M. D. Skowronski and J. G. Harris, Applied principles of clear 495 and Lombard speech for automated intelligibility enhancement in 496 noisy environments, Speech Communication, vol.48, issue.5, pp.549-558, 2006.

B. Sauert and P. Vary, Near end listening enhancement: Speech intelligi-499 bility improvement in noisy environments, Proc. ICASSP, p.500

. France, , pp.493-496, 2006.

H. Brouckxon, W. Verhelst, and B. D. Schuymer, Time and frequency de-502 pendent amplification for speech intelligibility enhancement in noisy en-503 vironments, Proc. Interspeech, vol.9, pp.557-560, 2008.

C. H. Taal, J. Jensen, and A. Leijon, On optimal linear filtering of speech for 505 near-end listening enhancement, IEEE Signal Proc. Let, vol.20, issue.3, 2013.

M. Cooke, C. Mayo, C. Valentini-botinhao, Y. Stylianou, and B. Sauert, , p.508

Y. Tang, Evaluating the intelligibility benefit of speech modifications in 509 known noise conditions, Speech Communication, vol.55, pp.572-585, 2013.

T. Zorila, V. Kandia, and Y. Stylianou, Speech-in-noise intelligibility im-511 provement based on spectral shaping and dynamic range compression, Proc. Interspeech, vol.512, pp.635-638, 2012.

M. A. Picheny, N. I. Durlach, and L. D. Braida, Speaking clearly for the hard 514 of hearing. I: Intelligibility differences between clear and conversational 515 speech, J. Speech Hear. Res, vol.28, pp.96-103, 1985.

. A-c-c-e-p-t-e-d-m-a-n-u-s-c-r-i-p-t,

Z. S. Bond and T. J. Moore, A note on the acoustic-phonetic characteristics 517 of inadvertently clear speech, Speech Communication, vol.14, issue.4, p.325, 1994.

R. M. Uchanski, Clear speech, p.520

, The Handbook of Speech Perception, pp.521-207, 2005.

J. J. Dreher and J. J. O'neill, Effects of ambient noise on speaker intel-523 ligibility for words and phrases, J. Acoust. Soc. Am, vol.29, issue.12, pp.1320-1323, 1957.

D. B. Pisoni, R. H. Bernacki, H. C. Nusbaum, and M. Yuchtman, Some 526 acoustic-phonetic correlates of speech produced in noise, p.527

F. Tampa, , pp.1581-1584, 1985.

W. V. Summers, D. B. Pisoni, R. H. Bernacki, and R. I. Pedlow,

. Stokes, Effects of noise on speech production: Acoustic and perceptual 530 analyses, J. Acoust. Soc. Am, vol.84, issue.3, pp.917-928, 1988.

V. Aubanel and M. Cooke, Information-preserving temporal reallocation of 532 speech in the presence of fluctuating maskers, Proc. Interspeech, p.533

F. Lyon, , pp.3592-3596, 2013.

R. M. Uchanski, S. S. Choi, L. D. Braida, C. M. Reed, and N. I. Durlach, , p.535

, Speaking clearly for the hard of hearing IV: Further studies of the role 536 of speaking rate, J. Speech Hear. Res, vol.39, issue.3, pp.494-509, 1996.

M. Cooke and V. , Effects of linear and nonlinear speech rate speech intelligibility in stationary and fluctuating maskers, p.539
URL : https://hal.archives-ouvertes.fr/hal-01615914

, J. Acoust. Soc. Am, vol.141, pp.4126-4135, 2017.

Q. Summerfield and M. Haggard, On the dissociation of spectral and tem-541 poral cues to the voicing distinction in initial stop consonants, J. Acoust

, Soc. Am, vol.62, pp.436-448, 1977.

R. V. Shannon, F. Zeng, V. Kamath, J. Wygonski, and M. Ekelid, Speech 544 recognition with primarily temporal cues, Science, vol.270, issue.5234, p.303, 1995.

Y. Tang, C. Arnold, and T. Cox, A study on the relationship between the 547 intelligibility and quality of algorithmically-modified speech for normal 548 hearing listeners, Journal of Otorhinolaryngology, Hearing and Balance, vol.549, p.5, 2017.

M. Cooke and M. L. Garcia-lecumberri, The effects of modified speech 551 styles on intelligibility for non-native listeners, Proc. Interspeech, pp.868-872, 2016.

V. Aubanel, M. L. García-lecumberri, and M. Cooke, The Sharvard Corpus: 554 A phonemically-balanced Spanish sentence resource for audiology

, J. Audiology, vol.53, pp.633-638, 2014.

E. H. Rothauser, W. D. Chapman, N. Guttman, M. H. Hecker, and K. S. ,

H. R. Nordby, G. E. Silbiger, M. Urbanek, V. E. Weistock, and . Mcgee,

W. D. Pachl and . Voiers, IEEE Recommended practice for speech quality 559 measurements, IEEE Trans. Audio Acoust, pp.225-246, 1969.

. A-c-c-e-p-t-e-d-m-a-n-u-s-c-r-i-p-t,

A. Moreno, D. Poch, A. Bonafonte, E. Lleida, J. Llisterri et al., , p.561

C. Nadeu, Albayzín speech database: Design of the phonetic corpus, Eurospeech, pp.175-178, 1993.

B. A. Blesser, Audio dynamic range compression for minimum perceived 564 distortion, IEEE Trans. on Audio and Electroacoustics, vol.17, issue.1, p.22, 1969.

M. Cooke, A glimpsing model of speech perception in noise, J. Acoust

, Soc. Am, vol.119, issue.3, pp.1562-1573, 2006.

C. Stilp and K. Kluender, Cochlea-scaled entropy, not consonants, vowels, 569 or time, best predicts speech intelligibility, P. Natl. Acad. Sci. USA, vol.570, issue.27, pp.12387-12392, 2010.

M. Demol, W. Verhelst, K. Struyve, and P. Verhoeve, Efficient non-uniform 572 time-scaling of speech with WSOLA, Int. Conf. on Speech and Com-573 puters (SPECOM), pp.163-166, 2005.

R. Perez-ramon, Haplo: Herramienta automática de procesamiento 575 linguístico ortofonético, Proc. Asociación Espaola de Linguística, p.576

L. Aplicada, , 2012.

G. Studebaker, A rationalized arcsine transform, Journal of Speech, p.578

, Hearing Research, vol.28, pp.455-462, 1985.

A. J. Oxenham, J. E. Boucher, and H. A. Kreft, Speech intelligibility is best 580 predicted by intensity, not cochlea-scaled entropy, J. Acoust. Soc. Am, vol.581, issue.3, pp.264-269, 2017.

. A-c-c-e-p-t-e-d-m-a-n-u-s-c-r-i-p-t,

V. Aubanel, M. Cooke, C. Davis, and J. Kim, Temporal factors in cochlea-583 scaled entropy and intensity-based intelligibility predictions, J. Acoust

, Soc. Am, vol.143, issue.6, 2018.

M. Mcauliffe, M. Socolof, S. Mihuc, M. Wagner, and M. Sonderegger, Mon-586 treal Forced Aligner: Trainable Text-Speech Alignment Using Kaldi, in: 587 Proc. Interspeech, pp.498-502, 2017.

J. I. Hualde, The Sounds of Spanish, p.589, 2005.

C. Valentini-botinhao, R. Maia, J. Yamagishi, S. King, and H. Zen, Cepstral 590 analysis based on the Glimpse proportion measure for improving the in-591 telligibility of HMM-based synthetic speech in noise, Proc. ICASSP, pp.3997-4000, 2012.

Y. Tang, B. Fazenda, and T. Cox, Automatic speech-to-background ratio se-594 lection to maintain speech intelligibility in broadcasts using an objective 595 intelligibility metric, Applied Sciences, vol.8, p.59, 2018.

Y. Tang, Q. Liu, W. Wang, and T. Cox, A non-intrusive method for estimat-597

, ing binaural speech intelligibility from noise-corrupted signals captured 598 by a pair of microphones, Speech Communication, vol.96, pp.116-128, 2017.

Y. Tang and M. Cooke, Glimpse-based metrics for predicting speech intel-600 ligibility in additive noise conditions, Proc. Interspeech, pp.601-2488, 2016.

E. Godoy and Y. Stylianou, Increasing speech intelligibility via spectral 603 shaping with frequency warping and dynamic range compression plus 604 transient enhancement, Proc. Interspeech, pp.3572-3576, 2013.