3.53 100
10 147.4 100 743 8.23 4.77 87
11 19.2 100 629 4.8 2.63 100
12 26 100 530 5.9 3.83 100
13 14.9 100 1527 2.73 1.7 100
14 59.1 100 2141 3.73 2.03 97
15 308.3 100 3068 6.3 5.07 63
16 429.4 97 2692 8.38 8 47
17 559.5 73 3567 8.86 11.41 17
18 260.8 97 3490 6.21 3.76 77
19 411.9 93 2616 10.25 7.04 50

Table 3: Model (IP3), (α = β = 1): Minimizing the sum of completion times and the number of
disquali�cations.

The results of Table 3 show that (IP3) can solve instances up to 40 jobs optimally
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when the sum of completion times is prioritized over the sum of disquali�cations. Indeed,
for these instances, the model �nds the optimal solution in less than 30 seconds (except for
one instance type: No. 10). For the instances of larger size (instance types No. 14− 19),
(IP3) �nds solutions for most of the instances but is not able to solve them optimally.

No. Time (sec.) %solved
∑
f∈F Cf #disqualif. #setups %opt.

1 120.4 100 399 0.47 7.17 93
2 265 100 447 1.43 7.37 70
3 21.2 100 365 0.03 2.80 100
4 36.9 100 420 0.20 3.77 100
5 184.5 100 360 0.57 6.27 77
6 189.3 100 305 1 5.97 77
7 41.5 100 1099 0.10 3.70 97
8 425.2 100 1133 0.70 9.53 43
9 450.5 100 970 1.10 10.57 40
10 562 100 901 3.73 15.03 10
11 323.3 100 723 1.17 8.47 60
12 326.4 100 609 2 8.47 53
13 202.4 100 1775 0.27 8.63 80
14 530.5 100 2488 0.90 12.07 17
15 600 97 3639 3.21 23.76 0
16 600 90 3345 5.30 28.44 0
17 600 83 5517 7.28 44.84 0
18 600 93 4252 3.46 20.75 0
19 600 93 3466 7.89 31.32 0

Table 4: Model (IP3). (α = 1, β = N · T ): Minimizing the number of disquali�cations and the sum of
completion times.

When the number of disquali�cations is prioritized (Table 4), the model also solves
instances up to 50 jobs but not optimally. This illustrates that the complexity of the
problem is also based on the chosen objective function, where prioritizing the quali�cation
criterion over the scheduling criterion makes instances more di�cult to solve.

Furthermore, the results for both criteria in both tables show that, when the number of
disquali�cations is prioritized (Table 4), the sum of completion times is not minimized. In
addition, when the sum of completion times is prioritized over the sum of disquali�cations
(Table 3), the results show that the sum of disquali�cations is not minimized. The number
of setups while prioritizing the sum of disquali�cations in Table 4 is larger than the
number of setups in Table 3 for all instances. This is due to the fact that job families
have to change frequently in order to satisfy the time threshold constraints, to minimize∑

f∈F
∑

m∈M(f) y
m
f,T .

In�uence of the time threshold duration. Tables 5 and 6 present the results on some
instance sets according to the time threshold duration. The �rst column corresponds to
the instance types and the second column to the time threshold duration where S (resp.
M and L) stand for short time thresholds (resp. medium and large). The last �ve columns
are similar to Tables 3 and 4.

Table 5 shows that instances with short time thresholds are harder to solve for (IP3)
compared to instances with larger time thresholds, since computational times are larger
and percentages of instances solved to optimality are smaller. This can be explained by
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No. Thres. Time (sec.) %solved
∑
f∈F Cf #disqualif. #setups %opt.

6
L 8.4 100 247 1.1 3.8 100
M 8.8 100 271 2.6 3.7 100
S 16.3 100 287 6 3.7 100

9
L 13 100 771 4 2.8 100
M 36.8 100 795 4.4 3.4 100
S 60.4 100 882 5.5 4.3 100

13
L 7.7 100 1345 2.2 2.2 100
M 23.2 100 1500 3 1 100
S 13.9 100 1735 3 1.9 100

16
L 312.7 100 2598 8.1 6.3 80
M 426.2 100 2349 7.8 7.5 50
S 549.2 90 3176 9.33 10.44 10

19
L 398.5 80 2648 9.75 6 50
M 302.7 100 2462 9.7 7.6 70
S 534.4 100 2744 11.2 7.3 30

Table 5: Model (IP3): In�uence of time threshold duration (α = β = 1).

the fact that instances with short time thresholds are more constrained than instances
with larger time thresholds.

Furthermore, the sum of completion times is almost always smaller for instances with
large time thresholds. This is mainly due to the fact that, for shorter time thresholds,
there are many family changes in the solution. Indeed, these changes are necessary to
maintain machine quali�cations. Therefore, solutions have more setup times and thus
larger completion times.

However, for instance type 19, the best results are obtained on instances with medium
time thresholds. This can be explained by the fact that a model with too many or too
few constraints can be harder to solve.

No. Thres. Time (sec.) %solved
∑
f∈F Cf #disqualif. #setups %opt.

6
L 23.2 100 282 0.3 4.4 100
M 135 100 305 0.6 5.6 80
S 409.6 100 329 2.1 7.9 50

9
L 357.5 100 911 0.3 9.5 60
M 469.7 100 934 0.6 10.4 40
S 524.1 100 1066 2.4 11.8 20

13
L 40.8 100 1422 0 5.8 100
M 253 100 1769 0 10.1 70
S 313.5 100 2134 0.8 10 70

16
L 600 100 3337 5 27.8 0
M 600 100 2996 4.3 29.7 0
S 600 70 3854 7.14 27.57 0

19
L 600 100 3944 8.1 28.1 0
M 600 100 3026 5.9 32.7 0
S 600 80 3416 10.13 33.63 0

Table 6: Model (IP3): In�uence of time threshold duration (α = 1, β = N · T ).

Table 6 shows that, when α = 1 and β = N · T , instances with short time thresholds
are also harder to solve for (IP3). Indeed, for short time thresholds, less instances are
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solved optimally and it takes more time to solve them. Furthermore, the number of
disquali�cations in the �nal solution is larger for instances with short time thresholds.

5.2.2. CP Results

As for (IP3), we investigate the in�uence of using SCH and QCH to compute a �rst
solution to give to the model. When the number of disquali�cations is prioritized (resp.
the sum of completion times), the use of QCH (resp. SCH) has almost no impact on the
performances of the model (similar computational time and number of instances solved
optimally or not). Therefore, SCH and QCH are no longer used in our experiments.

Detailed results of the CP model. Tables 7 and 8 give the detailed results obtained by the
CP model and have almost the same format than Tables 3 and 4 with one extra column.
This column, the third one in the table, shows the time needed by the solver to �nd the
best possible solution. For example, for instance type 1, after 12 seconds, the solver does
not improve the solution.

No. Time (sec.)
Time
best
(sec.)

%solved
∑
f∈F Cf #disqualif. #setups %opt.

1 600 12 100 336 3.53 2.73 0
2 600 22.5 100 384 4.53 3.3 0
3 600 0.7 100 336 1.20 0.97 0
4 600 1.5 100 351 2.23 1.47 0
5 600 5.5 100 314 3.17 3.27 0
6 600 5.3 100 268 3.23 3.67 0
7 600 2.2 100 894 1.73 0.7 0
8 600 22.7 100 958 3.97 2.6 0
9 600 56.1 100 817 4.7 3.57 0
10 600 116.7 93 716 8.18 5.07 0
11 600 53.1 100 630 4.8 2.67 0
12 600 50.5 100 530 6.17 3.83 0
13 600 8.6 100 1527 2.73 1.7 0
14 600 19.9 100 2148 3.8 1.93 0
15 600 92.3 77 2793 6.3 4.87 0
16 600 69 47 2323 8 6.29 0
17 600 71.7 23 2455 8.57 8 0
18 600 70.1 93 3521 6.14 4.32 0
19 600 52.6 57 2777 10.65 6.18 0

Table 7: CP Model: Minimizing the sum of completion times and then the number of disquali�cations.

Table 7 shows that, when priority is given to the sum of completion times, the CP
model is able to �nd a solution for all instances up to 50 jobs (except for instance type
10). It can also solve larger instances but not all the instances. Another remark is that
the model fails at proving the optimality of the solutions. Consequently, it always reaches
the time limit of 600 seconds. However, the quality of the solutions found is good as
shown in Section 5.2.3. Finally, the best solution determined by the solver is found in less
than 120 seconds. Therefore, this model can be used as a heuristic to quickly �nd a good
solution but with no guarantee of optimality.
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No. Time (sec.)
Time
best
(sec.)

%solved
∑
f∈F Cf #disqualif. #setups %opt.

1 270 19.7 100 400 0.47 7.23 63
2 365 2.6 100 452 1.37 7.07 43
3 106 0.4 100 365 0.03 2.8 93
4 124 11.1 100 420 0.2 3.77 83
5 335 14.9 100 367 0.5 6.57 60
6 371 27.2 100 314 0.87 6.23 47
7 325 6.5 100 1047 0.23 2.87 67
8 583 50.8 100 1120 0.67 9.67 3
9 595 35.9 100 949 1.03 10.4 3
10 600 128 87 843 2.65 14.15 0
11 542 7.5 100 724 0.97 8.87 10
12 600 12.9 100 624 1.7 9.43 0
13 538 45.1 100 1678 0.43 7.4 20
14 600 53.2 100 2302 1.43 7 0
15 600 87.8 80 3029 2.63 15.83 0
16 600 109.6 47 2698 3.64 19.21 0
17 600 64 23 3375 4.14 27.29 0
18 600 102.5 90 3729 3.04 10.26 0
19 600 75.4 50 2886 5.67 16.93 0

Table 8: CP Model: Minimizing the number of disquali�cations and the sum of completion times.

Table 8 shows that, when the number of disquali�cations is prioritized, the CP model
is able to solve almost all the instances up to 50 jobs but fails at proving the optima-
lity for most solutions. For larger instances, fewer instances are solved and none of the
solution found is proved optimal. Nevertheless, the quality of solutions is very good (cf.
Section 5.2.3) and the best solutions are found in less than 110 seconds.

In�uence of the time threshold duration. As for (IP3), let us analyze the in�uence of the
time threshold duration on the performances of the model. Tables 9 and 10 present the
results on some instance sets according to the time threshold duration and have the same
format than Tables 5 and 6 with an extra column for the time needed by the solver to
�nd the best solution.

As for (IP3), Tables 9 and 10 show that instances with short time thresholds are
harder to solve, in terms of both solution times and optimality gaps, and have a larger
sum of completion times and a larger number of disquali�cations.

5.2.3. Comparison of exact methods

This section compares the results obtained by the CP model and (IP3). Figure 8a
shows the deviation of the sum of completion times, when this objective is prioritized,
with respect to the best solution found either by the CP model or by (IP3). For (IP3),
if the instances are solved both by the CP model and by (IP3), it is computed as:

100−
100×OBJ IP3

Cf

OBJBESTCf
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No. Thres. Time (sec.)
Time
best
(sec.)

%solved
∑
f∈F Cf #disqualif. #setups %opt.

6
L 600 2.4 100 247 1.1 3.8 0
M 600 1.6 100 271 2.6 3.5 0
S 600 12 100 287 6 3.7 0

9
L 600 40.9 100 771 4 2.8 0
M 600 78.4 100 799 4.5 3.6 0
S 600 49.1 100 882 5.6 4.3 0

13
L 600 3.3 100 1345 2.2 2.2 0
M 600 1.7 100 1500 3 1 0
S 600 20.9 100 1735 3 1.9 0

16
L 600 135.4 70 2381 7.86 7.29 0
M 600 67.9 50 2210 8 5.8 0
S 600 3.6 20 2399 8.5 4 0

19
L 600 71.6 70 2766 9.71 6.71 0
M 600 40.5 50 2376 10.4 7 0
S 600 45.7 50 3192 12.2 4.6 0

Table 9: CP Model: In�uence of time threshold duration (priority on sum of completion times).

No. Thres. Time (sec.)
Time
best
(sec.)

%solved
∑
f∈F Cf #disqualif. #setups %opt.

6
L 261 2.2 100 282 0.3 4.3 70
M 335 16 100 315 0.5 5.9 50
S 516 63.4 100 344 1.8 8.5 20

9
L 584 7.3 100 905 0.3 9.3 10
M 600 14 100 938 0.5 11.1 0
S 600 86.6 100 1004 2.3 10.8 0

13
L 443 0.7 100 1422 0 5.9 50
M 600 49.2 100 1658 0.3 7.8 0
S 572 85.5 100 1954 1 8.5 10

16
L 600 188.1 70 2886 2.86 21.14 0
M 600 97.7 50 2498 3.8 19.2 0
S 600 43 20 2536 6 12.5 0

19
L 600 34 60 2821 3.67 20.83 0
M 600 121.7 50 2637 5.2 17.8 0
S 600 70.5 40 3294 9.25 10 0

Table 10: CP Model: In�uence of time threshold duration (priority on number of disquali�cations).

with OBJ IP3
Cf

the value of
∑

f∈F Cf determined by (IP3) and OBJBESTCf
the best value of∑

f∈F Cf determined by either (IP3) or the CP model. For the CP model, the deviation

is computed with the same formula, replacing OBJ IP3
Cf

by OBJCPCf
. Figure 8b shows

the deviation of the number of disquali�cations, when priority is given to the sum of
completion times, with respect to the best solution found by either the CP model or
(IP3). For (IP3), if the instance is solved by both the CP model and (IP3), it is
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computed as: 
0 if OBJ IP3

Ym
f

= 0

−100×OBJ IP3
Ym
f

if OBJCPYm
f

= 0

100−
100×OBJIP3

Y m
f

OBJBEST
Y m
f

otherwise

with OBJ IP3
Ym
f

the value of
∑

f∈F
∑

m∈M Y m
f determined by (IP3), OBJCPYm

f
the objective

value of
∑

f∈F
∑

m∈M Y m
f determined by the CP model andOBJBESTYm

f
= min

(
OBJ IP3

Ym
f
, OBJCPYm

f

)
.

For the CP model, the deviation is computed with the same formula, exchanging OBJ IP3
Ym
f

with OBJCPYm
f
.
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Figure 8: Deviation of the objective values wrt. the best solution found (α = β = 1).

Figure 8 shows that, when the sum of completion times is prioritized, the CP model
�nds solutions as good as the ones determined by (IP3) for the sum of completion times
for instances with less than 50 jobs. For larger instances, (IP3) �nds better solutions
when considering the sum of completion times, but the solutions found by the CP model
are at most 2% far from the ones determined by (IP3). When considering the number of
disquali�cations, (IP3) almost always �nds better solutions than the CP model (except for
instance types 8 and 16). Therefore, even if the CP model cannot prove the optimality
of the solutions it determines, it can �nd quite good solutions quickly. However, the
solutions of (IP3) are better, but the solutions of the CP model are not so far (3% for the
sum of completion times and 20% for the number of disquali�cations which corresponds
to less than one extra disquali�cation).

Figure 9 shows the deviation of both the number of disquali�cations, when it is prio-
ritized, and the completion time with respect to the best solution found by either the CP
model or (IP3).

Figure 9 shows that, when the number of disquali�cations is prioritized, the best
solutions for the number of disquali�cation are found by the CP model (except for instance
types 7 and 14). This is also true for the sum of completion times for which the CP model
obtains the best results for instances larger than 30 jobs.
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Figure 9: Deviation of the number of disquali�cations wrt. the best solution found (α = 1, β = N · T ).

Therefore, the solution found by the CP model tends to be better than the one deter-
mined by (IP3) when the number of disquali�cations is prioritized. Thus, even if the CP
model is not able to prove the optimality of the solution it determines, it can �nd quite
good solutions quickly.

Figures 8 and 9 show the deviation of the objective value only for instances solved
by both (IP3) and the CP model. Note that, when considering the percentage of solved
instances, (IP3) obtains better results than the CP model. Table 11 compares the number
of solved instances by (IP3) and by the CP model. This table has two parts. In the upper
part, the percentages of solved instances by (IP3) and by the CP model for α = β = 1
are provided. The lower part shows the same data for α = 1 and β = N · T . In both
parts, the �rst line corresponds to the instance type (1− 9 means instance type 1 to 9).
The second line shows the percentage of solved instances by the CP model and the third
line by (IP3).

α = β = 1
type 1-9 10 11-14 15 16 17 18 19
CP 100 93 100 76 46 23 93 56
IP3 100 100 100 100 96 73 96 93

α = 1, β = N · T
type 1-9 10 11-14 15 16 17 18 19
CP 100 86 100 80 46 23 90 50
IP3 100 100 100 96 90 83 93 93

Table 11: Comparison of the percentages of solved instances for (IP3) and CP.

Table 11 shows that, for small instances (up to 50 jobs), (IP3) and the CP model
solve a similar number of instances, with slightly better results for (IP3). However, for
larger instances, the number of instances solved by (IP3) is signi�cantly larger than for
the CP model.
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5.3. Heuristics

Tables 12 and 13 show the impact of the Recursive Heuristic (RH) and the Simulated
Annealing (SA) algorithm on the constructive heuristics presented in Obeid et al. (2014),
SCH and QCH. In these tables, SCH (resp. QCH) denotes the constructive heuristic
used alone to solve the instances, RHSCH (resp. RHQCH) corresponds to the use of RH
together with SCH (resp. QCH) and SASCH (resp. SAQCH) the use of SA and SCH
(resp. QCH). Then, the �rst column corresponds to the instances types. The second
column presents the percentage of instances solved by the heuristics. Note that the use
of RH and SA has no impact on the number of solved instances, i.e. if the constructive
heuristic fails to �nd a solution, then neither RH nor SA solve the instance. Conversely,
if the constructive heuristic �nds a solution, then so do RH and SA. The third, fourth
and �fth columns compare the value of the sum of completion times for SCH/QCH,
RHSCH/RHQCH and SASCH/SAQCH. The sixth, seventh and eighth columns compare
the value of the number of disquali�cations and the last three columns show the di�erent
solution times. The quality of the solutions compared to the ones obtained by exact
methods is discussed in the following paragraph.∑

f∈F Cf #disqualif. Time (sec.)

No %solved SCH RHSCH SASCH SCH RHSCH SASCH SCH RHSCH SASCH
1 97 374 346 342 4.72 4 3.86 0 0 32.3
2 80 430 388 365 5.25 4.63 4.25 0 0 27.5
3 100 378 344 320 2.30 1.40 1.27 0 0 49.8
4 100 398 362 324 2.93 2.47 1.90 0 0 38.3
5 100 358 330 318 4.60 3.77 3.03 0 0 41.2
6 100 318 282 274 5.77 4.60 3.90 0 0 38.8
7 100 998 912 785 2.23 2 1.50 0 0 97
8 90 1060 966 949 4.59 4.04 4 0 0 35.1
9 73 837 773 789 5.86 4.91 4.86 0 0 26.7
10 87 770 718 754 8.50 7.88 8.08 0 0 26.2
11 90 696 613 616 6.78 5.19 5.74 0 0 45.9
12 97 615 547 548 8.93 7.48 7.07 0 0 51.7
13 70 1494 1432 1383 3.48 3.43 3 0 0 38.5
14 73 2196 2047 2080 4.64 3.95 4.18 0 0 46
15 70 2901 2682 2874 6.76 6.33 6.86 0 0 44.2
16 43 2364 2143 2346 8.92 8 9 0 0 23.3
17 30 3374 3193 3365 9.89 8.56 9.89 0 0 21.3
18 63 3691 3258 3527 7.26 6.58 7.32 0 0 52.3
19 60 2759 2508 2742 11.94 11.11 11.33 0 0.1 55.6

Table 12: Impact of RH and SA on SCH.

Table 12 shows that RH and SA signi�cantly improve the performances of SCH. In-
deed, the objective value (sum of completion times as well as the number of disquali�ca-
tions) is reduced by the use of either RH or SA. However, the performances of RH and
SA are not identical. For small instances (types 1 to 8), SA is more e�cient in terms of
objective value improvement than RH. For larger instances, RH becomes more e�cient
than SA. Furthermore, the time needed to solve the instances is larger for SA but does not
exceed 60 seconds. Note also that SCH, and therefore SASCH and RHSCH, fails to �nd
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a feasible solution in some cases. This is due to the fact that SCH focuses on setup time
minimization and therefore sometimes let machine disquali�cation occurs. This implies
that, at some point, there is no machine left to schedule one (or more) job family, and
thus SCH cannot �nd a feasible solution.∑

f∈F Cf #disqualif. Time (sec.)

No %solved QCH RHQCH SAQCH QCH RHQCH SAQCH QCH RHQCH SAQCH
1 97 395 388 393 3.97 2.66 0.45 0 0 32.4
2 87 464 455 408 5.15 3.69 0.88 0 0 29.1
3 100 377 386 331 1.80 1.10 0.07 0 0 50.1
4 100 413 433 344 2.70 2 0.13 0 0 38.2
5 93 371 359 332 4.21 2.32 0.57 0 0 40
6 93 319 303 286 4.96 2.89 1.04 0 0 37.4
7 100 1040 1079 827 1.90 1.40 0.03 0 0 98.8
8 97 1226 1196 1102 3.10 2.07 0.34 0 0 38.1
9 90 1033 971 970 4.70 3.11 0.78 0 0 30.9
10 77 875 835 949 6.35 4.17 2.57 0 0 24.4
11 97 819 769 762 5.59 3.34 1.34 0 0 48.7
12 90 663 642 620 8 5.15 2 0 0 50.5
13 93 1803 1810 1672 2.54 1.86 0.11 0 0 46.6
14 100 2909 2893 2642 3.87 2.37 0.40 0 0 59.1
15 93 3891 3590 3851 5.79 3.79 1.82 0 0 57.3
16 83 3513 3391 3511 7.80 4.56 2.96 0 0 45
17 80 5819 5372 5533 9.33 4.96 4.38 0 0 57
18 90 4604 4255 4371 6.56 4.22 2.04 0 0 74.3
19 87 3737 3574 3778 10.65 5.65 4.58 0 0.1 78.3

Table 13: Impact of RH and SA on QCH.

Table 12 shows that RH and SA also improve the performances of QCH. The number
of disquali�cations (as well as the sum of completion times) is reduced by the use of
either RH or SA. However, the performances in terms of solution quality of SA are better
than the performances of RH for all instances when the number of disquali�cations is
prioritized. Furthermore, the time needed to solve the instances for SA does not exceed
100 seconds. Note also that SCH has more di�culty to �nd a feasible solution than QCH,
since QCH focuses on keeping machines quali�ed.

Comparison with Exact Methods. Table 14 compares the results obtained by the exact
methods ((IP3) and the CP model) with the results obtained by SA and RH. In this
table, the �rst column corresponds to the instances types. The second, third, fourth and
�fth columns compare the computational time needed to solve the instances with the CP
model, (IP3), SA and RH, respectively. The sixth, seventh and eighth columns show
the di�erence between the percentage of solved instances with the CP model, (IP3) and
SA/RH (the number of solved instances is the same for SA and RH), respectively. Finally,
the ninth, tenth, eleventh and twelfth columns present the deviation of the objective value
for SA and RH with respect to the best solution found by either the CP model or (IP3).
The deviation of the sum of completion times for SA is computed as:
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dev
Cf
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100×OBJSACf
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The same deviations are computed for RH, replacing SA by RH in the previous for-

mulas.

Time (sec.) %solved
∑

f∈F Cf
∑

f∈F Cf #disqualif. #disqualif.

No CP IP3 SASCH RHSCH CP IP3 SA/RHSCH SASCH RHSCH SASCH RHSCH
1 600 3.5 32.3 0 100 100 97 -2.3% -2.6% -33.9% -45.9%
2 600 7.8 27.5 0 100 100 80 -1.7% -3.5% -38.9% -40.5%
3 600 1.9 49.8 0 100 100 100 -0.3% -2.7% -41.7% -26.7%
4 600 2.7 38.3 0 100 100 100 -0.2% -3.6% -31.9% -27.2%
5 600 8.3 41.2 0 100 100 100 -3.1% -5.5% -54.3% -60.7%
6 600 9.4 38.8 0 100 100 100 -3.9% -5.8% -58.9% -78.1%
7 600 1.9 97 0 100 100 100 -0.4% -2.5% -26.7% -33.3%
8 600 22 35.1 0 100 100 90 -3.9% -4.2% -44.8% -33.3%
9 600 30.5 26.7 0 100 100 73 -6.2% -3.8% -29% -37%
10 600 147.4 26.2 0 93 100 87 -7.9% -1.8% -14.7% -9.3%
11 600 19.2 45.9 0 100 100 90 -5% -4.1% -45.7% -35%
12 600 26 51.7 0 100 100 97 -6.1% -3.2% -83.4% -133.7%
13 600 14.9 38.5 0 100 100 70 -2.7% -2.9% -37.3% -41.3%
14 600 59.1 46 0 100 100 73 -6.6% -3.9% -31.4% -13.6%
15 600 308.3 44.2 0 77 100 70 -9.6% -2.4% -19.9% -10.2%
16 600 429.4 23.3 0 47 97 43 -12% -2.2% -17.4% -7.3%
17 600 559.5 21.3 0 23 73 30 -7.7% -1.3% -18.3% -4.7%
18 600 260.8 52.3 0 93 97 63 -10% -1.7% -30.2% -14.6%
19 600 411.9 55.6 0.1 57 93 60 -11% -2.2% -20.5% -16.8%

Table 14: Comparison of SASCH and exact methods (α = β = 1).
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Table 14 shows that, when the sum of completion times is prioritized, (IP3) is better
than SA for small instances (up to 50 jobs). Indeed, the computational time needed to
solve the instances is smaller when (IP3) is used. Furthermore, the number of instances
solved is larger with (IP3). Also, the sum of completion times determined by SA is close
to the sum of completion times determined by the exact methods.

When compared to RH, the exact methods can solve more instances but require much
longer computational times than RH. However, the solutions determined by RH are not
optimal and the sum of completion times determined by RH can be 5% larger than the
one determined by the exact methods.

For larger instances, the gap between the solutions of SA and the exact methods
increases with the size of the instances, but this gap decreases for RH when comparing
with the solutions of the exact methods. Furthermore, the time needed to solve the
instances is signi�cantly smaller with SA than with the exact methods, and is even smaller
for RH (less than 0.01 seconds). However, the number of solved instances remains larger
with (IP3).

Table 15 compares the results obtained with the exact methods ((IP3) and the CP
model) with the results obtained with SA. The format of the table is the same than
Table 14 minus the columns corresponding to RH.

Time (sec.) %solved
∑
f∈F Cf #disqualif.

No CP IP3 SAQCH CP IP3 SAQCH SAQCH SAQCH
1 269.6 120.4 32.4 100 100 97 -4.1% -12.1%
2 365.4 265 29.1 100 100 87 -3.6% -14.7%
3 105.8 21.2 50.1 100 100 100 -0.5% -6.7%
4 124.3 36.9 38.2 100 100 100 -1% -10%
5 334.5 184.5 40 100 100 93 -4.4% -33.9%
6 370.7 189.3 37.4 100 100 93 -6.3% -41.7%
7 325.5 41.5 98.8 100 100 100 -0.8% 0%
8 582.6 425.2 38.1 100 100 97 -7.2% -6.9%
9 594.8 450.5 30.9 100 100 90 -12.2% -11.1%
10 600 562 24.4 87 100 77 -19.6% -34.1%
11 542 323.3 48.7 100 100 97 -8.7% -39.1%
12 600 326.4 50.5 100 100 90 -8.4% -56.8%
13 538.3 202.4 46.6 100 100 93 -5.9% 0%
14 600 530.5 59.1 100 100 100 -16.9% -3.3%
15 600 600 57.3 80 97 93 -23.2% -10.7%
16 600 600 45 47 90 83 -18.7% -6%
17 600 600 57 23 83 80 -11.7% 0%
18 600 600 74.3 90 93 90 -18.4% -16%
19 600 600 78.3 50 93 87 -17.9% -8.3%

Table 15: Comparison of SAQCH and exact methods (α = 1, β = N · T ).

Table 15 shows that, when the number of disquali�cations is prioritized (with QCH),
SA performs better than SCH. Indeed, the time needed to solve the instances is almost
always shorter with SA compared to (IP3) or the CP model. This time does not exceed
100 seconds for SA and almost always exceeds 100 seconds with (IP3) and the CP model.
Furthermore, the performances of SA in terms of objective value are very good as well.
Indeed, for some instance types, the number of disquali�cations is as good as the one
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determined by the exact methods. For the other instances, the di�erence is smaller than
60%, which is, in the case of quali�cation losses, a good performance. Finally, the number
of solved instances is slightly smaller with SA than with (IP3), but for large instances
(> 50 jobs), SA solves more instances than the CP model (which provides the best results
for the number of disquali�cations).

In�uence of the time threshold duration. As for exact methods, the in�uence of the time
threshold duration on the performances of SA is analyzed. Tables 16 and 17 have the
same format than Tables 5 and 6. Table 16 shows that the time needed to solve the
instances is smaller for instances with short time thresholds. However, the number of
solved instances is larger when the time thresholds are large because problems are less
constrained than with small time thresholds and thus easier to solve. Table 17 also shows
that the time needed to solved the instances is smaller for instances with short time
thresholds. Furthermore, as for SASCH, the number of solved instances is larger when
the instances have larger time thresholds. This is due to the di�culty of the instances. As
a consequence, the number of disquali�cations is also smaller with larger time thresholds.

No. Thres. Time (sec.) %solved
∑
f∈F Cf #disqualif. #setups

6
L 50 100 250 0.30 7.60
M 40.6 100 280 2.80 7
S 25.9 100 293 8.60 7.30

9
L 46.5 100 809 4.30 9.30
M 26.6 90 800 4.78 9.56
S 7.1 30 693 7 7.33

13
L 76.5 90 1306 2.33 7.89
M 25.9 70 1364 3.43 12.43
S 13.2 50 1549 3.60 12.80

16
L 45.8 80 2482 8.75 12.25
M 24.1 50 2129 9.40 8.60
S � 0 � � �

19
L 77.2 70 3040 10.14 20.86
M 65.8 80 2538 12.13 10.75
S 23.9 30 2593 12 11.33

Table 16: SASCH: In�uence of time threshold duration.

6. Conclusions and perspectives

An original parallel machine scheduling problem was studied where some Advanced
Process Control constraints are integrated: Minimal time constraints between jobs of the
same family to be processed on a quali�ed machine to avoid losing the quali�cation. Two
criteria to minimize are considered: The sum of completion times and the number of
disquali�cations. An integer linear programming model (IP3) and a constraint program-
ming (CP) model were proposed to solve the problem, as well as two heuristics improving
existing constructive heuristics: A Recursive Heuristic (RH) and a Simulated Annealing
(SA) algorithm.

Computational experiments were conducted on randomly generated instances. The
results showed that both (IP3) and the CP model are e�ciently solving the problem.
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No. Thres. Time (sec.) %solved
∑
f∈F Cf #disqualif. #setups

6
L 50 100 251 0 8.30
M 40.5 100 293 0.20 9.50
S 21.6 80 321 3.38 10.38

9
L 47.3 100 939 0 17.40
M 29.6 100 1019 0.50 18.20
S 15.8 70 946 2.29 17.86

13
L 81.6 100 1482 0 14.90
M 36.8 100 1645 0 19.40
S 21.4 80 1941 0.38 23

16
L 61.7 100 3641 1.90 44.70
M 50 100 3390 3.10 44.70
S 23.3 50 3494 4.80 45

19
L 108.5 100 4189 2.90 53.20
M 83.1 100 3394 4.10 51.80
S 43.4 60 3735 8.17 48.83

Table 17: SAQCH: In�uence of time threshold duration.

Indeed, (IP3) allows more instances to be solved optimally but produces on average so-
lutions that are of lower quality than the CP model. This is particularly true when the
number of disquali�cations is the primary criterion. The numerical results also showed
that RH and SA are signi�cantly improving the initial constructive heuristics SCH, priori-
tizing the sum of completion times, and QCH, prioritizing the number of disquali�cations.
RHSCH, respectively SASCH, corresponds to using SCH in RH, respectively SA, while
RHQCH, respectively SAQCH, corresponds to using QCH in RH, respectively SA. When
the sum of completion times is prioritized, SASCH is more e�cient than RHSCH on small
instances (up to 50 jobs) and RHSCH is more e�cient than SASCH on larger instances.
On the opposite, when the number of disquali�cations is prioritized, SAQCH is better
than RHQCH on all instances. The comparison between SA and the exact methods
showed that SASCH and SAQCH are capable of producing good solutions with much
shorter computational times. The numerical experiments also emphasized the di�culty
of solving instances with short time thresholds.

Future research includes developing other neighborhood-based metaheuristics, such
as Tabu Search, population-based metaheuristics, such as Genetic Algorithms, or com-
binations of both types of metaheuristics, such as Genetic Local Search. This could be
particularly relevant when investigating the integration of time constraints to maintain
machine quali�cations in other types of workshops, such as workshops with batching ma-
chines and multiple processing stages. Other criteria will probably have to be considered.
Studying the possible balance between the two criteria considered in this paper is anot-
her interesting research avenue. Finally, following the recent work of Kao et al. (2018),
considering the dynamic status of machines ("equipment health") seems very relevant to
allow a machine to "lose" its quali�cation depending on its status.

Another relevant research perspective consists in scheduling jobs on a longer time
horizon, where lost quali�cations could be automatically recovered after a given quali�-
cation procedure. Quali�cation procedures, requiring time on machines, would then also
be scheduled. From a broader perspective, de�ning the "critical" quali�cations of job fa-
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milies to machines to maintain in a schedule, based on the work on �exibility measures in
Johnzén et al. (2011) and Rowshannahad et al. (2015), should be appealing for production
managers.
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