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GLOBAL JACQUET-LANGLANDS CORRESPONDENCE

FOR DIVISION ALGEBRAS IN CHARACTERISTIC p

A.I.BADULESCU AND PH.ROCHE

Abstract: We prove a full global Jacquet-Langlands correspondence between
GL(n) and division algebras over global fields of non zero characteristic. If D is a
central division algebra of dimension n2 over a global field F of non zero charac-
teristic, we prove that there exists an injective map from the set of automorphic
representations of D× to the set of automorphic square integrable representations
of GLn(F ), compatible at all places with the local Jacquet-Langlands correspon-
dence for unitary representations. We characterize the image of the map. As a
consequence we get multiplicity one and strong multiplicity one theorems for D×.
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1. Introduction

We prove the global Jacquet-Langlands correspondence between GLn over a
global field F of characteristic p and D× where D is a central division algebra of
dimension n2 over F . A corollary is the multiplicity one and strong multiplicity
one theorem for D×. We then answer two questions asked by Laumon, Rapoport
and Stuhler. The first case of full global Jacquet-Langlands correspondence was
proved by Jacquet and Langlands [22], for n = 2. This is a monumental work
which served as an example for all the other proofs so far. By ”full” we mean
that there is no condition on the representations to transfer. Notice that ”partial”
correspondences, say, for automorphic representations which are cuspidal at two
places or so, are very useful, but never imply as a corollary the multiplicity one
theorem for inner forms.
For n = 3 and F of zero characteristic a full global correspondence was proved by

Flath in [17]. Then in zero characteristic for D satisfying the additional condition
that D is a division algebra at every place where it does not split by Vignéras ([39],
never published) and later by Harris and Taylor ([20], Chap. VI). The correspon-
dence for every n and without condition on D is proved in zero characteristic in [9]
and [12] (the first paper assumes that D splits at all infinite places, and in the sec-
ond this condition is dropped). Only some partial cases of the Jacquet-Langlands
correspondences were proved in non zero characteristic, mainly for practical pur-
poses (need to construct a representation doing this or that), for instance in [21],
Appendix 2, and [27].
As far as we know, our result is the first case of full correspondence in non

zero characteristic since [22]. The main ingredients not available in the past were
the local transfer of all unitary representations and a trace formula in non zero
characteristic. Laumon and Lafforgue developed the trace formula in [26] and [23].
The formula is not invariant like the one in [5] so it is more difficult to use. This
explains why we had to confine ourselves here only to the case when the inner
form is a division algebra.
In the second section we recall the local tools we will use. We are very care-

ful to give reference or full arguments for results which are ”well known” in zero
characteristic, but less well known in non zero characteristic. For instance we
work only with functions with support in the regular set (which excludes for ex-
ample elements whose characteristic polynomial is irreducible but not separable).
The submersion theorem of Harish-Chandra allows one to easily transfer these
functions in any characteristic.
In the third section we define the automorphic representations we want to trans-

fer (the discrete series). We use the positive characteristic setting (as in [26] and
[23]) which is slightly different from the one in zero characteristic but we explain
how to switch from one to another. Then we give the precise claim of our main
result.
The fourth section is devoted to the proof. The main ingredient is clearly here

the trace formula of Lafforgue. Without this non trivial result nothing would
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be possible. We show that the geometric side and the spectral side of the trace
formula for GLn take simple form when applied to functions coming from D×.
In the fifth section we give (positive) answer to some questions asked by Laumon,

Rapoport and Stuhler in [27].
The correspondence proved here completes also the proofs of Lubotzky, Samuels

and Vishne in [30] (see their Remark 1.6).
The first named author was partially supported by the ANR 08-BLAN-0259.

2. Local

2.1. Basic facts. Let F be a local field and fix an algebraic closure F̄ of F . Let
D be a central division algebra of dimension d2 over F . Let OD be the ring of
integers of D.
For r any positive integer, we denote GLr(D) the group of invertible elements

of Mr(D). Let B be the subgroup of upper triangular matrices and let standard
parabolic subgroups be the parabolic subgroups containing B. Let ∆ = {1, · · · , r−
1}, (for r = 1,∆ = ∅), to any subset I ⊂ ∆ one associates an ordered partition
rI = (r1, · · · , rk) of r defined by the condition ∆ \ I = {r1, r1 + r2, · · · , r1 + r2 +
... + rk−1}. This map is a bijection between the set of subsets of ∆ and the set
of ordered partitions of r. To any I ⊂ ∆ one associates the subgroup MI(D)
of GLr(D) which is the group of block diagonal invertible matrices with blocks
of size r1, r2, ..., rk (the components of the partition rI) with coefficients in D,
the unipotent sub-group NI(D) which is the group of corresponding upper block
triangular matrices with unit matrices on the diagonal and the associated parabolic
subgroup PI(D) = MI(D)NI(D).The groupsMI(D) will be called standard Levi

subgroups of GLr(D).
If P is associated to rI consisting of a k-tuple we denote |P | := k. There is a

bijection between the set Ps
0 of standard parabolic subgroups of GLr(D), the set

of ordered partition R of r, and the subsets of ∆. If P = PI is a standard parabolic
subgroup of GLr(D) we will denote MP := MI the standard Levi component of
P and NP := NI its unipotent radical. Two important parabolic subgroups are
the one corresponding to I = ∅ and to I = ∆. We have r∅ = (1, 1, ..., 1), P∅ is
the standard minimal parabolic subgroup of GLr(D) and M0 = M∅ is the group
diag(D×, ..., D×). We have r∆ = (r), P∆ = M∆ = GLr(D).
Let K be the maximal compact subgroup GLr(OD) of GLr(D). We endow

GLr(D) with the Haar measure dg such that the volume of K is one, and the
center Z of GLr(D) with the Haar measure such that the volume of Z ∩K is one.
Set now G := GLr(D), A := Mr(D) and n := rd. The theory of central simple

algebras allows one to define the characteristic polynomial Pg for elements g ∈ A in
spite D is non commutative. Pg is a monic polynomial of degree n with coefficients
in F . It is the main tool for transferring conjugacy classes between GLn(F ) and
its inner forms like G.
There are (at least) two ways of defining the characteristic polynomial Pg as we

recall hereafter. For details and proofs see, for example, [34] chap. 16 and 17. It
is known by class field theory that the division algebra D contains an unramified
extension E of F of degree d, with (cyclic) Galois group say Gal(E/F ), and that
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A ⊗F E = Mn(E) (Corollary 13.3 and Proposition 17.10 [34]). This gives an
embedding of A into Mn(E). If g is an element of A, the characteristic polynomial
Pg of the image of g in Mn(E) does not depend on the embedding (by Skolem-
Noether theorem). Also, Pg turns out to be stable by all the elements ofGal(E/F ),
hence Pg ∈ F [X ] and this is the first definition of the characteristic polynomial.
An embedding of A in Mn(E) preserves the minimal polynomial, so we have that
the minimal polynomial of g divides the characteristic polynomial and the roots
of the characteristic polynomial in F̄ are also roots of the minimal polynomial.
The other way of defining Pg is the following: left translation with g in Mr(D)

is an F linear operator L(g) and it has a characteristic polynomial PL(g). It is a
monic polynomial of degree n2. One can prove that this polynomial is always the
power n of a monic polynomial which is, again, Pg.
Let g ∈ G, we say g is elliptic if Pg is irreducible and has simple roots in F̄ .

We say g is regular semisimple if Pg has simple roots in F̄ . Let G̃ be the set
of regular semisimple elements of G, which we familiarly call the regular set. If
g ∈ G̃, then Pg is also the minimal polynomial of g over F . If g, h ∈ G̃, then h
is conjugated to g if and only if Pg = Ph, as showed in the following lemma. Let

OG be the set of conjugacy classes in G, ÕG the set of conjugacy classes of regular
semisimple elements and Õell

G the set of conjugacy classes of elliptic elements.
For k|n, let Xk ⊂ F [X ] be the set of monic polynomials P of degree n with

distinct non zero roots in F̄ and such that, if P =
∏

i Pi is the decomposition of
P in irreducible factors k divides the degree of each Pi.

Lemma 2.1. The map g 7→ Pg is a bijection from ÕG to Xd and from

Õell
G to Xn.

Proof. We prove only the bijection between ÕG and Xd; the bijection between
Õell

G and Xn being obvious.
First we show that g ∈ G̃ implies Pg ∈ Xd. We do it by induction on r. Let

r = 1. Then, if g is regular semisimple, then Pg is irreducible. Indeed, we know
that Pg is also the minimal polynomial of g, and as D is an integral domain,
it has to be irreducible. Now assume r > 1. If Pg is irreducible, the result is
clear. Assume Pg = P1P2 with P1 and P2 non constant. As it is pointed out
in [25], XVII sect. 1, if D′ is the opposite algebra to D and we consider the
left-D′-vector space V := D′r endowed with the canonical basis, then the usual
way of associating a matrix to a linear map in the commutative case yields here
a left-D-linear isomorphism Mr(D) ≃ EndD′V . If g ∈ Mr(D) we denote fg the
associated D′-endomorphism. As Pg(g) = 0, one has Pg(fg) = 0. Now P1 and P2

are mutually prime because Pg has simple roots in F̄ . Write UP1 + V P2 = 1 with
U, V ∈ F [X ]. It is easy to see that, as in the commutative case, U(fg)P1(fg) and
V (fg)P2(fg) are associated non zero projectors which both commute to fg (because
all the coefficients of the polynomials involved are in F ), and yield a non trivial
decomposition of V = V1 ⊕ V2 of V into a direct sum of spaces stable by fg. Base
change implies then that g is conjugated with an element of Mr1(D)×Mr2(D) ⊂
Mr(D), r1 + r2 = r, r1r2 6= 0. We then apply the induction assumption. This
proves Pg ∈ Xd.
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We show now that the map g 7→ Pg is injective. As g ∈ G̃, the subalgebra F [g]
of A generated by g is isomorphic to F [X ]/(Pg) by sending g to the class of X . So,
if g and g′ are such that Pg = P ′

g, there is an isomorphism i : F [g] → F [g′] sending
g to g′. Assume first that Pg is irreducible. Then F [g] is a field and as A is a
simple algebra, the result follows by Skolem-Noether theorem which asserts that i
is conjugation with an element of A. The general case follows then by induction,
as before.
We show the surjectivity. Let first P be an irreducible monic non constant poly-

nomial over F of degree divisible by d. Assume P has simple roots in F̄ . Consider
the extension E := F [X ]/(P ) of F of degree equal to degP . According to [34],
Corollary 13.3, there exists a subfield of MdegP

d
(D) isomorphic to E. So MdegP

d
(D)

contains an element g, such that Pg = P . Moreover g is (invertible and) regular
semisimple by definition. Now pick up any element P of Xd and decompose it
P =

∏
i Pi in irreducible factors. By definition, the degree of each Pi is divisible

by d. For each i, let gi ∈ MdegPi
d

(D) such that Pgi = Pi. Then let g ∈ Mr(D) be

the element in the Levi subgroup
∏

i GLdegPi
d

(D) whose blocks are the gi. Then

Pg = P . This proves the surjectivity. �

If g ∈ A (resp. g ∈ G), Ag (resp. Gg) will be the centralizer of g in A (resp. in

G). If g ∈ G̃, then X̄ 7→ g is an embedding of F [X ]/(Pg) in A with image Ag. Gg

is a maximal torus of G, isomorphic to the group A×
g of invertible elements of Ag.

The set G̃g of regular semisimple elements of Gg is a dense subset of Gg. In the
following we will use the lemma:

Lemma 2.2. Let g ∈ G̃ and fix a Haar measure on Gg. Let i be a

continuous automorphism of Gg such that, for all h ∈ G̃g, i(h) has the
same characteristic polynomial as h. Then i is measure preserving.

Proof. If i is conjugation by an element of G this comes from the fact that the
Weyl group is finite, the Haar measure is unique up to a scalar in R×

+ and a finite
subgroup of R×

+ is trivial.
In the general case, as g is regular semisimple, i(g) is conjugated to g. So

composing i with the appropriate conjugation, which is measure preserving, one
may then assume that i(g) = g. Now there is an open neighborhood V of g in
Gg such that all the elements of V are regular semisimple, and not conjugated to
each other ([18] for example). The map g 7→ Pg is so injective on V . Then i−1(V )
has the same property. If W := V ∩ i−1(V ) then W is an open neighborhood
of g, and, as i preserves the characteristic polynomial we have to have i(h) = h
for all h ∈ W . So the restriction of i to an open set is identity and i is measure
preserving. �

2.2. Transfer of orbits. We now change notation in order to fit to the standard
literature in this field: we set A′ := Mr(D), G′ := GLr(D), like before, and
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A := Mn(F ), G := GLn(F ). We identify the centers of G and G′ by the canonical
isomorphism and we call it Z. If d is a positive integer dividing n, we let G̃d be
the set of elements g ∈ G̃ such that Pg ∈ Xd.

We write g ↔ g′ and we say that g corresponds to g′ if g ∈ G̃d, g′ ∈ G̃′ and
Pg = Pg′.

Because ÕG′ is in bijection with Xd and ÕG is in bijection with X1, the inclusion
Xd ⊂ X1 induces an injective map from ÕG′ to ÕG associated to the previous
correspondence.

2.3. Transfer of centralizers. On tori of type Gg, g ∈ G̃, of G we fix Haar mea-
sures such that if two such tori are conjugated then the measures are compatible
with the conjugation. Moreover, if Gg/Z is compact (i.e. g is elliptic), we assume
the measure gives volume one to Gg/Z. This is well defined thanks to the lemma
2.2.
We are going to fix Haar measures on tori G′

g′, g
′ ∈ G̃′, of G′. If g′ ∈ G̃′, let

g ∈ G̃ such that g ↔ g′. Then Pg = Pg′ and we get canonical isomorphisms
Ag ≃ F [X ]/(Pg) ≃ A′

g′ which preserve the characteristic polynomial. Then we get
an isomorphism Gg ≃ G′

g′ (both are isomorphic to (F [X ]/(Pg))
×) and we use this

isomorphism to define a Haar measure on G′
g′ through transfer from Gg. This is

well defined (does not depend of choices) thanks to the lemma 2.2. Moreover, if
G′

g′ and G′
h′ are conjugated then the measures are compatible with the conjugation

and if G′
g′/Z is compact (i.e. g′ is elliptic), the measure gives volume one to G′

g′/Z.

2.4. Transfer of functions. If C is a non empty subset of G, we denote
- 1C the characteristic function of C,
- Ad(G)C the set of all elements of G which are conjugated to an element of C,
- H(C) the set of complex functions on G which are locally constant and has

compact support included in C.
We denote Supp(f) the support of a function f .
If f ∈ H(G), then we define the orbital integral of f in a point g ∈ G̃ by

Φ(f, g) :=

∫

Gg\G

f(x−1gx)dx

where dx is the quotient measure. The integral is convergent ([26] proposition
(4.8.9)). Φ(f, ·) is locally constant on G̃ and stable by conjugation under G. If

f ∈ H(G̃), then we have Supp(Φ(f, ·)) ⊂ Ad(G)Supp(f) ⊂ G̃.
According to the Harish-Chandra submersion theorem [18], every g ∈ G̃ has a

neighborhood V in G̃ such that there is an open compact subgroup Kg of G and a

neighborhood Vg of g in Gg∩G̃ such that the map Kg×Vg → V defined by (k, x) 7→
k−1xk is an isomorphism. We will call such a neighborhood a HC-neighborhood.
Notice that the orbital integral Φ(1V , ·) of the characteristic function of V is a
scalar multiple of 1Ad(G)V . A classical application of Harish-Chandra submersion
theorem is then the following lemma:
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Lemma 2.3. Let C be an open compact subset of G̃. Let Φ : G → C be
a locally constant function stable by conjugation, such that Supp(Φ) ⊂
Ad(G)C. Then Φ is the orbital integral of a function f ∈ H(C).

Proof. Let C = ∪j∈JVj be a covering of C with open sets Vj such that every set

Vj is included in a HC-neighborhood. One may write C =
∐k

i=1 Ui where Ui is
open compact, Φ is constant on Ui and for every i there exists j such that Ui ⊂ Vj

([36], Lemma II.1.1.ii). Then the orbital integral of 1Ui
is constant and non zero on

Ad(G)Ui and so there is a scalar λi such that the orbital integral Φ(λi1Ui
, ·) is equal

to Φ on Ad(G)Ui. The function f :=
∑k

i=1 λi1Ui
has the required property. �

We adopt the same notation with G′ instead of G. The same results are true for
G′. We write f ↔ f ′ and say that f corresponds to f ′ if f ∈ H(G̃d), f ′ ∈ H(G̃′),
and we have
- Φ(f, g) = Φ(f ′, g′), ∀g ∈ G̃, ∀g′ ∈ G̃, g ↔ g′,

- Φ(f, g) = 0 if g ∈ G̃\G̃d.
A consequence of the lemma 2.3 is the following:

Proposition 2.4. (a) If f ∈ H(G̃d), then there exists f ′ ∈ H(G̃′) such
that f ↔ f ′.

(b) If f ′ ∈ H(G̃′) then there exists f ∈ H(G̃d) such that f ↔ f ′.

2.5. Transfer of unitary representations. If π is a smooth irreducible repre-
sentation and f ∈ H(G), one defines the finite rank operator π(f) by the usual
formula π(f) :=

∫
G
f(g)π(g)dg. If π and π′ are isomorphic, then trπ(f) = trπ′(f).

Let Irr(G) be the set of isomorphy classes of smooth irreducible representations
of G and Irru(G) the subset of unitarizable (classes of) representations. Harish-
Chandra ([18]) attached to the smooth irreducible representation π its character
χπ, defined in any characteristic, which verifies:
- χπ is a locally constant function from G̃ to C, which is stable by conjugation
- if f ∈ H(G̃), then for every representation σ in the isomorphy class of π one

has trσ(f) =
∫
G̃
f(g)χπ(g)dg

(original result by Harish-Chandra [19]; see also [14] and [31]).
This holds also for G′, and we define Irr(G′), Irru(G

′) and χπ for π ∈ Irr(G′)
in the same way.
Harish-Chandra ([19]) proved, when the characteristic of F is zero, that trσ(f) =∫

G̃
f(g)χπ(g)dg for any f ∈ H(G) (see also [14]) (resp. f ∈ H(G′)). This was also

proved to hold for G ([28]) and G′ ([10], [29]) when the characteristic of F is
positive.
We will frequently identify irreducible representations with their class in Irr(G)

when using notions which are invariant under isomorphism. Let Irrdu(G) be the set

of representations of π ∈ Irru(G) such that the restriction of χπ to G̃d is not null.
We have the following theorem, proved in [11], which is a local Jacquet-Langlands
transfer in positive characteristic for all irreducible unitary representations gener-
alizing [15]:
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Theorem 2.5. There is a unique map LJ : Irrdu(G) → Irru(G
′) such

that, for every π ∈ Irrdu(G) there exist ε(π) ∈ {−1, 1} such that

χπ(g) = ε(π)χLJ(π)(g
′)

for all g ↔ g′.

In general, the map LJ is neither injective nor surjective.

3. Main result

3.1. Basic facts. Let F be a global field of characteristic p i.e. a finite extension
of the field of fractions Fp(X). Fix an algebraic closure F̄ of F . For each place v
of F , let Fv be the completion of F at v, Ov be the ring of integers of Fv, and fix
once for all an algebraic closure F̄v of Fv.
Let D a central division algebra over F of dimension n2. We set A = D, and

for each place v of F let Av := D ⊗F Fv. Av is a central simple algebra over
Fv and by Wedderburn theorem Av ≃ Mnv

(Dv) for some positive integer nv and
some central division algebra Dv of dimension d2v over Fv such that nvdv = n. We
will fix once and for all an isomorphism and identify these two algebras. We will
denote O′

v the ring of integers of Dv.
We say that D splits at a place v if dv = 1. The set V of places where D

does not split is finite and it is known by the class field theory that n is the least
common multiple of the dv over all the places v ∈ V .
Let G be the group GLn(F ), and for each place v of F, let Gv be the group

GLn(Fv). Let then Kv be the maximal compact subgroup GLn(Ov) of Gv.
Let G′ be the group D×; for every place v ∈ V , set G′

v = A×
v = GLrv(Dv). Set

then K ′
v := GLrv(O

′
v) a maximal compact subgroup of G′

v. For v /∈ V , we fix once
for all an isomorphism Av ≃ Mn(Fv) and we identify these algebras. Notice that
such an isomorphism is, by Skolem-Noether theorem, unique up to a conjugation
by an invertible element of the algebra. Identify consequently G′

v and Gv and set
K ′

v := Kv.
Let A be the ring of adeles of F and denote G(A) the adelic group of G with

respect to the Kv. We consider G as a subgroup of G(A) by the diagonal embed-
ding. Let Z be the center of G; it is identified with F×, and for each place v, let
Zv be the center of Gv also identified with F×

v . Let Z(A) be the center of G(A),
also identified with the adelic group of Z with respect to open compact subgroups
Kv ∩Zv. Z(A) identifies with the group of ideles A× of F. For every place v of F ,
fix the Haar measure dgv on Gv such that the volume of Kv is one, and dzv on Zv

such that the volume of Zv ∩Kv is one. On G(A) (resp. Z(A)) consider then the
unique product Haar measure dg (resp. dz).
One defines a group morphism deg : A× → Z, as defined page 15 of [23] or Part

II of [26] page 3, by

deg(a) =
∑

v

deg(v)v(av)



GLOBAL JACQUET-LANGLANDS 9

where a = (av)v, κv is the residual field of Fv, deg(v) denotes the dimension of κv

over Fp and the sum is taken over all places v of F.
This morphism is surjective (Lemma 9.1.4 page 3 of [26]). We let a = (av)v ∈ A×

an idele of degree 1. According to the Lemme 1 page 48 of [23], we may assume
that av = 1 outside a finite set of places Ta such that Ta ∩ V = ∅. This is not
essential for the proof, but it highly simplifies computations. Let J := aZ the
subgroup of Z(A) ≃ A× generated by a. It is not a restricted product over all
the places, but may be written as a product JTa

× {1}, where JTa
is a subgroup

of ×v∈Ta
Zv and {1} is to be understood as the trivial subgroup of the restricted

product ×′
v/∈Ta

Zv.
We denote G′(A) the adelic group of G′ with respect to the K ′

v. We consider
G′(F ) as a subgroup of G′(A) by the diagonal embedding.
There are canonical isomorphisms between the center of G and the center of

G′, and, for all place v, between the center of Gv and the center of G′
v, so we

will identify them. The same is true for the center of G(A) and the center of
G′(A) which will be identified. For every place v of F , fix the Haar measure dg′v
on G′

v such that the volume of K ′
v is one. On G′(A) consider then the product

Haar measure dg′. For the places v /∈ V , the identification between Gv and G′
v is

compatible with these choices.

For the theory of parabolic subgroups of G we adopt the same conventions
and notation as in the local case, which are the conventions of [26] for example
∆ = {1, · · · , r − 1}, and to any subset I ⊂ ∆ we associate a standard parabolic
subgroup PI(A), with Levi decomposition PI(A) = MI(A)NI(A) etc.. If P = PI

is a standard parabolic subgroup of GLn(A), we will sometimes write MP := MI

for the Levi component of P and NP := NI for its unipotent radical, P = MPNP .
Same notation over F : PI(F ) etc.. M0 := M∅ is the minimal standard Levi
subgroup made of diagonal matrices of GLn and P0 will denote the finite set of
all parabolic subgroups, standard or not, containing M0. Let P

s
0 be the subset of

P0 made of standard parabolic subgroups. Every P ∈ P0 has a Levi component
which is a standard Levi subgroup, denoted MP . Then, if rI = (r1, ..., rk) is the
partition associated to MP , we define a homomorphism degMP

: MP (A) → Zk by:

degMP
(g) = (deg(det(g1)), ..., deg(det(gk)))

where g = diag(g1, ..., gk) is its block decomposition, (note:we use here the nor-
malization of L.Lafforgue [23] p280).

3.2. Automorphic representations. In this subsection we follow [26] and [23].
We will be concerned with the representation of G(A) acting on the space of
functions on G(F )\G(A)/J by right translation. We endow G(F )\G(A)/J and
G′(F )\G′(A)/J with the quotient measures. According to [23], III.6.Lemme 5,
G′(F )\G′(A)/J is compact, G(F )\G(A)/J has finite measure, and they both have
the same measure. We denote RG the representation of G(A) acting on the space
L2(G(F )\G(A)/J) by right translations.



10 A.I.BADULESCU AND PH.ROCHE

We have a variant, for any parabolic subgroup P ∈ P0 of G, of this representa-
tion which is the representation ofG(A) acting on the space of L2(MP (F )NP (A)\G(A)/J)
by right translation. We denote RP

G this representation. Note that RG
G = RG.

We also need the representations ofMP (A) on the space of L2(MP (F )\MP (A)/J)
which is important for defining the notion of discrete pair.
Let P = MN be a parabolic subgroup of G, ZM the center of M and χ :

ZM(F )\ZM(A)/J → C a smooth character, let K ′ ⊂ K an open subgroup of
K, we denote L2

K ′(M(F )\M(A)/J, χ) the space of (necessarily locally constant)
functions f on M(A)/J with values in C such that:

• f(zm) = χ(z)f(m), ∀z ∈ ZM(A)/J, ∀m ∈ M(A)/J
• f is invariant on the left by M(F )
• f is invariant on the right by K ′ ∩MP (A)
• f is of finite norm in the sense of Lafforgue [23] page 282.

We denote L2
∞(M(F )\M(A)/J, χ) the inductive limit lim

→
L2
K ′(M(F )\M(A)/J, χ).

One therefore obtains a representation RMP ,χ ofMP (A) acting on L2
∞(M(F )\M(A)/J, χ)

by right translation.
An irreducible subrepresentation of RMP ,χ is called a discrete series of M(A).

The subspace of RMP ,χ generated by all irreducible subrepresentations is denoted
L2
∞(M(F )\M(A)/J, χ)disc. The isotypical components of L2

∞(M(F )\M(A)/J, χ)disc
are called the discrete components.
A discrete pair is a couple (P, π) where P ∈ P0 and π a discrete component

of RMP ,χπ
for some central character χπ (which is necessarily the central character

of π).
Every discrete series π of G(A) is isomorphic with a restricted Hilbertian tensor

product of (smooth) irreducible unitary representations πv of the groups Gv as
explained in [16]. Each representation πv is determined by π up to isomorphism
and is called the local component of π at the place v. For almost all places
v, πv has a non zero fixed vector under Kv. We say then πv is spherical.
The same definitions and properties hold for MP (A) and for G′(A).

3.3. Relation with the classical setting. This setting is slightly different from
the classical one ([32] or [1]) and references therein. This is because the quotient
with this subgroup J is very convenient in non zero characteristic. As the corner-
stone of our proof is the Theorem 12, VI.2 from [23], we need this definition. Let us
explain quickly the link with the classical setting: let us say that a discrete series
in the sense of [32] is cctJ if it has central character trivial on J . Then the discrete
series of G(A) as defined here correspond exactly to the cctJ discrete series in the
classical setting. In particular, the multiplicity one theorem holds for G(A) and
our discrete series (not a priori for G′(A) but we will prove it here). The other way
round, a discrete series in the classical setting is always a twist with a character
of a cctJ (following lemma) so proving the Jacquet-Langlands correspondence in
Lafforgue’s setting leads also to the desired result in the classical setting.
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Lemma 3.1. (a) Let χ be a character of F×\Z(A). Then there exists
a character χ′ of G(F )\G(A) (or G(F )\G′(A)), χ′ = psdeg ◦det where s
is a complex number, such that χχ′ is trivial on J .

(b) If π is a discrete series in the sense of [32] with central character
χ, if χ′ is like in (a), then χ′−1 ⊗ π is cctJ.

Proof. (a) We search for s such that χ′(a)χ(a) = 1. Recall deg det(a) = n. Let
z be a n-th root of χ(a). It is enough to chose s ∈ C such that ps = z−1. (b) is
obvious. �

3.4. Claim of the correspondence. If π is a discrete series of G(A), we say π is
D-compatible if the local components of π verify : for all v ∈ V , πv ∈ Irrdvu (Gv).
We will prove the following theorems:

Theorem 3.2. Global Jacquet-Langlands correspondence.

There exists a unique map G from the set of D-compatible discrete
series of G(A) to the set of discrete series of G′(A) such that for all
discrete series π of G(A) if π′ = G(π) then

- LJv(πv) = π′
v for all places v ∈ V , and

- πv = π′
v for all places v /∈ V

where LJv denote the local Langlands-Jacquet correspondence at place
v of theorem 2.5.
The map G is bijective.

Theorem 3.3. Multiplicity one Theorems for G′(A).
(a) If π′ is a discrete series of G′(A), then π′ appears with multiplicity

one in the discrete spectrum (multiplicity one theorem).
(b) If π′, π′′ are discrete series of G′(A) such that π′

v ≃ π′′
v for almost

all place v, then π′ = π′′ as subrepresentations of L2(G′(F )\G′(A)/J)
(strong multiplicity one theorem).

The rest of the paper is devoted to the proof of these theorems. We will work
with the Laumon-Lafforgue trace formula. Then, the lemma 3.1 (b) allows one to
transpose the theorem in the classical setting.

4. The proof

4.1. Transfer of elliptic global orbits. Characteristic polynomials are defined
in the global case like in the local case. [34] does not treat explicitly the global
characteristic p case, but the reader may find it in [40]. If g ∈ D has characteristic
polynomial Pg ∈ F [X ] ⊂ Fv[X ], then Pg is the characteristic polynomial of g as
an element of Av for all v since an embedding D →֒ Mk(F ) uniquely extends to a
continuous embedding Av →֒ Mk(Fv).
We say an element g ∈ G(F ) (resp. g ∈ G′(F )) is elliptic if the characteristic

polynomial of g is irreducible over F and has simple roots in F̄ . Let Õell
G(F ) (resp.

Õell
G′(F )) be the set of elliptic conjugacy classes in G(F ) (resp. G′(F )).
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Let X be the set of monic polynomials P of degree n with coefficients in F such
that P is irreducible over F and has simple roots in F̄ . Let XD be the subset of
polynomials P ∈ X such that for all place v ∈ V , if P =

∏
Pi is the decomposition

in irreducible factors of P over Fv, then for all i the integer dv divides deg Pi.
Then we have

Lemma 4.1. (a) The map g 7→ Pg induces a bijection from Õell
G(F ) to

X.
(b) The map g 7→ Pg induces a bijection from Õell

G′(F ) to XD.

Proof. (b) The fact that the map ÕG′(F ) → XD is well defined, i.e. takes values
in XD, comes from the local analogous result.
The map is injective (this may be proved as in the local case, using the Skolem-

Noether theorem).
The map is surjective: it is consequence of a result of class field theory: Let

P ∈ XD and set L := F [X ]/(P ) which we see as an extension of F . Then L⊗ Fv

is a product of fields, isomorphic to Fv[X ]/(Pi), where Pi are the prime factors
of P over Fv. The condition P ∈ XD implies that the extension L/F verifies the
condition (ii) of Proposition 5, [40] XIII sect. 3, page 253. The equivalence stated
in this proposition between (ii) and (iii) implies that L is isomorphic to a subfield
of D. The element X̄ ∈ F [X ]/(P ) = L is then sent to an element g ∈ D whose
characteristic polynomial is P , as required. This proves the map is surjective.
(a) is now a particular case of (b). The surjectivity in (a), however, is easier to

prove using the companion matrix. �

Let G̃(F )D be the set of g ∈ G(F ) such that Pg ∈ XD. Let Õ
D
G(F ) be the set of

conjugacy classes of G̃(F )D.

4.2. Transfer of global functions. Let H(G(A)) (resp. H(G′(A)) be the set of
functions f : G(A) → C (resp. f : G′(A) → C) such that f is a product f = ⊗vfv
over all places v of F , where fv ∈ H(Gv) (resp. fv ∈ H(G′

v)) for all v, and, for
almost all v, fv is the characteristic function of Kv (resp. of K ′

v). We write then
f = (fv)v.
Let G̃(A)D be the set of elements g ∈ G(A) such that for every place v ∈ V we

have gv ∈ G̃dv
v , which is also the set of elements g ∈ G(A) such that, for all place

v ∈ V , if Pgv =
∏

Pi is the decomposition of the characteristic polynomial of gv in
a product of irreducible polynomials over Fv, then dv divides the degree of every
Pi.
Let H(G̃(A)D) be the subset of H(G(A)) made of functions f = (fv)v ∈

H(G(A)) such that, for all v ∈ V , fv ∈ H(G̃dv
v ). Let H(G̃′(A)) be the set of

functions f ′ = (f ′
v)v ∈ H(G′(A)) such that, for all v ∈ V , fv ∈ H(G̃′

v).

If f = (fv)v ∈ H(G(A)) and f ′ ∈ H(G′(A)), we write f
A
↔ f ′ if f ∈ H(G̃(A)D),

f ′ ∈ H(G̃′(A)) and, for all v ∈ V , fv ↔ f ′
v, and for all v /∈ V , fv = f ′

v. If
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f ∈ H(G̃(A)D), then there exists f ′ ∈ H(G̃′(A)) such that f
A
↔ f ′ and if f ′ ∈

H(G̃′(A)), then there exists f ∈ H(G̃(A)D) such that f
A
↔ f ′. This is a direct

consequence of the local transfer of functions.

Proposition 4.2. If f ∈ H(G̃(A)D), we have

(a) If g ∈ G(A) \ G̃(A)D, then f(g) = 0.
(b) If g ∈ G(A) is conjugated to an element of a standard proper

parabolic subgroup P (A) of G(A), then f(g) = 0.

(c) G(F ) ∩ G̃(A)D = G̃(F )D.

Proof. (a) and (c) are obvious.
(b) Assume P (A) be the standard proper parabolic subgroup of G(A) associated

to the partition (r1, r2, ..., rk). If g ∈ G(A) is conjugated to an element of P (A),
then, for every place v, the characteristic polynomial of g breaks into a product
of polynomials of degrees r1, r2, ..., rk. But there exists a place v0 ∈ V and there
exists i such that dv0 does not divide ri (by class field theory, the least common
multiple of all dv is n). So f(g) = 0 by (a). �

For every o ∈ ÕD
G(F ) fix once and for all an element γo ∈ o. Let Gγo denote

the centralizer of γo in G. The centralizer Gγo(A) of γo in G(A) is the restricted
product of the local centralizers Gv,γo . These local tori are endowed with measures
like in the previous section, and Gγo(A) is endowed with the product measure. For

f ∈ H(G̃(A)) and o ∈ OD
G(F ) we consider the orbital integral

Φ(f ; γo) =

∫

Gγo (A)\G(A)

f(x−1γox) dx

where dx is the quotient measure. Then Φ(f ; γo) is the product of local orbital
integral Φ(fv; γo). We will also have to use orbital integrals Φ(f ; zγo), where z ∈ J .
As J ⊂ Z(A), we have Gγo(A) = Gzγo(A).

For every o′ ∈ ÕG′(F ) fix once and for all an element γo′ ∈ o′. For f ′ ∈ H(G̃′(A))
and γo′ we define the orbital integral Φ(f ′; γo′) in the same way.

4.3. Trace formula in characteristic p. Laumon and Lafforgue developed, fol-
lowing ideas of Arthur, a trace formula in non zero characteristic. In this section
we review the trace formula for G(A) in characteristic p from [23] (our Theorem
4.3). This section is devoted to the definition of the ingredients of the formula (we
show in the next subsection that most of them are null for suitable functions).
Let h : G(A)/J → C be a locally constant function with compact support and

P a parabolic subgroup of G. The convolution operator ϕ 7→ ϕ ∗ h in the space
of square integrable complex functions on MP (F )NP (A)\G(A)/J is the operator
RP

G(ȟ) where ȟ(g) = h(g−1). It is an integral operator with kernel given by:

Kh,P (x, y) =

∫

NP (A)

∑

γ∈MP (F )

h(y−1γnPx)dnP .

We set Kh := Kh,G.
Because the function x 7→ Kh(x, x) is not integrable in general, Arthur defined

a notion of truncated trace as follows.
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We define a∅ = Qr and for i = 1, ..., r− 1 let αi be the linear form on a∅ defined
by αi(h) = hi − hi+1.
If I ⊂ ∆ we denote aI = {x ∈ a∅, αi(x) = 0, ∀i ∈ I}, so a∆ = Q(1, ..., 1). Let rI

be the partition associated to I. The projection aI → Qk, h 7→ (hr1 , hr1+r2 , ..., hr1+r2+...+rk)
is an isomorphism. We denote λi for i = 1, · · · , r−1,the fundamental weights, lin-
ear forms on a∅, vanishing on a∆ and defined by λi(h) = h1+...+hi−

i
r
(h1+...+hr).

For each J ⊂ I ⊂ ∆ we have aJ = aI ⊕ aIJ where aIJ = {h ∈ aJ , h1 + ... + hr =
0, λi(h) = 0, ∀i ∈ ∆ \ I}.
Arthur defines a function τ̂ IJ from a∅ to {0, 1} characteristic function of the cone

aI + {h ∈ a
I
J , λi(h) > 0, ∀i ∈ I \ J}+ a

J
∅ .

If g ∈ G(A) we can write g = n∅m∅k with n∅ ∈ N∅, m∅ ∈ M∅ and k ∈ K. m∅ is
uniquely defined up to multiplication on the right by element of M∅ ∩K.
Therefore one can define a map H∅ : G(A) → a∅, with H∅(g) = degM∅

(m∅).
Let T ∈ a∅, one defines the Arthur truncated diagonal kernel as being the

function on G(A) defined by:

KT
h (x, x) =

∑

P∈Ps
0

(−1)|P |−1
∑

δ∈P (F )\G(F )

Kh,P (δx, δx)1
T
P (δx)

where x ∈ G(A), 1T
P are the functions on G(A) defined by 1T

P (g) = τ̂∆I (H∅(g)−T )
with P = PI , I ⊂ ∆. This is well defined because for fixed x, the sum over δ is
finite (For characteristic zero this was proved by Arthur [4] Lemma 5.1, in positive
characteristic it is the lemma 11.1.1 of [26]).
The Arthur truncated diagonal kernel is a compactly supported function on

G(F )\G(A)/J according to the Proposition 11 page 227 of [23]. Therefore one
can define the truncated trace of RG(ȟ) denoted TrT (h) as being

TrT (h) =

∫

G(F )\G(A)/J

KT
h (x, x)dx.

This is denoted Tr≤p(h) in Lafforgue [23] where p is a polygon defined by T on
page 221.
We now recall the results on the spectral side for general h.
We need some definitions.
Let P ∈ P0, one denotes ΛP the abelian complex Lie group (of dimension |P |−1)

of complex characters χ : MP (A)/J → C× which factorize through the surjective
homomorphism degMP

: MP (A)/J → Z|P |/(r1, ..., r|P |)Z.

As a result each λP ∈ ΛP can be written uniquely as λP (m) = q
∑k

j=1 ρj
deg(mj )

rj

with (ρj) ∈ ×k
j=1C/

2iπ
rj logq

Z and
∑

j
ρj
rj

∈ Z.

We have ΛP = ImΛP × ReΛP where ImΛP (resp . ReΛP ) denotes the Lie
group of unitary characters (resp. of real positive characters). ImΛP is a compact
group, we denote dλP its normalized Haar measure. If λP ∈ ΛP we can canonically
extend λP to a function on P (A) right N(A) -invariant and then to a function
on G(A) right K− invariant using the decomposition G(A) = M(A)N(A)K ([23]
p280).
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If (P, π) is a discrete pair, K ′ ⊂ K an open subgroup, we denote
L2
K ′(MP (F )NP (A)\G(A)/J, π) the space of functions ϕ : MP (F )NP (A)\G(A)/J →

C right invariant byK ′ and such that ∀k ∈ K the function ϕk : MP (F )\MP (A)/J →
C, m 7→ ρP (m)−1ϕ(mk) belongs to the isotypical component π ⊂ L2

∞(MP (F )\MP (A)/J, χπ),
where we have denoted ρP the square root of the modular character of the group
P (A).
We let L2

∞(MP (F )NP (A)\G(A)/J, π) be the inductive limit
lim
→

L2
K ′(MP (F )NP (A)\G(A)/J, π).

One may endow L2
∞(MP (F )NP (A)\G(A)/J, π) with a structure of G(A) repre-

sentation defined by IP (π) = ind
G(A)
P (A)(π ⊗ 1NP (A)).

At this point it is convenient to use the notation of Laumon π(λP ) = π ⊗ λP ,
when (P, π) is a discrete pair and λP ∈ ΛP . Because it is sometimes convenient to
represent IP (π(λP )) in a vector space independent of λP one is led to define the
multiplication operator

[λP ] : L
2
∞(MP (F )NP (A)\G(A)/J, π) → L2

∞(MP (F )NP (A)\G(A)/J, π(λP )),

f 7→ fλP ,

which is a vector space isomorphism (here λP is the function defined on whole
G(A) as explained).
We denote W the Weyl group of GLr(F ), it is isomorphic to the permutation

group Sr, and we fix an inclusion W ⊂ GLr(F ) associating to each permutation
the permutation matrix. If M is a Levi subgroup containing M0, we denote WM =
W ∩M. If M,M ′ are two Levi subgroups containing M0 we denote Hom(M,M ′)
the set of σ ∈ WM ′\W/WM such that σMσ−1 ⊂ M ′. If P, P ′ are two parabolic
subgroups element of P0, we denote Hom(P, P ′) = Hom(MP ,MP ′).
Let (P, π) a discrete pair and σ : P → P ′ an isomorphism, each such σ is

represented by an element w ∈ WM ′
P
\W/WMP

, and to the representation π of
MP (A) one can associate a representation σ(π) of MP ′(A) acting on the space
{ϕ(w−1.w), ϕ ∈ π}. Two discrete pairs (P, π) and (P ′, π′) are said to be equiv-

alent if there exists an isomorphism σ : P → P ′ and a character λP ∈ ΛP such
that π′ = σ(π ⊗ λP ).
Let P, P ′ ∈ P0 satisfying the conditionMP = MP ′, and let ϕ ∈ L2

∞(MP (F )NP (A)\G(A)/J, π).
One defines the function MP ′

P (ϕ, λP ) of g ∈ G(A) a usual by:

MP ′

P (ϕ, λP )(g) = λP ′(g)−1

∫

NP (A)∩NP ′ (A)\NP ′ (A)

dnP ′

dnP,P ′

ϕ(nP ′g)λP (nP ′g)

where we have denoted dnP,P ′ the normalized Haar measure on NP (A) ∩ NP ′(A)

and
dnP ′

dnP,P ′
the quotient measure onNP (A)∩NP ′(A)\NP ′(A), and λP ′ is the function

defined on G(A) extending the character on MP ′(A) = MP (A) defined by λP , for
the precise definitions see [23].
The integral is convergent under some conditions on λP recalled in [23] page 285

and for fixed ϕ, the function λP 7→ MP ′

P (ϕ, λP ) admits a meromorphic continuation
to the whole ΛP .



16 A.I.BADULESCU AND PH.ROCHE

If λP is such that MP ′

P (ϕ, λP ) is well defined, the function g 7→ MP ′

P (ϕ, λP )(g)
belongs to L2(MP ′(F )NP ′(A)\G(A)/J, π′) where (P ′, π′) is the discrete pair de-
fined by π′ = σ(π) with σ associated to an element w of the Weyl group satisfying
MP ′ = wMPw

−1 = MP .
The map [λP ′] ◦MP ′

P (., λP ) ◦ [λP ]
−1 :

L2
∞(MP (F )NP (A)\G(A)/J, π(λP )) → L2

∞(MP ′(F )NP ′(A)\G(A)/J, π′(λP ′))

is an intertwining operator between the representations IP (π ⊗ λP ) and IP ′(π′ ⊗
λP ′).
One defines Fix(P, π) to be the finite set of couples (τ, µP ) where τ is an iso-

morphism τ : P → P and µP ∈ ΛP such that π is isomorphic to τ(π ⊗ µP ), µP

is necessarily unitary. Fix(P, π) can be endowed with a structure of finite group
([23] page 283) defined as follows:

(τ ′, µ′
P )(τ, µP ) = (τ ′τ, τ−1(µ′

P )µP ),

and for each (τ, λ) ∈ Fix(P, π), one denotes Fix(P, π, τ, λ) the subgroup of ele-
ments of Fix(P, π) commuting with (τ, λ). Lafforgue defines a discrete quadruplet
(P, π, σ, λπ) as being a discrete pair (P, π) and a couple (σ, λπ) ∈ Fix(P, π). If
σ : P → P ′ is an isomorphism, Lafforgue defines a generalization of the previous in-
tertwining operator [23] page 286, MP ′

P,σ(., λP ) : L
2
∞(MP (F )NP (A)\G(A)/J, π) →

L2
∞(MP ′(F )NP ′(A)\G(A)/J, σ(π)) and the operator [σ(λP )]◦M

σ(P )
P,σ (., λP )◦ [λP ]

−1

is an intertwining operator between the representation IP (π⊗λP ) and Iσ(P )(σ(π⊗
λP )).
In the following, if φ ∈ L2

∞(MP (F )NP (A)\G(A)/J, π), h(φ, .) denotes the ana-
lytical function λP 7→ h(φ, λP ) = ((φλP ) ⋆ h)λ

−1
P .

In [23] lemma 6 page 303, Lafforgue introduces the functions 1̂T
P , which are

rational functions on ΛP and satisfy, under some condition on λ0
P ∈ ReΛP :

(−1)|P |−11T
P (g) =

∫

ImΛP

1̂T
P (λPλ

0
P )(λPλ

0
P )(g)dλP , ∀g ∈ (MP (F )NP (A))\G(A)/J.

.
He associates (page 299) to each permutation τ of Sl two surjective maps τ+

(resp.τ−) from the set {1, .., l} to {1, ..., l+} (resp. {1, ..., l−}). Lafforgue defines
(Lemma 5) a generalization of the functions 1T

P , denoted 1T
P,τ = 1T

τ−(P )(1−1T
τ+(P ))

with τ ∈ S|P |, and their Fourier transform 1̂T
P,τ which are rational functions on

ΛP satisfying the following equality on functions on Mτ(P )(F )Nτ(P )(A)\G(A)/J :
∫

ImΛP

dµP 1̂
T
P,τ(µ0µP )τ(µ0µP )(.) = (−1)|τ

−(P )|−11T
P,τ

where µ0 ∈ ReΛP is sufficiently small in the sense of Lafforgue [23] page 301.
Finally one obtains the theorem (theorem 12 page 309), where we have used the

formula of the Th I.9 contained in [24] which corrects two minor misprints (the
absence of |σ| the incorrect τσ(λσ

π) instead of τσ(λπ).). There is an additional
misprint concerning the place of [τσ(λπ)] which should be located on the left.

Theorem 4.3. (Lafforgue) We have
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TrT (h) =
∑

(P,π,σ,λπ)

TrT(P,π,σ,λπ)(h)

where the sum is taken over all good representative of equivalence classes
of discrete quadruplet with π unitary and

TrT(P,π,σ,λπ)(h) =
1

|Fix(P, π, σ, λπ)|.|σ|

∫

ImΛPσ

dλσ

∑

λσ
π

TrL2(MP (F )NP (A)\G(A)/J,π)(M
T
(P,π,σ,λπ,λσ

π)
(., λσ, h))

whereMT
(P,π,σ,λπ ,λσ

π)
(., λ, h) is a finite rank endomorphism of L2(MP (F )NP (A)\G(A)/J, π)

defined by

MT
(P,π,σ,λπ ,λσ

π)
(., λ, h) = lim

µσ→1
µσ∈ΛPσ

∑

τ∈S|Pσ|

1̂T
Pσ ,τ(µσσ(λ

σ
π)/λ

σ
πσ(λπ))

([τσ(λπ)] ◦M
τ(P )
P,τσ (., λλ

σ
π))

−1 ◦M
τ(P )
P,τ (., λσ

πλ/µσ) ◦ h(., λ
σ
πλ/µσ).

In this formula we need to explain the notations Pσ, λ
σ
π.

To (σ, λπ) ∈ Fix(P, π), one associates a parabolic subgroup Pσ ( [23] page
305). |Pσ| is the number of cycles in the permutation σ. We denote |σ| the integer
product of the cardinal of orbits of the permutation σ. One defines F(P,π,σ,λπ) :
ImΛP → ImΛP , λP 7→ σ(λP )/(λPσ(λπ)), the set XP,π,σ,λπ

= F(P,π,σ,λπ)(ImΛP ) ∩
ImΛPσ

is finite and we denote {λσ
π} ⊂ ImΛP a set such that the restriction

F(P,π,σ,λπ) : {λ
σ
π} → XP,π,σ,λπ

is a bijection. In particular we have σ(λσ
π)/λ

σ
πσ(λπ) ∈

ImΛPσ
i.e is fixed by σ. Note that the operator M

τ(P )
P,τσ (., λλ

σ
π/µσ) and [τσ(λπ)] ◦

M
τ(P )
P,τσ (., λλ

σ
π) are vector space isomorphisms from L2(MP (F )NP (A)\G(A)/J, π)

to L2(Mτ(P )(F )Nτ(P )(A)\G(A)/J, τ(π)) because τσ(π) = τ(π)⊗ τσ(λπ)
−1.

4.4. The simple spectral side. If S is a finite set of places of F , we will write
GS for the Cartesian product ×v∈SGv, and GS for the restricted product ×′

v/∈SGv.

The same, if f ∈ H(G̃D(A)), we write fS for ⊗v∈Sfv (viewed as a function on
GS) and fS for ⊗v/∈Sfv (view as a function on GS). If Q is a standard parabolic
subgroup of G with Levi decomposition Q = MN , we adopt the same notation
QS, MS etc.. Recall the definition of the constant term along the parabolic group
QS of a function fS like before: it is the function fQ

S defined on MS by the formula

fQ
S (l) := δ

1/2
QS

(l)

∫

NS

∫

KS

fS(k
−1lnk)dkdn

for every l ∈ MS, where δQS
is the modulus function of QS (which plays no role

here as we will show and use only that the integral vanishes under particular
hypothesis). If S = {v}, i.e. is made of only one place, we replace index S simply
by index v.
The subgroup J of G(A) is not product. However, by choice of the generator

a of J , we have that J is isomorphic to a subgroup of GTa
which we denote
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JTa
, and we see G(A)/J as the product G0×GV×GTa∪V , where G0 = GTa

/JTa

(recall we chose Ta disjoint from V ). We use the same notation for G′, so that
G′(A)/J = G0×G′

V×GTa∪V .
We show a simple form of the spectral side of the trace formula for functions in

H(G̃D(A)).

Let f ∈ H(G̃D(A)), and set h(g) :=
∑

z∈J f(zg) (for each g the sum is finite as
the support of f is compact). We see also h as a map from G(A)/J to C locally
constant with compact support. Moreover, and this is important in the sequel,
h is a tensor product, namely h = h0 ⊗ (⊗v/∈Ta

hv) where h0 is a function on the
quotient group G0 and, for v /∈ Ta, we have hv = fv.

Proposition 4.4. We have:

TrT (h) =
∑

π

trπ(h)

where π runs over the set of discrete series of G(A).

Proof. We want to prove that the terms TrT(P,π)(h) associated to proper par-

abolic subgroups P (A) in the Lafforgue’s Theorem 4.3 vanish for functions h as
in the proposition. This will be implied by the vanishing of mT

(P,π,σ,λπ,λσ
π)
(λσ, h) =

Tr(MT
(P,π,σ,λπ,λσ

π)
(., λσ, h)) for all (P, π, σ, λπ, λ

σ
π) and λσ ∈ ImΛPσ

.

We say (P, π) is regular if Fix(P, π) is reduced to one single element, the
identity.
In order to simplify the argument we first explain the vanishing of this term

when (P, π) is regular. This implies that we have Pσ = P and {λσ
π} can be chosen

to be the singleton {1}; we set λ := λσ. Therefore TrT(P,π,σ=1,λπ)
(h) is given by the

formula of proposition 4.3 and the the expression giving
∑

λπ
MT

(P,π,id,λπ,1)
(., λ, h)

is exactly the formula (11.4.10) of Laumon [26].
Let M(A) be a proper Levi subgroup of G(A), the proof is the same as the series

of results contained in 11.5 to 11.8 in [26] which apply as soon as π is regular,
based themselves on results of Arthur and particularly splitting formula for (G,M)
families (see for example [2] and [3]).
Let M be a standard Levi subgroup of G. Let (n1, n2, ..., nk) the partition of

n associated to M . We say that M transfers at the place v ∈ V if dv|ni for all
1 ≤ i ≤ k (recall V is the set of places where D does not split).

Lemma 4.5. If M is proper, then there are at least two places in V
where M does not transfer.

Proof. This comes from arithmetic consideration. For v ∈ V , we have G′
v =

GLrv(Dv) where dimFv
Dv = d2v and rvdv = n. According to class field theory, we

have that the Hasse invariant of D at any place v ∈ V is of the form rvxv

n
, with

xv positive integer and gcd(xv, dv) = 1. Moreover, xv

dv
is the Hasse invariant of Dv

and
∑

v
rvxv

n
is an integer, which we prefer to write as: n divides

∑
v∈V rvxv. This

is true in case A is a simple central algebra over F . As here A is, moreover, a
division algebra, the least common multiple of dv, v ∈ V is n.
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Let m be the greatest common divisor of the ni. As M is proper, m < n, and,
as the least common multiple of dv, v ∈ V is n, there exists at least one place,
v0 ∈ V , such that dv0 does not divide m. So M does not transfer at v0. But we
also know that n divides

∑
v∈V rvxv.

Assume, for every v ∈ V , v 6= v0, we had dv|m. As n = rvdv, one has n|mrv for
every v ∈ V , v 6= v0. As n|

∑
v∈V rvxv, we have n|mrv0xv0 . Then dv0 |mxv0 . But

gcd(dv0, xv0) = 1, so dv0 |m which is not possible. �

We will use this lemma to simplify the trace formula: one of the two places, so
to say, for applying the splitting formula of Arthur (Laumon for characteristic p),
the other one to kill almost all the remaining terms.

Lemma 4.6. Let M be a proper standard Levi subgroup of G and v0
a place where M does not transfer. Set V∞ := V \{v0}. Let f ∈
H(G̃D(A)), then we have:

(a) For every proper parabolic subgroup Q of G containingM , fV∞(k−1xk) =
0, for all k ∈ KV∞, and all x ∈ QV∞. In particular,

f
QV∞
V∞

= 0.

(b) Tr(IG
V∞

PV∞ (πV∞(λ)(fV∞))) = 0.

Proof. (a) Let L be the Levi component of Q containing M . According to
Lemma 4.5, there are two places in V where L does not transfer, so at least
one place vL in V∞. The support of fvL contains solely elements g such that Pg

has irreducible factors of degree all divisible by dvL . Any element in QvL has
characteristic polynomial which is a product of polynomials of degrees equal to
the sizes of the blocs of L. So, no element in QvL may be conjugated to an element
in the support of fvL. Now fV∞ is a tensor product of functions, one of which is
fvL and the result follows.
(b) The global trace is a product of local traces, and it is enough to prove that

Tr(I
Gv0
Pv0

(πv0)(λ)(fv0))) = 0. By the same argument as before, because M does

not transfer at the place v0, the support of fv0 does not meet any conjugated of
Mv0 , and the constant term of fv0 along a parabolic subgroup having Mv0 as Levi
component vanishes. The Lemma 7.5.7 of Laumon [26](Part I page 189) shows
then that the trace of the induced representation vanishes on fv0 . �

We now apply the series of results contained in Laumon [26] which are based
on the notion of (G,M) family. The properties of (G,M) families and of the
weighted mean values have been first introduced by Arthur and their definition
and properties are recalled in the review article of Arthur [1].
Let us recall that when (cP )P is a (G,M) family of holomorphic functions on

ΛP , one can associate to it the function cM (called in the sequel the weighted mean
value of (cP )) defined by the proposition 11.5.7 of Laumon [26] i.e

cM(µ) =
∑

P∈P(M)

cP (µ)

θP (µ)
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where θP (µ) =
∏

α∈∆P
(1 − α̌(µ)) and P(M) denotes the set of parabolic sub-

groups having M as Levi component. The meromorphic function cM admits a
holomorphic extension on the whole ΛP .
One can define a restriction operator on (G,M) families recalled in [1]: if Q

is a parabolic subgroup of G containing M , we denote MQ its Levi subgroup, to
each (G,M) family c one associates a (MQ,M) family denoted cQ. One has the
splitting formula of Arthur which enables to evaluate the weighted mean value of
the product of two (G,M) families c, c′ as:

(cc′)M =
∑

L1,L2∈L(M)

dGM(L1, L2)c
PL1
L1

c′
PL2
L2

.

where L(M) is the set of Levi components of parabolic subgroups containingM , PL

is a certain parabolic subgroup of G having L as Levi component and dGM(L1, L2)
are complex coefficients which definition are recalled in [1].
The properties of (G,M) families and of the weighted mean values are recalled

in the review article of Arthur [1].
Laumon follows three major steps:
1) One first expresses mT

(P,π,σ=id,λπ ,1)
(λ, h) as the value at λ−1

π of the weighted

mean value of a product of two (G,M) families as in example 11.5.9 of [26].
Indeed in the present notations (we denote µ = µσ, ) we can define (G,M)

families c(λπ; .), c
′(.) as follows:

cτ (λπ;µ) = TrL2(MP (F )NP (A)\G(A)/J,π)(([τ(λπ)]◦M
τ(P )
P,τ (., λ))−1◦M

τ(P )
P,τ (.,

λ

λπµ
) ◦ h(.,

λ

λπµ
)).

This is a (G,M) family of functions of µ indexed by τ ∈ S|P | (the set of parabolic
group P(M) which normally indexes the (G,M) family is here indexed by τ be-
cause P(M) = {τ(P ), τ ∈ S|P |}), and c′τ (µ) = 1̂T

P,τ (µ)θτ (µ), with θτ = θP (where
P corresponds to τ) and we have

mT
(P,π,σ=id,λπ ,1)(λ, h) = lim

µ→1
(c(λπ; .)c

′(.))M(µλ−1
π ),

this is exactly the formula Example (11.5.9) of [26].
Remark: c′ is a (G,M) family as soon as T ∈ a∅,Z where a∅,Z ⊂ a∅ is the root

lattice generated by (αi). We assume in the sequel, as in [26], that T satisfies this
integrality condition.
2) Because h satisfies the fact that its constant term hQ vanishes for every

proper parabolic subgroup containing M(A), we have that the weighted mean
value of the (MQ,M) family c(λπ, .)

Q is equal to 0 (lemma 11.5.15 [26]), there-
fore using the splitting formula of Arthur we obtain that mT

(P,π,id,λπ,1)
(λ, h) =

cM(λπ;λ
−1
π )c′P (λ

−1
π ). From the analysis of Laumon (corollary 11.5.14 [26]) if cM(λπ;λ

−1
π )

is different from zero then λπ is the restriction to M of a character of G. More-
over by an explicit computation involving the exact expression of c′P given by
the formula of section 10.1 of [33] or by the equivalent expression (Lemma 11.5.5
ii) of [26] one obtains that when λπ is the restriction to M of a character of G,
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c′P (λ
−1
π ) = 0 unless λπ = 1 and in this case c′P (λ

−1
π ) = |ΓP | where ΓP is the finite

group appearing in [33].|ΓP | can be computed and is equal to e = n/m.
Therefore mT

(P,π,id,λπ,1)
(λ, h) is null unless λπ is trivial and in this case we have

mT
(P,π,id,λπ=1,1)(λ, h) = |ΓP |Tr(RM(π, λ) ◦ h(., λ))

where one defines the weighted mean value operator

RM(π, λ) = lim
µ→1

∑

τ∈S|P |

1

θτ (µ)
(M

τ(P )
P,τ (., λ))−1 ◦M

τ(P )
P,τ (., λ/µ).

3) Using this proposition, one can then express mT
P,π,id,λπ=1,1(λ, h), as the value

at µ = 1 of the weighted mean value of the product of two (G,M) families cV∞ , cV∞

given by straightforward generalization of the Lemma 11.6.6 of [26] (one has to
replace ∞ in his formulas by the finite set V∞). We assume that h = hV∞ ⊗ hV∞ .
The vanishing of the constant term of hV∞ for every proper parabolic subgroup
implies that by the splitting formula we have the factorization given by proposition
11.6.8 of [26]:

mT
P,π,id,1(λ, h) = |ΓP |Tr(RM(πV∞ , λ)◦Ind

G(FV∞)

P (FV∞)(πV∞(λ)(ȟV∞))Tr(IG
V∞

PV∞ (πV∞(λ)(ȟV
∞))),

and RM(πV∞ , λ) is the generalization of the operator given by Laumon page 194
[26] which reads in our case:

RM(πV∞ , λ) = lim
µ→1

∑

τ∈S|P |

1

θτ (µ)
(M̂

τ(P )
P,τ (., πV∞ , λ))−1◦M̂

τ(P )
P,τ (., πV∞ , λ/µ),

where M̂
τ(P )
P,τ (., πV∞ , λ) =

⊗
v∈V∞

M̂
τ(P )
P,τ (., πv, λ) are tensor product of the normal-

ized local intertwining operator of Langlands-Shahidi, see theorem 11.6.4 of [26].
After these steps which give an explicit expression for mT

(P,π,σ,λπ)
(λ, h) in term of

local components, it is sufficient to show that Tr(IG
V∞

PV∞ (πV∞(λ)(ȟV∞))) vanishes,
which holds as a consequence of Lemma (4.6 ).
We therefore have shown that each of the term TrT(P,π,σ=id,λπ)

(h) vanishes when
P is proper and π is regular.

When π is not regular we can generalize the previous arguments as follows.
We fix (σ, λπ) ∈ Fix(P, π) and we fix a choice of {λσ

π}.

Step 1. amounts to show that mT
(P,π,σ,λπ,λσ

π)
(λσ, h) is the evaluation at σ(λσ

π)
λσ
πσ(λπ)

of

the weighted mean value of the product of two (G,Mσ) families.
We can define (G,Mσ) families of functions, (this is proven in [33] proposition

10.8, lemma 11.9 and corollary 11.10), c(λπ, λ
σ
π; .), c

′(.) on ΛPσ
as:

cτ (λπ, , λ
σ
π;µσ) =

TrL2(MP (F )NP (A)\G(A)/J,π)([τσ(λπ)] ◦ (M
τ(P )
P,τσ (., λσλ

σ
π))

−1 ◦M
τ(P )
P,τ (.,

λσσ(λ
σ
π)

µσσ(λπ)
) ◦ h(.,

λσσ(λ
σ
π)

µσσ(λπ)
))

and c′τ (µσ) = 1̂T
Pσ,τ

(µσ)θτ (µσ), where these (G,Mσ) families are indexed by τ ∈
S|Pσ|.
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We have

mT
(P,π,σ,λπ ,λσ

π)
(λσ, h) = lim

µσ→1
(c(λπ, λ

σ
π; .)c

′(.))Mσ
(µσ

σ(λσ
π)

λσ
πσ(λπ)

).

Step 2. can be modified as follows. Because h satisfies the fact that its constant
term hQ vanishes for every proper parabolic subgroup Q containing M , we have
that hQ vanishes for every proper parabolic containing Mσ ⊃ M. As a result we
have that the weighted mean value of the (MQ,Mσ) family c(λπ, λ

σ
π; .)

Q is equal
to 0. As a result, using the splitting formula we obtain that

mT
(P,π,σ,λπ,λσ

π)
(λσ, h) = cMσ

(
σ(λσ

π)

λσ
πσ(λπ)

)c′Pσ
(

σ(λσ
π)

λσ
πσ(λπ)

).

We can do the same analysis as Laumon: the last expression is null unless σ(λσ
π)

λσ
πσ(λπ)

is the restriction to Mσ of a character of G. In this case, c′Pσ
( σ(λσ

π)
λσ
πσ(λπ)

) is null unless
σ(λσ

π)
λσ
πσ(λπ)

is trivial.

Therefore we have the formula:

mT
(P,π,σ,λπ,λσ

π)
(λσ, h) = |ΓPσ

|Tr(Rσ
M(π, λσλ

σ
π) ◦ h(·, λσλ

σ
π)),

where

Rσ
M(π, λσλ

σ
π) = lim

µσ→1

∑

τ∈S|Pσ |

1

θτ (µσ)
([τσ(λπ)]◦M

τ(P )
P,τσ (., λσλ

σ
π))

−1◦M
τ(P )
P,τ (.,

λσλ
σ
π

µσ
)

Step 3. reduces to the fact that the right hand side can be expressed as the
weighted mean value at µσ = 1 of the product of two (G,Mσ) families defined by:

cτ,V∞(µσ) = tr(Rσ
τ (µσ) ◦ Ind

G(FV∞ )

P (FV∞)(πV∞(λσλ
σ
π))(ȟV∞))

cV∞
τ (µσ) = tr(Sσ

τ (µσ) ◦ Ind
GV∞

PV∞ (πV∞(λσλ
σ
π))(ȟ

V∞))

where

Rσ
τ (µσ) =

⊗

v∈V∞

(M̂
τ(P )
P,τσ (., πw, λσλ

σ
π) ◦ [τσ(λπ)])

−1 ◦ M̂
τ(P )
P,τ (., πw,

λσλ
σ
π

µσ

),

where M̂
τ(P )
P,τ (., πw, λ) are the normalized local intertwining operator of Langlands-

Shahidi defined by M̂
τ(P )
P,τ (., πw, λ) = aτ (πw, λ)M

τ(P )
P,τ (., πw, λ), M

τ(P )
P,τ (., πw, λ) is the

local part at place w of M
τ(P )
P,τ (., π, λ) and aτ (πw, .) are rational functions of the

variable λ ∈ ΛP , whose properties are recalled in the Theorem 11.6.4 of [26].

Sσ
τ (µσ) =

∏

v∈V∞

(aτ (πw, λσλ
σ
π)

−1aτ (πw,
λσλ

σ
π

µσ
))

×([τσ(λπ)] ◦M
τ(P )
P,τσ (., π

V∞ , λσλ
σ
π))

−1 ◦M
τ(P )
P,τ (., πV∞ ,

λσλ
σ
π

µσ
).

One has to show that cV∞ , cV∞ are two (G,Mσ) families. cV∞ is easily shown to
be a (G,Mσ) family, the only non trivial point, as in the regular case, is to show
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that cV∞ is also a (G,Mσ) family. Proving this goes along the same line as the
proof of [26] Lemma 11.6.6. We assume that h = hV∞ ⊗hV∞ . The vanishing of the
constant term of hV∞ for every proper parabolic subgroup containing Mσ implies
that one obtains the exact analog of the factorization formula which reads:

1

|ΓPσ
|
mT

(P,π,σ,λπ,λσ
π)
(λσ, h) = (cV∞ , cV∞)Mσ

(1)

= (cV∞)Mσ
(1)(cV∞)Pσ

(1)

= Tr(Rσ
M(πV∞ , λσλ

σ
π) ◦ Ind

G(FV∞ )

P (FV∞)(πV∞(λσλ
σ
π)(ȟV∞))

×Tr(Sσ(πV∞ , λσλ
σ
π)I

GV∞

PV∞ (πV∞(λσλ
σ
π)(ȟ

V∞))),

where Rσ
M (πV∞ , λ) is the operator which reads in our case:

Rσ
M(πV∞ , λ) = lim

µσ→1

∑

τ∈S|Pσ |

1

θτ (µσ)

⊗

v∈V∞

(M̂
τ(P )
P,τ (., πw, λ))

−1◦M̂ τ(P )
P,τ (., πw, λ/µσ).

and

Sσ(πV∞ , λσλ
σ
π) = Sσ

τ=id(1)

= ([σ(λπ)] ◦M
P
P,σ(., π

V∞ , λσλ
σ
π))

−1 ◦MP
P,id(., π

V∞, λσλ
σ
π) =

= ([σ(λπ)] ◦M
P
P,σ(., π

V∞ , λσλ
σ
π))

−1.

[σ(λσλ
σ
π)] ◦M

P
P,σ(., π

V∞ , λσλ
σ
π) ◦ [λσλ

σ
π]

−1 is an intertwining operator between the

representation IG
V∞

PV∞ (πV∞(λσλ
σ
π)) and the representation IG

V∞

PV∞ (σ(πV∞(λσλ
σ
π)). Be-

cause σ(π ⊗ λσλ
σ
π) = π ⊗ λσλ

σ
π, due to σ(λσ

π) = λσ
πσ(λπ), we therefore have that

[λσλ
σ
π] ◦ [σ(λπ)] ◦ MP

P,σ(., π
V∞ , λσλ

σ
π) ◦ [λσλ

σ
π]

−1 is an intertwining operator of the

representation IG
V∞

PV∞ (πV∞(λσλ
σ
π)), which is irreducible because it is locally induced

from irreducible unitary. As a result [σ(λπ)]◦M
P
P,σ(., π

V∞ , λσλ
σ
π) is a scalar operator

and it is therefore sufficient to show that
Tr(IG

V∞

PV∞ (πV∞(λσλ
σ
π)(ȟ

V∞))) = 0. But this is implied by the previous lemma.
This ends the proof.

�

4.5. The simple geometric side. We show a simple form of the geometric side
of the trace formula for functions in H(G̃D(A)). Like in the previous subsection,

we let f ∈ H(G̃D(A)) and set h(g) :=
∑

z∈J f(zg) which we see as a map from
G(A)/J to C locally constant with compact support. Here again, we have to play
this game between h and f for the reason that h is a function on G(A)/J and it
is not properly speaking a tensor product over places.

Proposition 4.7. We have

TrT (h) =
∑

o∈ÕD
G(F )

vol(Gγo(F )\Gγo(A)/J)
∑

z∈J

Φ(f ; zγo).
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Proof. Recall

TrT (h) =

∫

G(F )\G(A)/J

dg
∑

P∈Ps
0

(−1)|P |−1
∑

δ∈P (F )\G(F )

Kh,P (δg, δg)1
T
P(δg)

where

Kh,P (x, y) =

∫

NP (A)

∑

γ∈MP (F )

h(x−1γny).

As f ∈ H(G̃(A)D), by Proposition 4.2 (b) we have that Kh,P (x, x) is null for
proper P . So

TrT (h) =

∫

G(F )\G(A)/J

∑

γ∈G̃(F )D

h(g−1γg) dg.

Moreover, using the claim (c) of the same proposition (G̃(A)D is stable under
conjugation), we have:

TrT (h) =

∫

G(F )\G(A)/J

∑

γ∈G̃(F )D

h(g−1γg) dg =

∫

G(F )\G(A)/J

∑

γ∈G̃(F )D

∑

z∈J

f(g−1zγg) dg.

We have

TrT (h) =

∫

G(F )\G(A)/J

∑

γ∈G̃(F )D

∑

z∈J

f(g−1zγg) dg =

=

∫

G(F )\G(A)/J

∑

o∈ÕD
G(F )

∑

γ∈o

∑

z∈J

f(g−1zγg) dg =

=
∑

O∈ÕD
G(F )

∫

G(F )\G(A)/J

∑

γ∈o

∑

z∈J

f(g−1zγg) dg =

=
∑

o∈ÕD
G(F )

∫

G(F )\G(A)/J

∑

t∈Gγo (F )\G(F )

∑

z∈J

f(g−1t−1zγotg) dg =

=
∑

o∈ÕD
G(F )

∫

Gγo (F )\G(A)/J

∑

z∈J

f(g−1zγog) dg =

=
∑

o∈ÕD
G(F )

vol(Gγo(F )\Gγo(A)/J)
∑

z∈J

Φ(f ; zγo).

�

As in the proof of Deligne-Kazhdan simple trace formula, manipulations are
allowed as for these elements γo everything converges.
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4.6. Comparison with G′(A). Let f ∈ H(G̃D(A)), f ′ ∈ H(G̃′(A)) such that

f
A
↔ f ′. Let DS be the set of irreducible subrepresentations of RG and DS ′ the

set of irreducible subrepresentations of RG′ .

Proposition 4.8. We have:
∑

π∈DS

trπ(f) =
∑

π′∈DS′

trπ′(f ′).

Proof. Set h(g) :=
∑

z∈J f(zg), h′(g) :=
∑

z∈J f
′(zg) and consider h and

h′ as maps from G(A)/J and respectively G′(A)/J to C, locally constant with
compact support. It is enough to prove

∑
π∈DS trπ(h) =

∑
π′∈DS′ trπ′(h′), as

trπ(f) = trπ(h) (by definition, π(f) =
∫
G(A)

fπ while π(h) =
∫
G(A)/J

hπ and the

central character of π is trivial on J). Due to the hypothesis on f , the Propositions
4.4 and 4.7 imply:

∑

π∈DS

trπ(h) =
∑

o∈ÕD
G(F )

vol(Gγo(F )\Gγo(A)/J)
∑

z∈J

Φ(f ; zγo).

The group G′(F )\G′(A)/J is compact ([23] III.6 Lemme 5 (ii)). So we have a
similar formula:∑

π′∈DS′

trπ′(h′) =
∑

o∈ÕG′(F )

vol(G′
γo(F )\G′

γo(A)/J)
∑

z∈J

Φ(f ′; zγo).

where {γ′
o} is a system of representatives for ÕG′(F ) such that γ′

o ∈ O for all

o ∈ ÕG′(F ).
The Lemma 4.1 establishes the unique characteristic polynomial preserving bi-

jection between ÕD
G(F ) and ÕG′(F ). We have then equality term by term between

the right hand member of these two equalities due to choices of measures and
functions compatible with the local transfer. �

4.7. End of the proof. Now the proof goes the standard way, following ideas of
Langlands. As this was usually applied in zero characteristic, we recall briefly the
steps giving when needed the argument in non zero characteristic.
Let π ∈ DS be D-compatible. Let U be the set of places v of F such that

v /∈ Ta, G
′
v splits (i.e. v /∈ V ) and πv is spherical. Let U c be the set of places of F

not in U , which is known to be a finite set. Let DSπ be the subset of DS made
of representations τ such that τv ≃ πv for all v ∈ U . Let DS ′

π be the subset of
DS ′ made of representations τ ′ such that τ ′v ≃ πv for all v ∈ U . Then we have,
for f, f ′ as before:

(4.1)
∑

τ∈DSπ

trτ(f) =
∑

τ ′∈DS′
π

trτ ′(f ′).

This relation 4.1 is known to be a consequence of the Proposition 4.8 and the
beautiful proof due to Langlands is now ”standard” (it is detailed in the paper of
Flath [17] for example). The proof comes from the fact that an absolutely conver-
gent sum of characters of non-isomorphic unitary spherical representations of GUc
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is null if and only if the sum is void. This is based on the Satake isomorphism and
abstract functional analysis and do not require zero characteristic.
By multiplicity one theorem ([37], [35]),DSπ = {π}. Now we take fv = f ′

v = 1Kv

for all v ∈ U . Then trπv(fv) = 1 for v ∈ U . So the relation 4.1 becomes:

∏

v∈Uc

trπv(fv) =
∑

τ ′∈DS′
π

∏

v∈Uc

trτ ′v(f
′
v).

We know ([8], [9] Theorem 3.2) that the number of non isomorphic representa-
tions in DS ′

π is finite. As representations in RG′ appear with finite multiplicity,
the number of elements ofDS ′

π is finite. As the number of representations involved
in the equality is finite, we may switch from traces to characters:

∏

v∈Uc

χπv
(gv) =

∑

τ ′∈DS′
π

∏

v∈Uc

χτ ′v(g
′
v)

whenever, for every v ∈ U c, gv ↔ g′v. By Theorem 2.5, and the hypothesis that
π is D-compatible, we may ”transfer” characters from left to right. Writing LJv

for the Jacquet-Langlands local correspondence for unitary representations at the
place v:

0 = ǫ
∏

v∈Uc

χLJv(πv)(g
′
v) +

∑

τ ′∈DS′
π

∏

v∈Uc

χτ ′v(g
′
v)

where ǫ is a sign (which appears from the local transfer Theorem 2.5). If we assume
the linear independence of characters on groups G′

v we have linear independence of
characters for their product and we find there is just one τ ′ in DS ′

π and it verifies
τ ′ = LJv(πv) which is what we want. So let us give references for the linear inde-
pendence in non zero characteristic. In [22] lemma 7.1 the linear independence of
traces is proved, and the proof is independent of the characteristic. To pass from
this result to the linear independence of characters it is enough to know the local
integrability of characters. For groups like G′

v (i.e. local inner forms of GLn in
non zero characteristic) this is proved in [10] and [29].

On the other direction, to show the surjectivity, we start with π′ ∈ DS ′, let U ′

be the set of places v of F such that G′
v splits and π′

v is spherical. We shortly
come to a relation of the same type as 4.1

∑

τ∈DSπ′

trτ(f) =
∑

τ ′∈DS′
π′

trτ ′(f ′).

where now DSπ′ and DS ′
π′ are made of representations which have the same local

component as π′ at places in U ′. By the multiplicity one theorem, DSπ′ is void
or contain a single representation. Again, the local independence of characters
will show that, as DS ′

π′ is not void, DSπ′ is not void neither and that the unique
representation it contains is D-compatible. Then everything goes the same until
the end of the proof. �
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5. Answer to two questions in [27]

Here we answer two questions from [27]. Only the second one is directly related
to the main result of this paper. But the same question is related in [27] also to
the first, so we take the opportunity to answer it here too.

1. Let F be a local field of non zero characteristic and set G := GLn(F ). Let
π be a square integrable representation of G. Denote z(π) the Zelevinsky dual of
π. In [27], section 13.8, the authors ask the following question. Is there a function
f ∈ H(G) such that
(i) the orbital integrals of f are null on regular semisimple elements which are

not elliptic,
(ii) if u is an irreducible unitary representation then tru(f) 6= 0 if and only if u

is isomorphic to π or z(π)?
Such a function is known to exist if the characteristic of F is zero. We give here

the proof in non zero characteristic. It is known that the Paley-Wiener theorem
([13]) allows one to construct a pseudocoefficient for π, i.e. f ∈ H(G) such that
- trτ(f) = 0 for all fully induced representation τ from any proper parabolic

subgroup of G,
- trτ(f) = 0 for all tempered representation τ of G such that τ is not isomorphic

to π.
- trπ(f) = 1.
A detailed proof of the existence may be found in [7] theorem 2.2. It is proved

(op. cit. Lemme 2.4) that f satisfies then the property (i). Let us explain why
f satisfies (ii). Let u be an irreducible unitary representation of G such that
tru(f) 6= 0. Then, in the Grothendieck group of smooth representations of finite

length of G, u is a sum u =
∑k

i=1 si of standard representations si all of which have
the same cuspidal support as u. A standard representation is always tempered or
fully induced from a proper parabolic subgroup. The reader will find definitions
and proofs in [15], A.4.f. Now tru(f) =

∑k
i=1 trsi(f) so there is some si which

verifies trsi(f) 6= 0. So one of the representations si has to be π. So u has the
same cuspidal support as π, i.e. a Zelevinsky segment. According to the Tadić
classification of unitary representations of GLn ([38], any characteristic), u is fully
induced from a product of Speh representations twisted with some characters. As
trτ(f) = 0 for any fully induced representation τ from any proper parabolic sub-
group of G, the product contains only one term and u is a Speh representation.
The cuspidal support of a Speh representation is easy to describe directly from its
very definition (see [38] for the definition), in particular it is easy to see that it
has multiplicities unless u is isomorphic to π or z(π). This finishes the proof.

Remark that the question of [27] is asked in the Aubert (and non Zelevinsky)
dual setting. But in [6] it is proved that the two duals differ by the sign (−1)k

where k is the number of cuspidal representations in the cuspidal support of π.



28 A.I.BADULESCU AND PH.ROCHE

A formula for the orbital integrals of f on the elliptic set is also conjectured
in [27] 13.8, which follows, in characteristic p, from Theorems 4.3 (ii) and 5.1 of [7].

2. The second question asked in [27] is their Hypothesis 14.23. The authors ex-
plain in 14.24 that this Hypothesis would follow from the global Jacquet-Langlands
correspondence. We confirm that the global Jacquet-Langlands correspondence, as
stated and proved in our Theorem 3.2, implies the Hypothesis in the way described
in [27] 14.23. As remarked by the authors, together with the results proved here
in 1, the Hypothesis implies then their Conjecture 14.21. Also the global Jacquet-
Langlands correspondence simplifies their proof of the Theorem 14.12, as they do
remark in the Remark 14.12. Indeed, let D be a central global division algebra of
degree n2 over F and π′ any discrete series of D× which is Steinberg at one split
place. Then π′ corresponds by Jacquet-Langlands to a discrete series π of GLn

which is Steinberg at the same place. Then π is cuspidal because it has a local
component which is square integrable. So π is generic at every place. So π′ is
generic at every place where D splits.
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Ph.Roche, Université Montpellier 2, CNRS, I3M, L2C

E-mail address : philippe.roche@univ-montp2.fr


	1. Introduction
	2. Local
	2.1. Basic facts
	2.2. Transfer of orbits
	2.3. Transfer of centralizers
	2.4. Transfer of functions
	2.5. Transfer of unitary representations

	3. Main result
	3.1. Basic facts
	3.2. Automorphic representations
	3.3. Relation with the classical setting
	3.4. Claim of the correspondence

	4. The proof
	4.1. Transfer of elliptic global orbits
	4.2. Transfer of global functions
	4.3. Trace formula in characteristic p
	4.4. The simple spectral side
	4.5. The simple geometric side
	4.6. Comparison with G'(A)
	4.7. End of the proof

	5. Answer to two questions in LRS
	References

