
JSS Journal of Statistical Software
June 2015, Volume 65, Issue 11. http://www.jstatsoft.org/

DiceDesign and DiceEval: Two R Packages for Design

and Analysis of Computer Experiments

Delphine Dupuy
École des Mines

de Saint-Étienne

Céline Helbert
Institut Camille Jordan

Jessica Franco
TOTAL S.A.

Abstract

This paper introduces two R packages available on the Comprehensive R Archive
network. The main application concerns the study of computer code output. Package
DiceDesign is dedicated to numerical design of experiments, from the construction to the
study of the design properties. Package DiceEval deals with the fit, the validation and
the comparison of metamodels.

After a brief presentation of the context, we focus on the architecture of these two
packages. A two-dimensional test function will be a running example to illustrate the
main functionalities of these packages and an industrial case study in five dimensions will
also be detailed.

Keywords: computer experiments, design of experiments, metamodeling, R.

1. Introduction

The DICE consortium (Deep Inside Computer Experiments, http://dice.emse.fr/) was a
partnership between academic and industrial laboratories from various fields (e.g., oil indus-
try, automotive, nuclear, etc.). DICE aimed at developing and applying statistical methods
to solve problems related to computer experiments, for example uncertainty propagation
through a flow simulator, global optimization of a car crash simulator or evaluation of failure
probabilities in a nuclear process.

In the context of computer experiments, a computer code is used to simulate a complex
phenomenon. For example, a porous media flow simulation can be used to efficiently predict
oil production. The computer model implements a mathematical model and will replace
laboratory or field testing. Industrial computer codes are becoming more and more realistic
thanks to the improvement of numerical methods but this accuracy comes at the cost of

http://www.jstatsoft.org/
http://dice.emse.fr/

2 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

increased computation time. For example, the simulation of a car crash can take between 15
and 30 hours on a super computer, and the simulation of oil field production can take up to
several weeks. Usually, the numerical model depends on a large number of parameters, also
called the input variables, to which scientific experts can assign a range or a distribution. The
problem is then to quantify the impact of the variability of the input variables on the variability
of the variable of interest, also called output. This is done by running a limited number of
simulations (the design of experiments) representing different combinations of the inputs and
building a simplified model (metamodel) of the output as a function of the inputs. In this
context, the choice of the design of experiments and the determination of the metamodel are
of great importance.

The output of a simulation is the response. Given the value of the response at the points of
the experimental design, we want to fit a simplified model. The type of the model depends
upon the nature and the objective of the problem. In high dimension, one can for example fit
an additive model to visualize the shape of the curve according to each factor. For stochastic
data, a kriging model with homogeneous or heterogeneous noise can be used. The response
surface will be used instead of the computer code to approximate the real value. A validation
phase of the fitted model is then required. Firstly, the fitted model must be close to the
training data set. One must quantify the learning error and also check the validity of the
fitted model. For example, in a regression context, a normality test can be performed on the
residuals. Secondly, this fitted model is the key point of the study as it will be used as a
surrogate for the simulator code. It is then important to test the predictive performance of
the model at points which do not belong to the training set.

In this article, we present a part of a numerical toolbox that provides a complete range of
functions for each step of a case study. All methods used through the consortium applications
are implemented using the R language (see R Core Team 2015) and integrated as R packages.
The DICE toolbox consists of the following five packages:

� DiceDesign for numerical design of experiments (Franco, Dupuy, and Roustant 2015).

� DiceEval for evaluation and comparison of metamodels (Dupuy and Helbert 2015).

� DiceKriging for the estimation of a response surface via Gaussian processes (Roustant,
Ginsbourger, and Deville 2015).

� DiceOptim for global optimization (Ginsbourger and Roustant 2015).

� DiceView for graphical methods for computer experiments design and models (Richet,
Deville, and Chevalier 2013).

Each package addresses a specific task where classical and new methods are implemented.
DiceDesign is dedicated to the construction of space filling designs and the computation of
discrepancy and distance criteria to study a distribution of points. DiceEval provides tools
for the evaluation and the comparison of classical metamodels. A validation procedure (con-
taining numerical criteria, graphical plots and cross-validation methods) is also provided to
validate a fitted model. DiceKriging implements a large panel of kriging models. The com-
ponent DiceOptim performs different versions of the efficient global optimization algorithm
proposed by Jones, Schonlau, and Welch (1998) to optimize the simulator using kriging. Dice-
View has been implemented to visualize a fitted kriging model for a better understanding of

Journal of Statistical Software 3

its behavior. Therefore, this package allows 2D/3D sections of kriging models obtained by
DiceKriging to be viewed.

This article only deals with the first two packages, while a full description of DiceKriging
and DiceOptim can be found in Roustant, Ginsbourger, and Deville (2012). This paper is
organized as follows: Section 2 focuses on the DiceDesign package. First, the architecture
of the package is described in detail. The generated space filling designs and the associated
quality criteria are introduced and illustrated in dimension 2. Section 3 is dedicated to
the DiceEval package. Metamodel quality criteria are defined and the functionalities of this
package are illustrated on a test example in dimension 2. In Section 4, the package routines
are illustrated on a five-dimensional industrial case provided by the consortium. A conclusion
is given in Section 5.

2. DiceDesign package

In the computer experiments context, the number of simulations is often constrained by the
high cost of one simulation. The exploratory phase consists of defining the position of the
simulated points. In the absence of prior information about the output variable(s), it seems
important to spread the points evenly throughout the experimental domain. Where deter-
ministic simulators are concerned, replications are useless (in the sense that running the code
many times with the same input values provides the same value for the output). Moreover,
it is possible that the response depends only on some input factors or some combination of
the inputs, hence alignments should be avoided.

The DiceDesign package provides routines to create some specific space filling designs (SFD)
and to test their intrinsic quality. Table 1 gives the list of the available functions. As can be
seen in Table 1, DiceDesign contains three groups of R routines: numerical criteria to assess
the quality of the designs, a graphical tool and routines to generate designs.

Since version 1.2, the package has been supplemented with the routines described in Table 2.
The new functions introduced in version 1.2 concern latin hypercube samples (LHS). Two al-
gorithms to optimize LHS are proposed: the first one is based on a stochastic algorithm (ESE)
and the second method uses simulated annealing (SA). These two methods are applied to the
maximin criterion and to the discrepancy criterion. More details can be found in Damblin,
Couplet, and Iooss (2013). Another space filling design generated with the WSP (Wooton,
Sergent, Phan-Tan-Luu) algorithm is available (Santiago, Claeys-Bruno, and Sergent 2012).

Name Category Description

coverage Criterion Distance measure
meshRatio Criterion Distance measure
mindist Criterion Distance measure
discrepancyCriteria Criterion Discrepancy criteria
rss2D/rss3D Statistical tool Test and visualization of uniformity properties
runif.faure Design Low discrepancy sequence
dmaxDesign Design SFD based on a covariance matrix
straussDesign Design SFD based on the Strauss process

Table 1: Functions of the DiceDesign package.

4 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

Name Category Description

mstCriteria Criterion Mean and standard deviation of the MST
discrepESE_LHS Design Low discrepancy LHS (genetic algorithm)
discrepSA_LHS Design Low discrepancy LHS (simulated annealing al-

gorithm)
maximinESE_LHS Design Maximin LHS (genetic algorithm)
maximinSA_LHS Design Maximin LHS (simulated annealing algo-

rithm)
wspDesign Design Space filling design based on WSP algorithm

Table 2: Functions available in the DiceDesign package since version 1.2.

Lastly, Franco, Vasseur, Corre, and Sergent (2009) proposes classifying space filling designs
using the mean and the standard deviation of the minimal spanning tree (MST). This criterion
has also been implemented.

In this article, we focus on the functions of Table 1. We first present the quality criteria
and the graphical tool. Then, the principles of the space filling designs implemented in the
package are detailed and a two-dimensional case study will be used to compare them.

2.1. Quality criteria for computer experiment designs

During the exploratory phase, it seems important to ensure that the experimental domain
is adequately covered by a design with a small number of points. The number of inputs
being often large, a simple representation does not provide enough information to quantify
the distribution of points in the whole domain. Therefore, practitioners use some criteria to
study the distance between points or to evaluate to what extent the distribution is close to a
uniform one. A part of DiceDesign is dedicated to the implementation of numerical criteria.
Let X =

{
x1, . . . , xn

}
be a design of n experiments in [0, 1]d where d represents the number of

input parameters1. Among intrinsic criteria that can be used to characterize the distribution of
the points throughout the experimental region, two groups can be identified: criteria directly
computed using the distance between pairs of points, and discrepancy measures that quantify
how a given distribution of points deviates from a perfectly uniform one. For a discussion of
several criteria introduced below, one can see Pronzato and Müller (2012).

Distance criteria

Denote by γi the minimum distance between the point xi and the other points of the design.

The coverage criterion which measures whether a design is close to a regular mesh is defined
by:

coverage =
1

γ̄

(
1

n

n∑
i=1

(γi − γ̄)2
)1/2

,

where γ̄ is the mean of the γi’s. For a regular mesh, coverage = 0. Thus, a small value of
the coverage measure means that the design is close to a regular grid.

1Most criteria are computed for a design in the unit cube [0, 1]d. If this condition is not fulfilled, the design
is automatically rescaled.

Journal of Statistical Software 5

coverage meshRatio mindist

Random design 0.508 9.759 0.030
Grid 25 0 1 0.25

Table 3: Comparison of the distance criteria for a random design and a 52 factorial design.

The meshRatio is the ratio between the largest minimum distance and the smallest minimum
distance:

meshRatio =
maxi=1,...,n γi
mini=1,...,n γi

.

For a regular mesh, meshRatio = 1. Hence, it would be preferable to have a small value of
meshRatio.

The last distance measure implemented in this package is called mindist. It returns the
smallest distance between two points. The mindist criterion is defined by Chen, Tsui, Barton,
and Allen (2003):

mindist = min
i=1,...,n

γi. (1)

A small value of mindist means that there is a pair of points which are close, whereas a
large mindist means that the points are well spread throughout the experimental domain.
The maximization of the mindist criterion is called maximin criterion (see Johnson, Moore,
and Ylvisaker 1990). This criterion is commonly used to optimize latin hypercube designs to
ensure better space filling properties.

The following code illustrates the computation of the aforementioned criteria for a two di-
mensional random design (with twenty points):

R> n <- 20

R> dimension <- 2

R> X_random <- matrix(runif(n * dimension), ncol = dimension, nrow = n)

R> x <- seq(0, 1, length = 5)

R> grid <- expand.grid(x, x)

R> coverage(X_random)

R> meshRatio(X_random)

R> mindist(X_random)

In Table 3, a grid with five levels per dimension is taken as a reference although such a design
displays alignments. The small value of the mindist criterion for the random design means
that some points of the design are close.

Discrepancy criteria

Another measure of uniformity is the discrepancy. The Lp discrepancy compares a distribution
of points to the uniform distribution. The discrepancy of a design is low if the number of
points of the design falling into an arbitrary set is almost proportional to the measure of this
set.

Different L2 discrepancies are available in DiceDesign. For example, if we denote by Vol(J)
the volume of a subset J ⊂ [0, 1]d and A (X, J) the number of points of X that fall into J ,

6 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

type Specification

L2 Star L2-discrepancy
C2 Centered L2-discrepancy
M2 Modified L2-discrepancy
S2 Symmetric L2-discrepancy
W2 Wrap-around L2-discrepancy
all All types of discrepancies mentioned above (default)

Table 4: Possible specifications of argument type for discrepancyCriteria.

the L2-star discrepancy is:

DL2? (X) =

[∫
[0,1]2d

(
A(X, Ja,b)

n
−Vol(Ja,b)

)2

da db

]1/2

where a = (a1, . . . , ad)
>, b = (b1, . . . , bd)

> and Ja,b =
∏d
i=1[ai, bi). The other L2-discrepancies

are defined according to the same principle with a different form from the subset J .

Among all the possibilities, discrepancyCriteria implements only the L2 discrepancies be-
cause they can be expressed analytically even for high dimensions. This function takes two
arguments: the first (design) is a matrix or a data frame corresponding to the design of
experiments; the second (type) is a single value or a vector which describes the types of
discrepancies to compute (see Table 4).

R> discrepancyCriteria(X_random, type = c("L2", "M2"))

$DisL2

[1] 0.0224633

$DisM2

[1] 0.09611067

Note that in DiceDesign, centered L2-discrepancy is computed using the analytical expression
provided by Hickernell (1998). The interested reader can refer to Pleming and Manteufel
(2005) for more details about the wrap-around discrepancy.

Radial scanning statistic

The function rss2(3)d refers to a statistical tool which tests the uniformity of the design.

For a two-dimensional design, the radial scanning statistic (RSS) angularly scans the domain.
In each direction, it compares the distribution of projected points to their theoretical distribu-
tion under the assumption that all design points are drawn from a uniform distribution. For a
d-dimensional design, rss2d detects the pair of dimensions that corresponds to the worst case
(detection of alignments and clustering) and represents the projection on this two-dimensional
factorial subspace.

rss3d is similar but for a three-dimensional subspace. For a d-dimensional design, all triplets
of dimensions are tried to detect the worst defect according to the specified goodness-of-fit

Journal of Statistical Software 7

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−0.10 0.00 0.10

−
0.

10
0.

00
0.

10

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

(a) Random design X_random

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−0.2 0.0 0.1 0.2

−
0.

2
0.

0
0.

1
0.

2

−1.0 −0.5 0.0 0.5 1.0
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

(b) 52 factorial design

Figure 1: Graphical output of rss2d for a random design with 20 points in dimension 2 (top)
and for a grid with five points per dimension (bottom). For the grid, the alignments are
detected and the hypothesis of uniformity is rejected.

statistic. The output worst.case contains the triplet of dimensions that gives the worst value
of the statistics and worst.dir corresponds to the direction that gives the worst value of the
statistic in the three-dimensional subspace defined by the worst.case triplet.

These functions offer a viewing tool similar to a radar screen which corresponds to the statistic
value in each direction. The uniformity radar can be used to detect the defects of a design
before using it, especially when only a few variables are really significant.

The call of rss2d on the random design X_random introduced above is done as follows:

R> rss <- rss2d(design = X_random, lower = rep(0, dimension),

+ upper = rep(1, dimension))

2D Radial Scanning Statistic (RSS) with GREENWOOD statistic

Discretization step (in degree) : 0.5

Maximum of RS statistic values (global statistic) per pair of dimensions

(1,2) 0.1049559

The numerical output of the rss2d routine gives the value of the statistic in the worst di-
rection. Here, for the X_random design, the output of rss2d is equal to 0.1049559. This

8 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

value has to be compared to the threshold value at 5% obtained under the uniform assump-
tion (rss$gof.test.stat = 0.12325). The observed value being less than the reference, the
design is not rejected, hence is considered as good.

This analysis can also be directly performed using the graphical output of the function. The
three graphics at the top of Figure 1 show the results of rss2d obtained on the random
design X_random whereas the results at the bottom concern a grid. The points of the design
are plotted on the left, the radial statistic on the middle and the projected points on the right.
For the random design, the observed statistic does not cross the threshold in any direction.
The projected points in the worst direction can still be considered as sampled from a uniform
distribution whereas for the grid, uniformity is definitely rejected. The threshold is crossed
several times. For example, in the horizontal direction all 20 projected points collapse into 5
points.

More details about the radial scanning statistic can be found in Roustant, Franco, Carraro,
and Jourdan (2010).

2.2. Space filling designs

In computer experiments, designs are commonly based on latin hypercubes (McKay, Beckman,
and Conover 1979; Stein 1987). Another possibility is the use of low discrepancy sequences
(e.g., Halton 1960; Hammersley 1960; Sobol’ 1967; Faure 1982; Niederreiter 1987). As latin
hypercube designs and low discrepancy sequences have already been implemented in R (see,
for example, the packages lhs, Carnell 2012, for latin hypercube and randomtoolbox, Chalabi,
Dutang, Savicky, and Wuertz 2014, or fOptions, Wuertz 2013, for low discrepancy sequences
except Faure’s sequence), we focus here on other space filling designs: maximum entropy
designs (Shewry and Wynn 1987; Johnson et al. 1990) and Strauss designs (Franco, Bay,
Dupuy, and Corre 2008) which can be directly generated from the DiceDesign package.

In this section the designs will be compared on the basis of the value of the mindist criterion
defined by (1). This choice is justified by the fact that this criterion is relatively easy to
interpret, is appropriate to the space filling context and is commonly used to optimize latin
hypercube designs.

Dmax designs

The designs generated by the dmaxDesign routine are obtained by maximizing the determinant
of the correlation matrix using a Federov-Mitchel exchange algorithm. The principle is to
assume that a spatial Gaussian process will be observed at the points of the design. The spatial
correlation between observations is defined by a variogram (Cressie 1993). For example, if we
consider the spherical variogram γ defined by:

γ(h) = 1.5
h

range
− 0.5

(
h

range

)3

for h ≤ range,

where h is the distance between two points and the range parameter exactly corresponds to
the distance beyond which there is no longer any correlation between observations.

The spatial correlation matrix between coordinates, C = (ρ)ij , is then defined by:

ρij =

{
1− γ (hij) if hij ≤ range,
0 if hij > range,

Journal of Statistical Software 9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

h

ga
m

m
a

Figure 2: Spherical variogram γ for range = 0.4.

where hij is the distance between xi and xj and range is the range of the variogram.

The objective of the construction is to select the best set of points sufficiently distant from
each other so that the observations at these points are not correlated. Thus, if the points are
separated by more than the range, the determinant will be its maximum value.

Note that these designs are also called maximum entropy designs because maximizing the de-
terminant of the correlation matrix is equivalent to maximizing the entropy of the distribution
of points.

In dmaxDesign, the spherical variogram has been chosen. Such a choice can be justified by
the fact that the impact of the range parameter is more important than the behavior at the
origin (and hence, the choice of the covariance structure). Therefore Dmax designs depend
only upon the range parameter.

R> X <- dmaxDesign(n = 20, dimension = 2, range = 0.2, niter_max = 1000,

+ seed = 1)

R> names(X)

[1] "n" "dimension" "range" "niter_max" "design_init"

[6] "design" "det_init" "det_end" "seed"

Figure 3 presents Dmax designs obtained for two different values of the range parameter.
For the first case, the range is small (0.1) so that the determinant becomes zero as soon as
the points are separated by a distance greater than the range. The resulting design contains
some empty areas and some points too close to each other. This problem is reduced with a
larger range (0.2). In practice, it is therefore preferable to choose a large value for the range

parameter.

The evolution of the mindist criterion as a function of the range parameter is given in
Figure 4. It can be seen that the mindist criterion increases with the range. Note that the
value of the determinant can be used to compare designs only if the range parameters that
are used to build the designs are the same. Indeed, attention must be paid to the fact that
whatever the quality of the design, the determinant is large when the range is small and small
when the range is high.

10 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Initial random design

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Dmax design – range = 0.1

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Dmax design – range = 0.2

Figure 3: Initial distribution and maximum entropy designs for different values of the range

parameter (20 points in dimension 2 after 1000 iterations).

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●●●
●

●

●

●
●

●

●

●
●

●●
●

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

range

m
in

di
st

 c
rit

er
io

n

Figure 4: Evolution of the mindist criterion as a function of the range parameter (100 calls
to dmaxDesign with niter_max = 2000).

Strauss designs

Strauss designs (straussDesign) have been developed by the DICE consortium and are based
on the Strauss-Gibbs process. This process has been historically introduced to represent
repulsion between charged particles. A stochastic simulation is used to construct a Markov
chain which converges to a spatial density of points described by the Strauss-Gibbs potential.
In practice, the Metropolis-Hastings algorithm is implemented. The result of a simulation is
represented in Figure 5. A sphere is drawn around each point of the design. It represents
the area of influence of a point on the other points of the design. A point has an influence
on another point if the two spheres intersect. Conversely, we say that there is an interaction
between two points if their spheres intersect.

Note that the C random number generator (used by straussDesign) is installation depen-
dent2. Hence, Strauss designs represented in the sequel will be difficult to reproduce.

Recall that we denote by X =
{
x1, . . . , xn

}
the design of n experiments in [0, 1]d. The

2Actually, the C random generator depends upon the version of the libc library.

Journal of Statistical Software 11

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Initial random design

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Strauss design

Figure 5: Initial distribution and the resulting Strauss design (20 points in dimension 2).
The design on the right is obtained after 1000 Markov chain Monte Carlo iterations with an
interaction radius RND = 0.19, a potential α = 0.5 and a repulsion parameter γ = 0.001. The
spheres of radius RND/2 represented in Figure (b) quantify the area of influence of each point
of the pattern.

probability density function π of the family of Gibbs point processes is:

π (x) ∝ exp (−U (x)) (2)

where the potential U is represented by the function U (x) = β
∑

1≤i<j≤n ϕ
(∥∥xi − xj∥∥). In

this formulation, β = − ln γ with γ ∈]0, 1] a repulsion parameter and ϕ : [0,+∞[−→ R is a
decreasing continuous function such that ϕ (0) = 1 and limx→∞ ϕ (x) = 0. Note that as the
local potential U takes into account only the interactions between pairs of points, the density
π corresponds to a so-called pairwise interaction process.

straussDesign implements the family of functions ϕα,RND represented in Figure 6, defined
by:

ϕα,RND (h) =

{ (
1− h

RND

)α
for 0 ≤ h ≤ RND,

0 otherwise ,
(3)

and depending on a potential parameter α and on the interaction radius RND.

Strauss processes correspond to the particular value α = 0. In this case, the distribution π
can easily be written as:

π (X) = kγs(X),

where k is the normalizing constant, γ ∈]0, 1] is the repulsion coefficient (with β in the
previous formulation equal to − ln γ) and s (X) is the number of distinct pairs of points{
xi, xj

}
of the design X that are separated by a distance no greater than the interaction

radius RND.

Particular attention must be paid when setting the parameters. Each parameter (radius,
potential and repulsion) has an impact on the final distribution. For the sake of readability, a
brief study in dimension 2 will be conducted in order to illustrate the impact of each parameter
on the distribution of points. Although the two-dimensional case is a little basic, it allows the
results to be visualized. It is worth noting that the remarks on the influence of the parameters
on the final distribution of points remain true in higher dimensions. Moreover, an advantage

12 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

(a) α = 0

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

(b) α = 0.5

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

(c) α = 1

Figure 6: Potential power ϕα,0.2 as a function of the distance between points h. The trivial
case corresponds to the potential 0-1 (α = 0) and intermediate case to the power α = 0.5.

of these designs is their flexibility which allows the generation of a design coherent with the
specific nature of the data and the objective of the study. For example, the fitting kriging
model (Santner, Williams, and Notz 2003) requires the estimation of the variogram parameters
(shape, nugget, sill and range); it is thus important to have information for different distances
between points, even for small distances. When setting up a Strauss design, it is thus possible
to adjust its parameters to cope with such configurations. This is often more complicated to
achieve with other types of designs (e.g., minimax latin hypercube).

In dimension 2, one can easily represent the design and we will take advantage of this feature
to illustrate the impact of the parameters on the quality of the point distribution, which will
be evaluated by the mindist criterion. Note that the L2-discrepancy criterion has also been
computed for all the tested designs and its value is between 0.015 and 0.040; as a point of
comparison, the value of Faure’s low discrepancy sequence is 0.020.

As shown previously, basic Strauss designs depend mainly on four parameters. The number of
Monte Carlo iterations is fixed at its default value, namely NMC = 1000. The other parameters
are the interaction radius RND, the repulsion parameter γ and the potential power α. We now
study each of these parameters.

Interaction radius. The dependence on the radius parameter turns out to be important
(see Figure 7). Excessively small radius values (Figure 7a) result in a distribution without
interaction but with many gaps, while excessively large values lead to distributions with
clusters (Figure 7c).

To complete this study, Figure 8 represents the change in the mindist criterion with respect
to the value of the radius RND. Given the random nature of Strauss designs, 500 designs have
been constructed for each value of RND. The optimal value of RND for the criterion mindist

is slightly higher than 0.2 but it also corresponds to the area where the variability of this
criterion is high. Then it may be wise to choose a radius slightly less than the optimal value.

Potential power α. The potential power α (see Figure 6) represents the strength of the
interactions between points at a distance less than or equal to RND.

An interaction exists as soon as the spheres of radius RND/2 intersect. For the special case

Journal of Statistical Software 13

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) RND = 0.1

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) RND = 0.19

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) RND = 0.8

Figure 7: Impact of the RND parameter (20 points in dimension 2; α = 0; γ = 0.001).

0.10 0.20 0.30 0.40 0.500.
00

0.
10

0.
20

RND

m
in

di
st

 c
rit

er
io

n

Figure 8: Impact of the interaction radius RND on the mindist criterion. The continuous line
represents the median of the mindist criterion and the dashed lines the empirical quartiles
(Q1 and Q3) for 500 designs. The designs were generated with α = 0.5 and γ = 10−4.

α = 0, there is no difference between points that are close and those at a distance close to
RND. The advantage of considering a potential different from zero is that the influence of a
point on its neighborhood (closer than RND) actually depends on the distance between the
points. Potential power can be used to give more importance to points that are close.

As shown previously, the choice of the interaction radius is not obvious. The flexibility offered
by the potential parameter could be an alternative to correct an unfortunate choice of radius.

Repulsion parameter γ. Another comment on this kind of design concerns the repulsion
parameter γ which is explicitly linked with the acceptance ratio. Indeed, the construction
consists of choosing a point xi of the current design and to propose a new point yi. In the case
of the Strauss process represented in Figure 10, the acceptance probability of the new point is

min
(

1, γs(yi)−s(x
i)
)

where s
(
xi
)

is the number of points of the design X in interaction with

the point xi.

It is important to notice that a small value will necessarily lead to a large value for the mindist
criterion (which corresponds to the best way to fill a square space with balls). Depending on

14 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

0 0.2 0.4 0.6 0.8 10.
00

0.
10

0.
20

potential

m
in

di
st

 c
rit

er
io

n

Figure 9: Impact of the α parameter on the mindist criterion (20 points in dimension 2).
The repulsion parameter corresponds to γ = 10−4 and the interaction radius RND = 0.19.

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) γ = 0.1

mindist = 0.038

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) γ = 0.01

mindist = 0.127

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) γ = 0.001

mindist = 0.191

Figure 10: Impact of the repulsion parameter on the design (20 points in dimension 2). The
interaction radius RND is fixed at 0.19 and the power α is fixed at 0.

the objective of the study, it might be important to generate points which are either closer or
further apart. Hence, the value of the repulsion parameter should not be too small because
otherwise points at a distance less than RND will almost never be accepted.

In Figure 11, the influence of the repulsion parameter on the mindist criterion is shown for
three values of the power α. This representation confirms that a small value for the repulsion
γ leads generally to a large value for the mindist criterion. The variability of the mindist is
greater with α = 0.8 than with lower values.

Constraints on the margins. The simulated law π can be adapted to some specific prop-
erties. Let us suppose that we wish to simulate a space filling design in dimension d and also
in dimension 1 as latin hypercubes do. It is then possible to adapt the law π by taking into

Journal of Statistical Software 15

1e−05 1e−04 0.01

0.
00

0.
05

0.
10

0.
15

0.
20

repulsion parameter

m
in

di
st

 c
rit

er
io

n

(a) α = 0.2

1e−05 1e−04 0.01

0.
00

0.
05

0.
10

0.
15

0.
20

repulsion parameter
m

in
di

st
 c

rit
er

io
n

(b) α = 0.5

1e−05 1e−04 0.01

0.
00

0.
05

0.
10

0.
15

0.
20

repulsion parameter

m
in

di
st

 c
rit

er
io

n

(c) α = 0.8

Figure 11: Impact of the repulsion parameter on the mindist criterion. The boxplots are
drawn with the results obtained for 500 designs with 20 points in dimension 2, the value of
the interaction radius is fixed at 0.19.

account local potentials in the definition of the potential U :

U (x) = β
∑

1≤i<j≤n
ϕ
(∥∥xi − xj∥∥)+

d∑
k=1

βk
∑

1≤i<j≤n
ϕk

(∣∣∣xik − xjk∣∣∣)
where ϕk are functions defined by (3) and βk = − ln γk where γk are the repulsion parameters
for each one-dimensional axis.

This variant is already implemented in the straussDesign function: the value of the argument
constraints1D indicates whether constraints on the projections must be taken into account
(constraints1D = 1) or not (constraints1D = 0 by default). All the functions ϕk (1 ≤
k ≤ d) correspond to α = 0 and the interaction radius R1D (that corresponds to the interval
of influence on the margins) is set to 0.75/n where n is the number of points of the design.
The repulsion parameter γk that controls the repulsion between the projected points can be
chosen by the user (argument gamma1D) but it will be the same in all directions.

Figure 12 gives the comparison of designs with and without constraints on the margins. The
left plot is generated without constraints; it can be seen that the projections on the axis
exhibit clusters. On the right side, constraints on the margins have been imposed and the
projections are more uniform.

Due to the stochastic nature of Strauss designs, we compare (Figure 13) the mindist criterion
of 500 designs of 20 experiments with or without one-dimensional constraints. The numerical
values of the mindist in dimension 2 and in dimension 1 cannot be compared because the
scale is not the same. Note that in dimension 1, the points of a regular grid are spaced at a
distance of 1/(n− 1) = 0.05 for n = 20. This value corresponds to the maximum value of the
mindist criterion in dimension 1.

We can see that the designs for which 1D-constraints are taken into account are leading to
a greater value of the mindist criterion after projection (horizontal axis of Figure 13). The
value of the mindist for the two-dimensional distribution of points is not really impacted by
the constraints on the margins (vertical axis of Figure 13). However this remark ceases to
hold true in higher dimensions since adding one-dimensional constraints reduces the value of
the global mindist criterion.

16 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Strauss without constraint

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Strauss with margin constraints

Figure 12: Comparison of Strauss designs without (left) and with (right) constraints on the
margins. The projections of the points on the factorial axis are represented as ticks on the
axis. The designs have been generated for 20 points in dimension 2 with α = 0.5, RND = 0.19,
γ = 0.001 and γ1D = 0.0001.

o
o

o

o
o

oo

o oo
o
o

o
o

o

o

o

o
o

o

o

oo

o
o

o

o

o
oo

o
o

o

oo o

o

o

o

o
o

o

o

o

o

o

oo

o

o

o

o
o

o

o
o

o

oo

o o

o

oo

o

o
o

o

o

o

o

o
o

o

o

o
oo

o
ooo

o

o

o

o
o o

o

o

o

o

o

o
o

o

o

o

oooo

o

o
oo

o

oo

o

o
o

oo

o

o

o

o

o

o

o

o
o

o

o

oo

o

o

o

o
oo

o

o
o

o

o

o

o

o

o

o

o
o oo

o

o

o

o

oo

o
o

o

o

o

o
o

o

o

oo

o

o

o

o o
o
o

o

o

o

o
o

o
o

oo oo

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

oo
o

o

o

o

o

o

o

o

ooo
o

o

o

o

o

o
o

o

o
o

oo

o

o

o

o

o

o
o

o
o

o

oo

o

oo

o

o

o

oo
o

o

o

o

o

o

o

oo
o

o

o

o

o

o

oo

oo

oo o

o

o ooo

o

o

o
o

oo

o

o

o

o

oo

o

oo

o

o

o
o

o

o

o

oo

o
o

oo

o
o

oo

o

o

o

o
o

o

o

o
o
o

o
o

o

o

o

o

o

o

o

o
oo

o

ooo
o

o

o
o

oo

o

o
o

o
oo

o

o

o

o

o
o

o

o
o

o
o

o

o

o

o

o

o

o o
o

o

o

o

o

o

oo o
oo

o

o
o o

o

o

o

o
o

o

o o

o

o

oo
o

o
o

o

o

o

o

o

oo

o
o

o

o

oo

oo

o

o
o

o

o

o

oo

o
o

o

o

o

o

o

o

o
oo

oo

o
o

o

o

oo

o

o
o

o

oo
o

o o

o

o

o

o

oo
o

o

o

o

o

o

oo

o

o

o o
o

o

o

o

o

o

o

o

o

o

o

o

o oo
o

o

o

o

o

oo

o

o

o
o
o

o

o
o

o

o

o

o
oo

o

o

oo

o

o
o

0.00 0.01 0.02 0.03 0.040.
00

0.
10

0.
20

mindist(X1)

m
in

di
st

(X
)

+
+

+

+

+
+

+
+

+

+

+

+ +
++

+

+

+

+

+
+

+

+

+

++

+ +
+ ++

+

++
+

+

+

+

+

++ +

+

+

+ +

+

+

+

+

+

+

+ +
+

++ ++

+++
+

+

+

+

+

+

+

+

++

+

+
++

+

+

+

+

+

+

+

+
+

+

++

+

+

+

+

++

+

+

+

+

+
+

+

++

+

+

+

+
+

+ +

+

+

+

+

+ +

+

+

+
+ +

+

+
+

+

+

+
+

+++

+

++

+

+
+

+

+

+

++

+
+

+
+

+

+

+

+

+
+
++

+

+
++

+

+

+

+

+

+

+
+

+

+

+ +
+

+

+

+

+
+

+

+

+

+
+

++

+
+

+

+

+

+

+

+ +
+

+

+

+ +

+

+

+

+

+

+

+

++
+

+
+

+
+

+
+

+
+

+

+
+

+

+

+

+

+

+ +

+

+ +
+

+

+

+ +

+

+

+

+

+

+

+
+

+
++

+

+

+
+
+ +

+

+
+

+ +

++
+

+

+
+

++

+
+

+
+

+

+

+

+
+

+

+

+

+

+

+

+
+

+
+

+ +

+

+
+

+

+
+

+

+

+
+

+

+

+

+

+
+

+

+

++

+

+
+

+

+

+

+

+

+

+
+

+
+

+

+

+

+ +

+
++

+
+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+
+

+ +
+

+

+

+

+

+

+
+

+ +
+

+

+
+

+
+

++

+

+

+

++

+

+

+

++

+

+
+

++

+

+

+
+

++

+
+ +

+
+

+

+

+

+
+

+
+

+

++

+
+

+

+

+

+

+
+

+

+
+

+

+

+

+

+
+

+

+

+

+
+ +

+

+
+

+

+

+

+

+

+

+ +
+

+

+

+

+
+++

+
+

+

+

+
+

+
+

++

+

+
+

+

+

+

+

+ +

+
+

++
+

+
+

+
+

+
+

+
+

+

+

+

+ +

+
+
+

+

+

+

+

+
+

+

+

+

+

+

+ +
+

++

+

o
+

No 1D constraint
1D constraints

o
o

o

o
o

oo

ooo
o

o

o
o

o

o

o

o
o

o

o

oo

o
o

o

o

o
oo

o
o

o

ooo

o

o

o

o
o

o

o

o

o

o

oo

o

o

o

o
o

o

o
o

o

oo

o o

o

oo

o

o
o

o

o

o

o

o
o

o

o

o
oo

o
ooo
o

o

o

o
oo

o

o

o

o

o

o
o

o

o

o

oooo

o

o
oo

o

oo

o

o
o

oo

o

o

o

o

o

o

o

o
o

o

o

oo

o

o

o

o
o o

o

o
o

o

o

o

o

o

o

o

o
oo o

o

o

o

o

oo

o
o

o

o

o

o
o

o

o

o o

o

o

o

oo
o

o

o

o

o

o
o
o

o
oooo

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

oo
o

o

o

o

o

o

o

o

oooo

o

o

o

o

o
o

o

o
o

oo

o

o

o

o

o

o
o

o
o

o

oo

o

oo

o

o

o

oo
o

o

o

o

o

o

o

oo
o

o

o

o

o

o

oo

oo

oo o

o

o oo o

o

o

o
o

o o

o

o

o

o

oo

o

oo

o

o

o
o

o

o

o

oo

o
o

oo

o
o

oo

o

o

o

o
o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o
o o

o

ooo
o

o

o
o

o o

o

o
o

o
oo

o

o

o

o

o
o

o

o
o

o
o

o

o

o

o

o

o

o o
o

o

o

o

o

o

oo o
oo

o

o
oo

o

o

o

o
o

o

oo

o

o

oo
o

o
o

o

o

o

o

o

oo

o
o

o

o

o o

oo

o

o
o

o

o

o

oo

o
o

o

o

o

o

o

o

o
o o

oo

o
o

o

o

oo

o

o
o

o

oo
o

oo

o

o

o

o

o o
o

o

o

o

o

o

oo

o

o

oo
o

o

o

o

o

o

o

o

o

o

o

o

ooo
o

o

o

o

o

o o

o

o

o
o
o

o

o
o
o

o

o

o
o o

o

o

oo

o

o
o

0.00 0.01 0.02 0.03 0.040.
00

0.
10

0.
20

mindist(X2)

m
in

di
st

(X
)

+
+

+

+

+
+

+
+

+

+

+

++
+ +

+

+

+

+

+
+

+

+

+

+ +

+ +
+++

+

++
+

+

+

+

+

++ +

+

+

++

+

+

+

+

+

+

+ +
+

+++ +

++ +
+

+

+

+

+

+

+

+

+ +

+

+
+ +

+

+

+

+

+

+

+

+
+

+

++

+

+

+

+

+ +

+

+

+

+

+
+

+

+ +

+

+

+

+
+

++

+

+

+

+

+ +

+

+

+
++

+

+
+

+

+

+
+

++ +

+

+ +

+

+
+

+

+

+

+ +

+
+

+
+

+

+

+

+

+
+

++

+

+
+ +

+

+

+

+

+

+

+
+

+

+

++
+

+

+

+

+
+

+

+

+

+
+

+ +

+
+

+

+

+

+

+

++
+

+

+

+ +

+

+

+

+

+

+

+

++
+

+
+

+
+

+
+

+
+

+

+
+

+

+

+

+

+

+ +

+

++
+

+

+

++

+

+

+

+

+

+

+
+

+
++

+

+

+
+

++

+

+
+

++

+ +
+

+

+
+

+ +

+
+

+
+

+

+

+

+
+

+

+

+

+

+

+

+
+

+
+

+ +

+

+
+

+

+
+

+

+

+
+

+

+

+

+

+
+

+

+

++

+

+
+

+

+

+

+

+

+

+
+

+
+

+

+

+

+ +

+
++

+
+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+
+

+ +
+

+

+

+

+

+

+
+

++
+

+

+
+

+
+
+ +

+

+

+

+ +

+

+

+

++

+

+
+

++

+

+

+
+

++

+
++

+
+

+

+

+

+
+

+
+

+

+ +

+
+
+

+

+

+

+
+

+

+
+

+

+

+

+

+
+

+

+

+

+
+ +

+

+
+

+

+

+

+

+

+

++
+

+

+

+

+
+ +

+

+
+

+

+

+
+

+
+

++

+

+
+

+

+

+

+

++

+
+

+ +
+

+
+

+
+

+
+

+
+

+

+

+

++

+
+

+

+

+

+

+

+
+
+

+

+

+

+

+ +
+

+ +

+

o
+

No 1D constraint
1D constraints

Figure 13: Comparison of the mindist criterion using the constraints1D option. The ver-
tical axis represents the global mindist computed with the two-dimensional design X. The
horizontal axis represents the mindist criterion computed on the one-dimensional axis: X1
on the left and X2 on the right. Symbols ’o’ correspond to no constraint and symbols ’+’
to one-dimensional constraints. The results are obtained from 500 designs with 20 points in
dimension 2 and for input parameters set at the values α = 0.5, RND=0.19, γ = 0.001 and
γ1D = 0.0001.

Example of application. The following code generates a Strauss design. On the basis of
the previous study, we choose a set of parameters as follows: a radius of 0.21, a potential power
of 0.2, a small value for the repulsion parameter and no margin constraints. Better designs
can be obtained with larger values of the radius (for example, approaching 0.23), the quality
being however more variable (see Figure 8). The output of the function is a list containing
the number of experiments (n), the dimension (dimension), the initial design (design_init),
the value of the parameters of the Strauss (the interaction radius RND (radius), the potential
power (alpha), the repulsion parameter (gamma), the number of Monte Carlo iterations (NMC),
the value of the seed, the constraints on the margins and the Strauss design (design).

Journal of Statistical Software 17

R> dim <- 2

R> n <- 20

R> X <- straussDesign(n, dim, RND = 0.21, alpha = 0.2, repulsion = 0.0001)

R> mindist(X$design)

[1] 0.2110067

R> X$seed

[1] 1434436403

The user can provide a value for the input parameter seed. Otherwise, the value of the seed
is generated randomly using Sys.time() and the seed parameter is updated accordingly.

straussDesign implements exactly the simulation of a distribution defined by (2). In the
above study (20 points in dimension 2), we find the values of the parameters RND, α and
γ which maximize the mindist criterion. If either the number of points or the dimension
changes, another study must be conducted. The parameter most affected is the interaction
radius RND. The algorithm could be extended to the generation of heterogeneous designs or
adapted to constrained domains but these generalizations are not yet available in this package.

The general algorithm is detailed in Franco et al. (2008).

3. DiceEval package

Suppose now that the simulations have been carried out at x1, . . . xn. The numerical values
of the output are then analyzed to provide a response surface for prediction, uncertainty
propagation or global optimization. The DiceEval package deals with the construction of
different types of response surfaces also called surrogates or metamodels. Several procedures
(especially numerical and graphical tools) are provided to validate fitted models. Then,
DiceEval gathers the most common methods used to model a computer code output. Most
of them are already available in R.

The main contributions of this package are the standardization of the calls to fit the different
metamodels and the implementation of standard criteria for quantifying the error between the
model and the simulated phenomenon. The implementation of graphical tools to analyze and
compare metamodels is also available. Moreover, for methods that depend upon a parameter,
some routines have been developed to assist the user in choosing the best value for the
parameter. The DiceEval routines are described in detail in Table 5.

In the sequel, a toy example in dimension 2 will serve as a running example. The main goal
of this study is to illustrate to what extent the quality of the predictions is influenced by the
choice of the experimental design and the choice of the type of metamodel. Note that the
random design is the one generated in Section 2.1 and other designs are constructed according
to the remarks in Section 2.2. The conclusion of the two-dimensional example is presented at
the end of this section (see Section 3.6).

3.1. Illustration on a two-dimensional function

18 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

Name Description

dataIRSN5D Data set provided by IRSN
testIRSN5D Test data for the dataIRSN5D case
modelFit Fitting of metamodels
modelPredict Prediction at new data for a fitted metamodel
modelComparison Comparison of different types of metamodels
R2 Multiple R-squared
MAE Mean absolute error
RMA Relative maximal absolute error
RMSE Root mean squared error
residualsStudy Residuals plot
stepEvolution Evolution of the stepwise model
penaltyPolyMARS Choice of the penalty parameter for a PolyMARS model
crossValidation K-folds cross validation
testCrossValidation Test for the cross validation procedure

Table 5: Functions of the DiceEval package.

x1

x2

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

x2

f(
0,

x2
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

x1

f(
x1

,0
)

Figure 14: Representation of the function f . The last two figures represent the sections of
the function for x1 = 0 and x2 = 0 respectively.

The main functions of the DiceEval package have been listed previously. Now, we will present
its features in use. The package is illustrated using a 2-dimensional analytic function. Al-
though simplistic, this example describes a study in detail from the beginning to the end. The
dimension of the input domain allows a representation of the designs and the construction
of the data set is simplified by knowledge of the output. The objective of this study is to
highlight the influence of the choice of the design on the quality of the metamodel.

Let us consider the following analytical 2-dimensional test function f :

f (x1, x2) = 3.5
[
exp

(
− (4x1 − 1)2

)
+ exp

(
− (4x1 − 3)2

)]
− sin (2πx2) + 2x1x2 − 1.5

for 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1.

The contour plot and two sectional representations of the function f are represented in Fig-
ure 14.

Journal of Statistical Software 19

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Random design

(mindist = 0.030)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Dmax

(mindist = 0.175)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Optimized Strauss

(mindist = 0.211)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Non-opt. Strauss

(mindist = 0.011)

Figure 15: Designs of experiments in dimension 2.

Choice of a design of experiments in dimension 2

The first step of the study consists in exploring the experimental region [0, 1]2. Assume
that we can only perform 20 simulations which equates to a design of experiments with ten
points per dimension. Given the results of Section 2.2, four different designs represented in
Figure 15 have been compared. The first design corresponds to uniformly distributed points.
The second design is a Dmax design generated with a range parameter equal to 1 and to
a large number of iterations (niter_max = 10000). Then, two Strauss designs have been
generated: the first with the following parameters: RND = 0.21, α = 0.2 and γ = exp(−10) (it
will be called the optimized Strauss design) and the second (called the non-optimized Strauss
design) has been generated with an excessively large RND that leads to groups of collocalized
points. The mindist criteria indicated in Figure 15 show large differences between optimized
designs and others. The optimized Strauss design has a mindist criterion larger than 0.21.

3.2. Construction and prediction

The main function modelFit is dedicated to the construction of a model from a training data
set; modelPredict aims at predicting the values of the model at new locations. Five meta-
modeling techniques are considered, i.e., the linear model and its stepwise version, additive
models, MARS, PolyMARS and kriging models.

Note that most of the learning models depend on other packages, namely gam (Hastie 2014),
mda (Hastie 2013), polspline (Kooperberg 2013) and DiceKriging (Roustant et al. 2015). In
order to make package maintenance easier, the interface to external packages is restricted
to the modelFit function. Except for kriging, the different models implemented in the
DiceDesign package are illustrated in Hastie, Tibshirani, and Friedman (2009).

Additive models

The additive models assume that the output can be decomposed as a sum of one-dimensional
functions of each of the inputs. For the inference, the idea is to estimate successively and non-
linearly the functions in each direction thanks to a backfitting procedure. Additive models are
a particular case of generalized additive models developed in Hastie and Tibshirani (1991).
For example, the function can be searched as a sum of d cubic splines in each direction.

20 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

MARS and PolyMARS models

The MARS model (multivariate adaptive regression splines; Friedman 1991) and its extension
PolyMARS (polychotomous regression based on MARS; Kooperberg, Bose, and Stone 1997)
can be viewed as the generalization of the stepwise linear regression with piecewise linear
basis functions. These models do not belong to the family of linear models because each basis
function is based on a knot that must also be characterized. These models are very flexible
and adaptable. Therefore they are often neither sufficiently robust nor predictive. This is
why their construction uses generalized cross validation in order to check for predictivity and
penalize the complexity of the model. To go further in reducing the complexity of the inferred
model, PolyMARS model is constrained during its construction because in each direction,
linear functions must be added before piecewise linear ones. The aim is to provide more
robustness, at the expense of flexibility.

Kriging models

The principle of kriging is to assume that the response is the realization of a Gaussian process
characterized by a trend and a spatial covariance structure (see Santner et al. 2003). The
set of parameters to be estimated are the trend coefficients, the ranges of the correlation
kernel and the global variance of the process. Unlike previous models, the kriging predictor
is interpolating (no prediction noise at the observation points) and the variance of prediction
is directly linked to the position between the current point and other points of the design.

Fitting of a model with package DiceEval

Let us denote by X_unif the random experimental design and Y_unif the corresponding
response values. In the following, the first command builds an additive model that fits the
data set (X_unif, Y_unif). The second command retrieves the values obtained on test points
contained in the matrix (or data.frame) X_test. Here, the test set is a factorial grid of
10,201 points that corresponds to 101 levels in each direction.

R> modAm <- modelFit(X_random, Y_random, type = "Additive",

+ formula = formulaAm(X_random, Y_random))

R> Y_test_Am <- modelPredict(modAm, X_test)

Figure 16 gives a 2D plot of the additive response surface and two 1D cut sections with the
true and the predictive functions in each direction. The additive model (with cubic spline
basis in each direction) gives an approximation of the general behavior of the real function.

3.3. Validation

Numerical criteria are implemented in order to assess the quality of the fitted model. Two
cases can be distinguished: the quality of the fitted model on the training set itself and its
predictive qualities on a data set different from the training set. First, the training set is the
information provided to construct a specified model from these data. Second, the fitted model
will be used instead of the simulator; hence, it is important to quantify the generalization
quality of the metamodel. In other words, the model must provide predicted values close to
the real values even for points which are not in the training set.

Journal of Statistical Software 21

x1

x2

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x2

Y
_t

es
t_

A
m

_u
ni

f (
x1

=
0)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
0.

0
1.

0
2.

0

x1

Y
_t

es
t_

A
m

_u
ni

f (
x2

=
0)

Figure 16: Approximation of the analytical 2-dimensional test function by the additive model
modAm. Dashed curves represent the true function and the solid curves show the predicted
function.

Let us denote by yi the value of the response variable at the point xi of the design and ŷi the
predicted value computed from the fitted model. In regression, the most common measure of
predictability is the coefficient of determination:

R2 = 1−

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − ȳ)2
, (4)

where ȳ is the mean of the observed values yi. This criterion represents that part of the
total variance that is explained by the predictors. Note that, as this criterion does not take
into account the complexity of the model, it increases with the number of terms contained
in the model. To avoid this problem it is recommended to consider the adjusted version of
the determination criterion. The adjusted coefficient of determination is mainly defined for
linear models. In the DiceEval package, criteria that can be evaluated and compared for all
the metamodels are implemented. As it appears difficult to evaluate the complexity of MARS
and PolyMARS models, the adjusted coefficient of determination is not available.

The root mean squared error (RMSE) is a L2 measure which quantifies the accuracy of a
predicted model:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2. (5)

The mean absolute error (MAE) is defined by

MAE =
1

n

n∑
i=1

|yi − ŷi| . (6)

This L1 criterion is similar to the RMSE with the advantage of being more robust because it
is less affected by outliers. The last criterion, RMA (relative maximum absolute error) is a
measure of type L∞:

RMA =

max
1≤i≤n

|yi − ŷi|

σy
(7)

22 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

5 10 15 20

−
0.

2
0.

0
0.

2
0.

4

Index

re
si

du
al

s

0 1 2 3

−
0.

2
0.

0
0.

2
0.

4

fitted values
re

si
du

al
s

residuals

de
ns

ity

−0.4 0.0 0.2 0.4

0.
0

0.
5

1.
0

1.
5

2.
0Residuals study

Figure 17: Study of the residuals for an additive model with one-dimensional splines.

with σy the standard deviation of y1, . . . , yn. In practice, this criterion can be used to point
out a region of the experimental domain where the fitted model is not appropriate.

In the DiceEval package, an R function is associated with each criterion. All these routines
take two vectors as input arguments: the first corresponds to the real values of the response
and the second to the predicted values at the same points. Some criteria (namely R2 and RMA)
are not symmetrical, hence the user must be careful with the order of the arguments while
using these routines.

As can be observed below, the R2 criterion when used as an evaluation measure of the additive
model on the test set is high. This indicates an appropriate model.

R> R2(Y_test, Y_test_Am)

[1] 0.9087903

In addition to using the above criteria, the validation of a fitted model often leads to the
study of the residuals distribution. The routine residualsStudy analyzes the residuals of a
model by plotting the residuals (assumption of independence), the residuals against the fitted
values (adequacy between model and reality) and the density. The graphical result for the
additive model is provided in Figure 17.

Several models in the package depend on various parameters. Among the models, the
stepwise and PolyMARS models depend on a penalty parameter. The stepwise procedure
consists of selecting the most influential terms among a set of numerous candidate terms. For
example, the forward procedure consists of successively adding the most influential term to the
model. This selection is carried out by an automatic minimization that is often parametrized.
The package proposes a study of the influence of the penalty parameter using graphical and
numerical tools which can be used to choose the most appropriate value.

The criterion to minimize, denoted by C in the following, depends on the penalty argument
and is defined by:

C(penalty) = −n ln(σ̂2) +M penalty,

where n is the size of the data set, σ̂ is an estimation of the residual standard deviation and M
is the number of parameters in the statistical model. Note that the first term is proportional
to the likelihood function of the estimated model.

Journal of Statistical Software 23

An illustration of the use of modelFit for the metamodels with a penalty parameter is
detailed in the command lines below.

R> modStep <- modelFit(X_unif, Y_unif, type = "StepLinear", penalty = 2)

Warning message:

In modelFit(X_random, Y_random, type = "StepLinear", penalty = 2) :

[type=="StepLinear"] argument 'formula' not found, set at 'Y~.'

R> library("polspline")

R> modPolyMARS <- modelFit(X_random, Y_random, type = "PolyMARS", gcv = 2)

In the above example a warning is printed because the function is called without the argument
formula. In such a case, the formula argument takes its default value, namely ’Y ~ .’.

The penalty parameter of the procedure plays an important role since it controls the resulting
model complexity. A high penalty leads to a model with only a few terms and a possibly high
σ2 whereas a low penalty gives a model with numerous terms and thus low σ2. In practice, the
Akaike information criterion (penalty = 2) and the Bayesian information criterion (penalty
= lnn) are frequently used in stepwise procedures.

The routine stepEvolution of DiceEval studies the impact of the penalty parameter on the
final stepwise model. As in the two-dimensional case this routine does not make much sense,
it will be illustrated through a five-dimensional one.

The principle used to construct the PolyMARS model is the same as that for the stepwise
model. A penalty argument (denoted by gcv) is used at the end of the procedure to choose
the best model from a sequence of fitted models by minimizing the penalized residual sum
of squares (see Kooperberg et al. 1997, for the exact definition of the gcv). A larger gcv

value would tend to produce a smaller model. In practice, conducting a preliminary study is
recommended to select an optimal value of the gcv parameter; hence the penaltyPolymars

function tests the sensitivity of the quality criteria with respect to the gcv parameter. The
construction of a model being quite efficient, PolyMARS models are fitted for different values
of the gcv parameter, criteria that assess the quality of the fitted models (R2, Q2 and if a test
set is available R2 in prediction) are then computed.

R> Crit <- penaltyPolyMARS(X_random, Y_random,

+ test = data.frame(X_test, Y_test))

A graphical representation of these results is proposed by putting graphic = TRUE in the
input arguments.

3.4. Cross validation

Cross validation is a resampling method used to take into account the generalization error
when no test set is available. This technique can also be used for model selection, to detect
overfitting or instability of the model.

The principle is quite simple: the data set is randomly split into K subsets of (approximately)
equal size: A1, . . . , AK . For each k = 1, . . . ,K, a model Ŷ −k is fitted from the data of

⋃
j 6=k Aj

and this model is validated on the subset Ak.

24 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

From an initial model given by modelFit and for a specified value of K, the crossValidation

routine computes the predicted values obtained using K-folds cross validation and the Q2

index defined as:

Q2 = 1−

n∑
i=1

(
yi − Ŷ k(i)

(
xi
))2

n∑
i=1

(yi − ȳ)2
, (8)

with k(i) the number of the fold that contains the data
(
xi, yi

)
and Ŷ −k(i)

(
xi
)

the predicted
value at the point xi provided by a model fitted without the data of the set Ak(i). We can
notice that the Q2 index has the same expression as R2, replacing the usual fitted value with
the value obtained by cross validation.

The output of the function crossValidation contains moreover two numerical values RMSE_CV
and MAE_CV. Let L be a criterion (here L could be the RMSE or the MAE). The “evaluation” of
the model consists of computing (e.g. Hastie et al. 2009, p. 241):

Lk =
1

n/K

∑
i∈Ak

L
(
yi, Y

(−k) (xi)
)
.

The cross validation criterion is the mean of the K criteria: LCV = 1
K

∑K
k=1 Lk.

Therefore, cross validation is used to estimate the quality of the model in prediction according
to some criteria (e.g., Q2 or RMSE_CV, . . .). In such a context, the parameters of the initial
model are fixed. These parameters are:

� The formula for linear and additive models.

� The formula and the penalty for stepwise models.

� The degree for MARS models.

� The penalty (gcv) for PolyMARS models.

� The formula of the trend and the choice of the correlation function for kriging models.

As cross validation allows to estimate the quality of a model with respect to a given criterion,
it can be used to optimize the previously fixed parameters of the model. As an example, let
us consider a PolyMARS model with RMSE as criterion. In such a case, the gcv parameter
is fixed during the estimation of the RMSE_CV. Estimating the RMSE_CV criterion for different
values of gcv allows to optimize the gcv value with respect to the RMSE criterion.

Leave-one-out (LOO) cross validation consists in using a single observation from the initial
data set as the validation data, and the remaining observations as the training set. This is a
classical variant of K-folds cross validation with K being equal to the number of observations
n. LOO cross validation can be computationally expensive and the most commonly used
value is K = 10. testCrossValidation gives the possibility of testing the robustness of the
Q2 criterion with respect to the number of subsets K.

3.5. Model comparison

The construction of a metamodel is often immediate in terms of computation time. In the
context of computer experiments, it is important to choose the “best” model. The routine

Journal of Statistical Software 25

MARS PolyMARS Linear Additive Kriging
(degree = 2) (gcv = 2) (quad. trend)

Random design 0.635 0.714 0.623 0.909 0.973
Dmax 0.653 0.604 0.645 0.933 0.977
Optimized Strauss 0.561 0.654 0.677 0.935 0.988
Non-optimized Strauss 0.261 0.175 0.386 0.549 0.874

Table 6: Comparison of the predictive quality of different designs and different types of
metamodels fitted to the two-dimensional toy example. The numerical values correspond to
the R2 criteria computed on the test set.

ModelsComparison allows a simultaneous comparison of several models. The output is the set
of the quality criteria computed on learning and test sets for all the metamodels. A graphical
tool representing these numerical values is provided. It is composed of two columns: the R2/Q2
on the left-hand side and the RMSE on the right-hand side. When possible, each criterion is
evaluated on the learning set, by cross validation and on the test set. Visually, the best model
has the highest values of R2/Q2 and the lowest of RMSE.

3.6. Conclusions of the study of the 2-dimensional toy function

Several metamodels have been estimated on the four designs represented in Figure 15: a linear
model with a quadratic trend (i.e., the two predictor variables x1 and x2, the interaction x1 : x2
and the squared order terms x21 and x22), an additive model, a MARS model of degree two, a
PolyMARS model with gcv equal to 2 and a kriging model. The kriging models presented in
what follows have been obtained using the DiceKriging package (see Roustant et al. 2012).
The prediction quality of the fitted models is tested on the same 101×101 grid as previously
used. Table 6 contains the values of the R2 criteria.

Table 6 shows that the quality of the fitted models differs widely from one to the other:

� The MARS models behave poorly. The R2 criteria does not exceed 0.653. On this
example, the obtained models hold too few cuts and thus cannot represent the target
function correctly.

� The PolyMARS models are a slightly better but the dependency with respect to the
design is very important. In the particular case of the non-optimized Strauss, the
points being clustered, there is not enough information for a piecewise linear model to
adequately represent the function. As the PolyMARS model relies on some constraints
during its construction, this model generally outperforms the MARS model.

� We can see that the linear models cannot fully fit the function f : the R2 criteria do not
exceed 0.677. This model is not sufficiently flexible.

� The additive model (with cubic splines) is more flexible than the linear model. It can
consequently represent more complex shapes. However, in the present case, the model
cannot account for interactions. This is its principal limitation.

� For all the presented designs, kriging is able to outperform the additive model since it
can capture interactions and non-linearities.

26 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

(a) Random design (b) Dmax (c) Optimized Strauss (d) Non-opt. Strauss

Figure 18: Representation of the error between kriging models and the real function. The
contour lines correspond to the absolute values of the difference between the real function
and the fitted one. Small errors are represented in white and dark regions correspond to large
errors.

A focus on the kriging interpolations for the four designs is proposed in Figure 18. The
contour plot of the error between the real function and the model is represented for each
design. By construction of the metamodel, the error on the points of the experimental design
(represented by points) equals zero.

4. An industrial case study in dimension 5

Among all the case studies proposed by the industrial partners of the DICE consortium,
we present that proposed by IRSN (Institut de Radioprotection et de Sûreté Nucléaire) to
illustrate the main functionalities of the DiceEval package. Data sets of this case study are
provided with the package. Its dimension makes it a good example problem for the DiceEval
functionalities. All the R commands can be found in the demonstration file attached to the
DiceEval package:

R> library("DiceEval")

R> demo("IRSN5D", package = "DiceEval")

4.1. Context of the study and description of the data set

Nuclear criticality safety assessments are based on an optimization process to search for
physical conditions adversely affecting safety in a given range of parameters of a system
involving fissile materials. In the current example, the criticality coefficient (namely k-effective
denoted keff in what follows) models the nuclear chain reaction trend:

� keff > 1 means increasing neutron production leading to a potentially uncontrolled
chain reaction that can have serious safety consequences.

� keff = 1 means a stable neutron population as required in nuclear reactors.

� keff < 1 is the safety state required for all unused fissile materials, for example for fuel
storage.

Besides its fissile material geometry and composition, the criticality of a system is extremely
sensitive to physical parameters like water density, geometrical perturbations or the properties

Journal of Statistical Software 27

of structural materials (such as concrete). A typical criticality safety assessment is therefore
supposed to verify that the keff cannot reach the critical value of 1 (in practice the limit value
used is 0.95) for a given hypothesis on these parameters.

The benchmark system is an assembly of four fuel rods contained in a reflecting hull. Re-
garding criticality safety hypothesis, the main parameters are the uranium enrichment of fuel
(namely e, U235 enrichment, varying in [3%, 7%]), the rods assembly geometrical characteris-
tics (namely p, the pitch between rods, varying in [1.0, 2.0] cm and l, the length of fuel rods,
varying in [10, 60] cm), the water density inside the assembly (namely b, varying in [0.1, 0.9])
and the hull reflection characteristics (namely r, reflection coefficient, varying in [0.75, 0.95]).
In this criticality assessment, the MORET Monte Carlo simulator (Fernex, Heulers, Jacquet,
Miss, and Richet 2005) is used to estimate the criticality coefficient of the fuel storage system
using these parameters (among others) as numerical inputs. The output keff is returned as
a Gaussian density, the standard deviation of which appears to be negligible with respect to
input parameters sensitivity.

4.2. Package DiceEval in use

Now, let us recall that DiceEval deals with the construction of different metamodels on a
learning set and the comparison of their prediction performances on a test set if available and
by cross validation otherwise.

Data of the IRSN case

In this case study, the learning set is a Strauss design with 50 points and the test set is a grid
of 324 points. Unfortunately, we cannot provide the parameters that were used to generate
the Strauss design. The data set is nevertheless used because of the availability of the data.

R> data("dataIRSN5D", package = "DiceEval")

R> X <- dataIRSN5D[, -6]

R> Y <- dataIRSN5D[, 6]

R> data("testIRSN5D", package = "DiceEval")

R> Xtest <- testIRSN5D[, -6]

R> Ytest <- testIRSN5D[, 6]

A simple transformation is applied to translate the experimental design on [−1, 1]5. For
factorial designs with two levels, this transformation ensures orthogonality.

In Figure 19, we can observe that the projective points of the training set visually fill the two-
dimensional space whereas the test set exhibits clusters. However, the study was conducted
with this test data set because of its availability.

As can be seen in Figure 19, the link between the response and the entries is not obvious
except in the r direction where an exponential relation emerges.

In the next four subsections, we show how to carry out model construction, check the quality,
find the best parametrization of metamodels and compare metamodels. First, the main
functionalities of DiceEval are illustrated on the linear model with linear trend, without
interactions and quadratic terms. Then, we present some specific calls and functions for other
types of models.

28 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

b

−1.0 0.5

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

−1.0 0.5

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

−1 1

−
1.

0
0.

5

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

−
1.

0
0.

5 ●

●●

●

●
●

●
● ●●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

e
●

● ●

●

●
●

●
● ● ●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●
● ●●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●
●● ●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●
● ●●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
p

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

−
1.

0
0.

5

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

−
1.

0
0.

5

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

● ●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

● ●

●

●

●
●

●
● ●

●

●

●
●

●

r

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

● ●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

● ●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

l

−
1.

0
0.

5

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

−1.0 0.5

−
1

1 ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●
●

●

●

●

● ●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●
●

●

●

●

● ●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

● ●

−1.0 0.5

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●
●

●

●

●

● ●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●
●

●

●

●

●●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●●

−1.0 0.5

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●
●

●

●

●

●●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

● ●

Y

(a) IRSN training data set

b

−1.0 0.5

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●

−1.0 0.5

●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●

●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●

●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●

●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●

●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●

●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●

●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●

●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●

●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

−1 2 4

−
1.

0
0.

5

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●

●●●●●●●● ●●●●●●●●●●●● ● ●●●●●●●●●●● ● ●●●

●●●●●●●● ●●●●●●●●● ●●● ● ●●●●●●●● ●●● ● ●●●

●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●

●●●●●●●● ●●●●●●●●●●●● ● ●●●●●●●●●●● ● ●●●

●●●●●●●● ● ●●●●●●●● ●●● ● ●●●●●●●● ●●● ● ●●●

●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●

●●●●●●●● ●●●●●●●●●●●● ● ●●●●●●●●●●● ● ●●●

●●●●● ●●● ● ●●●●●●●● ●●● ● ●●●●●●●● ●●● ● ●●●

−
1.

0
0.

5

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

e

● ● ● ●

● ● ● ●

● ● ● ●

●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●

●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●

●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ● ●●●●●●●●●●● ● ●●●●●●●●●●● ●●●●●●●●● ●●● ● ●●●●●●●● ●●● ● ●●●

●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ● ●●●●●●●●●●● ● ●●●●●●●●●●● ● ●●●●●●●● ●●● ● ●●●●●●●● ●●● ● ●●●

●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ● ●●●●●●●●●●● ● ●●●●●●●● ●●● ● ●●●●●●●● ●●● ● ●●●●●●●● ●●● ● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

p

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−
1.

0
0.

5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−
1.

0
0.

5

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

r

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

● ●●●

●●●●

●●●●

● ●●●

●●●●

●●●●

●●●●

●●●●

● ●●●

● ●●●

●●●●

● ●●●

● ●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

● ●●●

●●●●

●●●●

● ●●●

●●●●

●●●●

● ●●●

●●●●

● ●●●

● ●●●

●●●●

● ●●●

● ●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

● ●●●

●●●●

●●●●

● ●●●

●●●●

● ●●●

● ●●●

●●●●

● ●●●

● ●●●

●●●●

● ●●●

● ●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●● ● ● ●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

●●●● ●●●● ●●●●

l

−
1.

0
0.

5

●●●●●●●●●●●●

●●●●●●●● ●●●●

●●●●●●●● ●●●●

●●●●●●●● ●●●●

●●●●●●●● ● ●●●

●●●●●●●● ● ●●●

●●●●●●●● ●●●●

●●●●● ●●● ● ●●●

●●●●● ●●● ● ●●●

●●●●●●●● ●●●●

●●●●●●●● ●●●●

●●●●●●●● ●●●●

●●●●●●●● ●●●●

●●●●●●●● ● ●●●

●●●●●●●● ● ●●●

●●●●●●●● ● ●●●

●●●●● ●●● ● ●●●

●●●●● ●●● ● ●●●

●●●●●●●● ●●●●

●●●●●●●● ●●●●

●●●●●●●● ●●●●

●●●●●●●● ●●●●

●●●●●●●● ● ●●●

●●●●●●●● ● ●●●

●●●●● ●●● ● ●●●

●●●●● ●●● ● ●●●

●●●●● ●●● ● ●●●

−1.0 0.5

−
1

2
4

●●●●●●●●
●●●●●●●●
●●●●

●●●●
●●●●
●●●●

●●●●

●●●●●
●●●

●
●●●

●●●●
●●
●●

●

●●●

●●●●
●
●●
●

●

●
●●

●●
●●●
●●●

●
●●●

●
●●●
●
●●
●

●

●●●

●
●●
●●
●
●●

●

●●●

●●●●●●●●
●●●●●●●●
●●●●

●
●●●
●●●●
●●●●

●●●●

●●●●
●●●
●

●
●●●

●●●●
●
●●
●

●

●
●●

●●●
●●
●
●●

●

●
●●

●●
●●●
●●●

●
●●●

●
●
●●●

●
●●

●

●●●

●
●
●●●

●
●●

●

●●●

●●●●●●●●
●●●●●●●●
●●●●

●
●●●

●●●●
●●●●

●
●●●

●●●●
●●
●●

●
●●●

●●●
●●
●
●●

●

●
●●

●●●
●●
●
●●

●

●
●●

●
●●
●●
●●
●

●

●●●

●
●
●●●

●
●●

●

●●●

●
●
●●●

●
●●

●

●
●●

●●●●●●●●
●●●●●●●●
●●●●

●●●●
●●●●
●●●●

●●●●

●●●●●
●●●

●
●●●

●●●●
●●
●●

●

●●●

●●●●
●
●●
●

●

●
●●

●●
●●●
●●●

●
●●●

●
●●●
●
●●
●

●

●●●

●
●●
●●
●
●●

●

●●●

●●●●●●●●
●●●●●●●●
●●●●

●
●●●
●●●●
●●●●

●●●●

●●●●
●●●
●

●
●●●

●●●●
●
●●
●

●

●
●●

●●●
●●
●
●●

●

●
●●

●●
●●●
●●●

●
●●●

●
●
●●●

●
●●

●

●●●

●
●
●●●

●
●●

●

●●●

●●●●●●●●
●●●●●●●●
●●●●

●
●●●

●●●●
●●●●

●
●●●

●●●●
●●
●●

●
●●●

●●●
●●
●
●●

●

●
●●

●●●
●●
●
●●

●

●
●●

●
●●
●●
●●
●

●

●●●

●
●
●●●

●
●●

●

●●●

●
●
●●●

●
●●

●

●
●●

−1.0 0.5

● ● ● ●● ● ● ●
● ● ● ●● ● ● ●
● ● ● ●

● ● ● ●
● ● ● ●
● ● ● ●

● ● ● ●

● ● ● ●● ● ● ●

●
● ● ●

● ● ● ●● ● ● ●

●

● ● ●

● ● ● ●●
● ● ●

●

●
● ●

● ● ● ●●
● ● ●

●
● ● ●

●
● ● ●●
● ● ●

●

● ● ●

●
● ● ●●
●

● ●

●

● ● ●

● ● ● ●● ● ● ●
● ● ● ●● ● ● ●
● ● ● ●

●
● ● ●

● ● ● ●
● ● ● ●

● ● ● ●

● ● ● ●● ● ● ●

●
● ● ●

● ● ● ●●
● ● ●

●

●
● ●

● ● ● ●●
●

● ●

●

●
● ●

● ● ● ●●
● ● ●

●
● ● ●

●
●

● ●●

●
● ●

●

● ● ●

●
●

● ●●

●
● ●

●

● ● ●

● ● ● ●● ● ● ●
● ● ● ●● ● ● ●
● ● ● ●

●
● ● ●

● ● ● ●
● ● ● ●

●
● ● ●

● ● ● ●● ● ● ●

●
● ● ●

● ● ● ●●
●

● ●

●

●
● ●

● ● ● ●●
●

● ●

●

●
● ●

●
● ● ●●
● ● ●

●

● ● ●

●
●

● ●●

●
● ●

●

● ● ●

●
●

● ●●

●
● ●

●

●
● ●

●●●● ●●●●
●●●●●●●●

●●●●

●●●●
●●●●

●●●●

●●●●

●●●● ●●●●

●
●●●

●●●●
●●
●●

●

●●●

●●●●
●
●●
●

●

●
●●

●●
●● ●

●●●

●
●●●

●
●●●

●
●●
●

●

●●●

●
●●
● ●

●
●●

●

●●●

●●●● ●●●●
●●●●●●●●

●●●●

●
●●●

●●●●
●●●●

●●●●

●●●●
●●●
●

●
●●●

●●●●
●
●●
●

●

●
●●

●●●
● ●

●
●●

●

●
●●

●●
●● ●

●●●

●
●●●

●
●
●● ●

●
●●

●

●●●

●
●
●● ●

●
●●

●

●●●

●●●● ●●●●
●●●●●●●●

●●●●

●
●●●

●●●●
●●●●

●
●●●

●●●●
●●
●●

●
●●●

●●●
● ●

●
●●

●

●
●●

●●●
● ●

●
●●

●

●
●●

●
●●
● ●

●●
●

●

●●●

●
●
●● ●

●
●●

●

●●●

●
●
●● ●

●
●●

●

●
●●

−1.0 0.5

●●●●●●●●
●●●● ●●●●

●●●●

●●●●
●●●●
●●●●

●●●●

●●●●●
●●●

●
●●●

●●●●
●●
●●

●

●●●

●●●●
●
●●
●

●

●
●●

●●
●●●
●●●

●
●●●

●
●●●
●
●●
●

●

●●●

●
●●
●●
●
●●

●

●●●

●●●●●●●●
●●●● ●●●●

●●●●

●
●●●

●●●●
●●●●

●●●●

●●●●
●●●
●

●
●●●

●●●●
●
●●
●

●

●
●●

●●●
●●
●
●●

●

●
●●

●●
●●●
●●●

●
●●●

●
●
●●●

●
●●

●

●●●

●
●
●●●

●
●●

●

●●●

●●●●●●●●
●●●● ●●●●

●●●●

●
●●●

●●●●
●●●●

●
●●●

●●●●
●●
●●

●
●●●

●●●
●●
●
●●

●

●
●●

●●●
●●
●
●●

●

●
●●

●
●●
●●
●●
●

●

●●●

●
●
●●●

●
●●

●

●●●

●
●
●●●

●
●●

●

●
●●

Ytest

(b) IRSN test set

Figure 19: Two-dimensional projections of the designs of experiments (training and test sets)
for the 5D IRSN application.

Adjustment

An important contribution made by the package is the use of a unique function called
modelFit to fit different types of metamodels. This function makes it possible to fit lin-
ear and additive models, stepwise versions of linear model, two models with piecewise linear
functions (namely MARS and PolyMARS) and kriging models.

For all metamodels, the call depends on the type argument which specifies the model’s family.
Furthermore, some other arguments are sometimes needed: formula for linear and additive
models, formula and penalty for stepwise linear models, degree for the MARS models and
gcv for the PolyMARS models. In the case of the linear model, we only have to specify the
input and output data, the type "Linear" and the formula.

R> modLm <- modelFit(X, Y, type = "Linear", formula = Y ~ .)

R> names(modLm)

[1] "data" "type" "formula" "model"

The output of modelFit is a list of arguments containing the data, the fitted model of the
type specified in this argument and other parameters related to the model. The summary

procedure can still be called to gain access to information on the fitted models.

R> summary(modLm$model)

Call:

lm(formula = fmla, data = data)

Residuals:

Min 1Q Median 3Q Max

-0.84585 -0.23768 -0.08712 0.20903 0.94854

Journal of Statistical Software 29

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.12058 0.05889 2.048 0.046592 *

b 0.77530 0.09404 8.245 1.80e-10 ***

e 0.24118 0.09709 2.484 0.016865 *

p 0.27431 0.09469 2.897 0.005853 **

r 1.22144 0.09983 12.235 9.35e-16 ***

l 0.41519 0.09972 4.164 0.000144 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4097 on 44 degrees of freedom

Multiple R-squared: 0.8493, Adjusted R-squared: 0.8322

F-statistic: 49.59 on 5 and 44 DF, p-value: < 2.2e-16

In this example, the linear model with a linear trend fits the training data well (the R2 is
equal to 0.85). Once the metamodel is validated on the learning set, it is important to check
its prediction quality.

Checking for prediction quality

As seen before, different criteria, all based on residuals, are available in the package: R2, RMA,
MAE and RMSE (see Equations 5–7). These functions need two arguments: the first is the vector
of the exact values and the second is the vector of the fitted values at the same points. The
criteria can also be evaluated on learning and test sets.

The results obtained here are as expected. First of all, R2 is decreasing from learning to test
sets (the variance explained by the model is higher on the training set). Moreover, RMA, MAE
and RMSE are increasing from learning to test sets (errors are smaller in adjustment than in
prediction). Recall that a perfect fit corresponds to 1 for R2 and 0 for the other criteria.
Ideally, the criteria should be consistent between both training and test sets. In the latter
case, the value of the RMSE then corresponds to the real model bias.

However, a test set is often not available. Thus, cross validation is commonly used in order
to assess the prediction error variance. The crossValidation function measures the Q2

(defined by (8)) of a previously fitted model for a given number of folds. The results of
crossValidation on a linear model and 10 folds are obtained by the following commands.

R> crossValidation(modLm, K = 10)$Q2

[1] 0.8092859

Training Test

R2 0.849 0.756
RMA 0.948 1.313
MAE 0.300 0.549
RMSE 0.384 0.703

Table 7: Quality criteria for the linear model.

30 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

0.
70

0.
75

0.
80

0.
85

k−fold cross validation

Number of folds

Q
2

2 10 20 30 40 50

R2 training
Q2 k−CV
R2 test

Figure 20: Estimated Q2 with respect to the number of folds for a linear model.

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

0 10 20 30 40 50

−
0.

5
0.

0
0.

5
1.

0

Index

re
si

du
al

s

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

−1.5 −0.5 0.5 1.5

−
0.

5
0.

0
0.

5
1.

0

fitted values

re
si

du
al

s

residuals

de
ns

ity

−1.0 0.0 0.5 1.0

0.
0

0.
4

0.
8

1.
2

Residuals study

Figure 21: Residuals study for the linear model.

Moreover, the testCrossValidation function allows the assessment of the Q2 variability
(Figure 20). For each number of folds, 10 different partitions are computed to visualize Q2

variability. We consider here 2, 5, 10, 20, 30, 40 and 50 folds.

As can be observed in Figure 20, the R2 is effectively higher on the learning set (0.85) than on
the test set (0.76). The cross validation method provides a better idea of what the R2 will be in
prediction. It is recalled that the tuning parameters of the model are set during cross valida-
tion (see Section 3.4). Overestimation of R2 is then expected. The function residualsStudy

that provides the visualization of the residuals can also help check for predictive quality.

R> residualsStudy(modlm)

In the case of the linear model, the middle plot of Figure 21 shows that some important effects
are not considered in the model. Indeed, dependence can be observed between residuals and
predictors. A possible explanation is that non-linearities or interactions should be added to
the model.

Journal of Statistical Software 31

0 10 20 30 40 50

−
1.

0
−

0.
5

0.
0

0.
5

Index

re
si

du
al

s

−1 0 1 2

−
1.

0
−

0.
5

0.
0

0.
5

fitted values

re
si

du
al

s

residuals

de
ns

ity

−1.0 0.0 0.5

0.
0

0.
5

1.
0

1.
5

2.
0

Residuals study

(a) Additive model

0 10 20 30 40 50

−
0.

2
0.

0
0.

2

Index

re
si

du
al

s

−1 0 1 2 3

−
0.

2
0.

0
0.

2

fitted values

re
si

du
al

s

residuals

de
ns

ity

−0.3 −0.1 0.1 0.3

0
1

2
3

4
5

Residuals study

(b) Stepwise linear model

0 10 20 30 40 50

−
0.

2
0.

0
0.

2

Index

re
si

du
al

s

−1 0 1 2 3

−
0.

2
0.

0
0.

2

fitted values

re
si

du
al

s

residuals

de
ns

ity

−0.3 −0.1 0.1 0.3

0.
0

1.
0

2.
0

Residuals study

(c) MARS model

0 10 20 30 40 50−
0.

8
−

0.
4

0.
0

0.
4

Index
re

si
du

al
s

−1 0 1 2−
0.

8
−

0.
4

0.
0

0.
4

fitted values

re
si

du
al

s

residuals

de
ns

ity

−0.8 −0.4 0.0 0.4

0.
0

0.
5

1.
0

1.
5

2.
0

Residuals study

(d) PolyMARS model

Figure 22: Residuals study for different types of metamodels.

The study of the residuals of the additive model still shows the same behavior, i.e., dependence
between residuals and inputs (see Figure 21). As the additive model allows the assessment
of non-linearity in each direction, we conclude that the major missing effects are due to
interactions.

R> library("gam")

R> modAm <- modelFit(X, Y, type = "Additive", formula = formulaAm(X, Y))

R> residualsStudy(modAm)

This dependence between the residuals and the response disappears when considering models
that take interactions into account. This is, for example, the case of the stepwise model built
from a trend that contains single effects, interactions and quadratic terms, the MARS model
of degree 2 and the PolyMARS model.

R> modStep <- modelFit(X, Y, type = "StepLinear",

+ formula = Y ~ .^2 + I(e^2) + I(r^2) + I(p^2) + I(l^2) + I(b^2),

+ penalty = 2)

R> library("mda")

R> modMARS <- modelFit(X, Y, type = "MARS", degree = 2)

R> library("polspline")

R> modPolyMARS <- modelFit(X, Y, type = "PolyMARS", gcv = 4)

The study of the residuals for each of these three models is presented in Figure 22.

Determination of the best parameterization

We have already seen that several metamodels have to be parameterized. This is the case for
the degree argument in the MARS model which indicates whether interactions are allowed or

32 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

Selected variables during stepwise procedure

b
e
p
r
l

I(e^2)
I(r^2)
I(p^2)
I(l^2)
I(b^2)
b:e
b:p
b:r
b:l
e:p
e:r
e:l
p:r
p:l
r:l

1 2 3 4 5 10 20 30

(a) Selected variables

0.
65

0.
75

0.
85

0.
95

Penalty parameter

R
2

1 5 10 20 30

0.
65

0.
75

0.
85

0.
95

Penalty parameter

Q
2

(K
=

10
)

1 5 10 20 30

4
6

8
10

12
14

Penalty parameter

si
ze

 o
f t

he
 fi

tte
d

m
od

el

1 5 10 20 30

(b) Influence of the penalty parameter

Figure 23: The impact of the penalty parameter on the stepwise procedure. (a) variables
included (rows = variables, columns = penalty) and (b) quality criteria.

not. PolyMARS similarly requires the value of the gcv penalization parameter. And finally,
there is also a penalization parameter for the stepwise version of linear models.

In practice, these parameters are difficult to choose. Therefore, the package provides the user
with functions that produce plots for decision support purposes. In the IRSN case study, the
output of the routines is given in Figure 23 for the stepwise model and in Figure 24 for the
PolyMARS model.

Let us focus now on the stepwise procedure for linear models.

R> out <- stepEvolution(X, Y,

+ Y ~ .^2 + I(e^2) + I(r^2) + I(p^2) + I(l^2) + I(b^2),

+ P = c(1, 2, 3, 4, 5, 10, 20, 30))

R> out$Q2

[1] 0.9665380 0.9690667 0.9637816 0.9694529 0.9665024 0.9541808

[7] 0.9133722 0.6483670

The visualization of the stepEvolution procedure indicates how sensitive the response is to
inputs. Here, it can be observed that b, r, r^2 and the interaction b:r are very influential
on the response. Their effects are still present for a very high penalty (penalty = 30). Then,
come p, l, the interactions b:p and r:l, and so on with a decreasing penalty. The graphic
shows that even for low values of the penalty parameter, some interactions have no influence
on the response, namely b:e, b:l, e:r, e:l and p:l.

The right part of Figure 23 shows the influence of the penalty parameter on the quality
of the metamodel. In the first plot, it can be seen that R2 is progressively decreasing with
the penalty parameter whereas Q2 (K = 10) reaches a maximum for a penalty parameter
P = 4 (see the Q2 numerical values from the stepEvolution output). This particular area
corresponds to the best model containing enough variables to represent major phenomena but

Journal of Statistical Software 33

● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ●

● ● ● ● ● ● ●

0.
88

0.
92

0.
96

Penalty parameter

R
2

0.0 0.8 1.6 2.4 3.2 4.0 4.8

0.
88

0.
92

0.
96

Penalty parameter

Q
2

(K
=

10
)

0.0 0.8 1.6 2.4 3.2 4.0 4.8

● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ●

● ● ● ● ● ● ●4
6

8
10

12

Penalty parameter

si
ze

 o
f t

he
 fi

tte
d

m
od

el

0.0 0.8 1.6 2.4 3.2 4.0 4.8

PolyMARS: influence of the penalty parameter

Figure 24: Study of the influence of the penalty parameter on the performance of a PolyMARS
model fitted on the learning set. The plot represents the R2 computed on the training set
(left-hand side), the evolution of Q2 estimated using 10-folds cross validation (middle) and
the number of terms (right-hand side).

not too many in order to avoid overfitting. The last plot represents the change in the model
size reduction according to the penalty parameter.

A similar function is implemented for the PolyMARS procedure. As mentioned by Kooperberg
et al. (1997), the role of the penalty parameter gcv is crucial during the fitting procedure.
For example, a small value of gcv induces no penalty on the acceptance criterion and thus
the resulting model often contains many terms. penaltyPolyMARS is a procedure that helps
the user choose the value of this parameter.

R> Crit <- penaltyPolyMARS(X, Y, graphic = TRUE)

Graphical output is represented in Figure 24. It can be seen in Figure 24 that R2 decreases
as gcv increases. Indeed, when gcv increases the model contains fewer terms and is then less
flexible, therefore the fitted model is less close to the data. The change in R2 on the test set is
not the same as it first increases and then decreases with gcv. When gcv is low, the models
contain mainly useless terms which leads to errors. When gcv increases, these useless terms
disappear and the R2 test increases consequently. If gcv keeps growing, some useful terms are
dropped from the model, accordingly dragging the R2 down.

The value of gcv is chosen by cross validation. It corresponds to the highest Q2 and to the
model with fewer terms. For this example, we choose a value of 2.2 for gcv, the value that
represents a good trade-off for all the evaluation measures.

Model comparison

The different metamodels described above have advantages and drawbacks. A good overview
of the previous results is given by the modelComparison routine. All the information needed
to fit the metamodels that are to be compared is given as arguments.

R> crit <- modelComparison(X, Y,

+ type = c("Linear", "Additive", "MARS", "PolyMARS", "Kriging"),

34 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

Linear

Additive

MARS

PolyMARS

Kriging

Linear

Additive

MARS

PolyMARS

Kriging

Linear

Additive

MARS

PolyMARS

Kriging

learning

cross-validation

test

0.0 0.2 0.4 0.6 0.8 1.0

Comparison of R2

0.0 0.2 0.4 0.6 0.8 1.0

(a) Comparison according to the R2 criterion

Linear

Additive

MARS

PolyMARS

Kriging

Linear

Additive

MARS

PolyMARS

Kriging

Linear

Additive

MARS

PolyMARS

Kriging

learning

cross-validation

test

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Comparison of RMSE

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(b) Comparison according to the RMSE criterion

Figure 25: Graphical comparison of the quality of metamodels for the IRSN case study. On
the training set (top of the figure), there are only small differences between the studied models.
In terms of prediction (at the bottom of the figure), note that MARS and Linear models are
a little bit more precise.

+ test = dataTest, degree = 2, gcv = 2.2,

+ formula = c(Y ~ .^2 + I(e^2) + I(r^2) + I(p^2) + I(l^2) + I(b^2),

+ formulaAm(X, Y), Y ~ .))

Let us detail the arguments of this function: four types of models will be compared. First, a
linear model corresponding to the formula ~ .^2 + I(e^2) + I(r^2) + I(p^2) + I(l^2) +

I(b^2). Second, an additive model with a standard formula with splines in all principal di-
rections (directly obtained by using the hidden function formulaAm). Finally, a MARS model
of degree 2 and a PolyMARS model with a penalty parameter gcv equal to 2.2. Results are
presented in Figure 25.

As can be seen on the top of Figure 25, the R2 criteria evaluated on the learning set are
high for all models and the RMSE are low respectively. The prediction quality is lower when
checked with the Q2 criteria, and lower and more dispersed when observed on the test set.
The graphical representation of the criteria emphasizes the good results of the kriging model.
In the test set, the Additive model is the worst. This is explained by the fact that it does
not take into account interactions whereas the others do. Moreover, in this example, we have
already seen that interactions play a major role. This difference between the behaviors of the
metamodels can also be partially observed on Q2 which is lowest for the additive model.

Journal of Statistical Software 35

5. Conclusions

DICE (Deep Inside Computer Experiments) was a research project that addressed many as-
pects of exploration and stochastic analysis of computer codes. Several issues have been ad-
dressed from designing experimental sets of points, metamodeling to optimization, sensitivity
analysis and uncertainty quantification. In this paper, we focus on the two first issues (design
and metamodeling) through the presentation of two R packages: DiceDesign and DiceEval.

DiceDesign provides new approaches to generating space filling designs. The first approach is
based on maximization of the entropy, i.e., maximization of the determinant of the covariance
matrix. The second approach relies on a stochastic generation of points based on Gibbs
processes using a method based on Markov chain Monte Carlo. This simulation is more
difficult to calibrate since a Gibbs distribution and Markov chain Monte Carlo parameters
have to be chosen with respect to the desired properties of the design. However, these designs
yield good results in practice and this approach can offer other possibilities such as generating
non-stationary designs. Extensions are not yet implemented in the package. Furthermore,
DiceDesign provides a set of criteria to assess the quality of the generated designs and an
associated graphical tool.

The goal of the second package presented in this paper is to unify and to simplify metamod-
eling when different types of models are tested. Furthermore, DiceEval provides numerical
and graphical tools to evaluate the quality of the estimation.

These two packages have been illustrated on a two-dimensional analytical case and on a five-
dimensional real case study. The packages were built according to the needs of the project and
routines were then validated on a wide range of industrial studies from oil to the automotive
field.

Acknowledgments

This work was conducted within the framework of the DICE consortium between ARMINES,
Renault, EDF, IRSN, ONERA and Total S.A. The authors are very grateful to Y. Richet
(IRSN) who provided the data for the demonstration example. The authors wish to thank
O. Roustant, L. Carraro, Y. Deville and D. Ginsbourger for their contributions.

We also wish to thank the anonymous referees for several helpful comments and suggestions
that improved and clarified the presentation of this work.

References

Carnell R (2012). lhs: Latin Hypercube Sample. R package version 0.10, URL http://CRAN.

R-project.org/package=lhs.

Chalabi Y, Dutang C, Savicky P, Wuertz D (2014). randtoolbox: Toolbox for Pseudo and
Quasi Random Number Generation and RNG Tests. R package version 1.16, URL http:

//CRAN.R-project.org/package=randtoolbox.

Chen VCP, Tsui KL, Barton RR, Allen JK (2003). “A Review of Design and Modeling in
Computer Experiments.” In Handbook of Statistics, volume 22, pp. 231–261.

http://CRAN.R-project.org/package=lhs
http://CRAN.R-project.org/package=lhs
http://CRAN.R-project.org/package=randtoolbox
http://CRAN.R-project.org/package=randtoolbox

36 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

Cressie N (1993). Statistics for Spatial Data. John Wiley & Sons.

Damblin G, Couplet M, Iooss B (2013). “Numerical Studies of Space Filling Designs: Opti-
mization Algorithms and Subprojection Properties.” Journal of Simulation, 7(4), 276–289.

Dupuy D, Helbert C (2015). DiceEval: Construction and Evaluation of Metamodels. R
package version 1.4, URL http://CRAN.R-project.org/package=DiceEval.

Faure H (1982). “Discrépance de suites associées à un système de numération (en dimension
s) [Discrepancy of Sequences Associated with a Number System (in Dimension s)].” Acta
Arithmetica, 41(4), 337–351.

Fernex F, Heulers L, Jacquet O, Miss J, Richet Y (2005). “The MORET 4B Monte Carlo
Code – New Features to Treat Complex Criticality Systems.” In M&C International Con-
ference on Mathematics and Computation Supercomputing, Reactor Physics and Nuclear
and Biological Application.

Franco J, Bay X, Dupuy D, Corre B (2008). “Planification d’expériences numériques à
partir du processus ponctuel de Strauss.” URL http://hal.archives-ouvertes.fr/

hal-00260701/fr/.

Franco J, Dupuy D, Roustant O (2015). DiceDesign: Designs of Computer Experiments. R
package version 1.7, URL http://CRAN.R-project.org/package=DiceDesign.

Franco J, Vasseur O, Corre B, Sergent M (2009). “Minimum Spanning Tree: A New Ap-
proach to Assess the Quality of the Design of Computer Experiments.” Chemometrics and
Intelligent Laboratory Systems, 97(2), 164–169.

Friedman J (1991). “Multivariate Adaptative Regression Splines.” The Annals of Statistics,
10(1), 1–141.

Ginsbourger D, Roustant O (2015). DiceOptim: Kriging-Based Optimization for Com-
puter Experiments. R package version 1.5, URL http://CRAN.R-project.org/package=

DiceOptim.

Halton JH (1960). “On the Efficiency of Certain Quasi-Random Sequences of Points in Eval-
uating Multi-Dimensional Integrals.” Numerische Mathematik, 2(1), 84–90.

Hammersley JM (1960). “Monte-Carlo Methods for Solving Multivariate Problems.” The
Annals of the New York Academy of Sciences, 86(3), 844–874.

Hastie T (2013). mda: Mixture and Flexible Discriminant Analysis. R package version 0.4-4,
URL http://CRAN.R-project.org/package=mda.

Hastie T (2014). gam: Generalized Additive Models. R package version 1.09.1, URL http:

//CRAN.R-project.org/package=gam.

Hastie T, Tibshirani R (1991). Generalized Additive Models. Chapman and Hall.

Hastie T, Tibshirani R, Friedman J (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. 2nd edition. Springer-Verlag.

http://CRAN.R-project.org/package=DiceEval
http://hal.archives-ouvertes.fr/hal-00260701/fr/
http://hal.archives-ouvertes.fr/hal-00260701/fr/
http://CRAN.R-project.org/package=DiceDesign
http://CRAN.R-project.org/package=DiceOptim
http://CRAN.R-project.org/package=DiceOptim
http://CRAN.R-project.org/package=mda
http://CRAN.R-project.org/package=gam
http://CRAN.R-project.org/package=gam

Journal of Statistical Software 37

Hickernell F (1998). “A Generalized Discrepancy and Quadrature Error Bound.” Mathematics
of Computation, 67(221), 299–322.

Johnson ME, Moore LM, Ylvisaker D (1990). “Minimax and Maximin Distance Designs.”
Journal of Statistical Planning and Inference, 26(2), 131–148.

Jones D, Schonlau M, Welch W (1998). “Efficient Global Optimization of Expensive Black-Box
Functions.” Journal of Global Optimization, 13(4), 455–492.

Kooperberg C (2013). polspline: Polynomial Spline Routines. R package version 1.1.9, URL
http://CRAN.R-project.org/package=polspline.

Kooperberg C, Bose S, Stone CJ (1997). “Polychotomous Regression.” Journal of the Amer-
ican Statisitical Association, 92(437), 117–127.

McKay MD, Beckman RJ, Conover WJ (1979). “A Comparison of Three Methods for Selecting
Values of Input Variables in the Analysis of Output from a Computer Code.” Technometrics,
21(2), 239–245.

Niederreiter H (1987). “Low-Discrepancy and Low-Dispersion Sequences.” Journal of Number
Theory, 30(1), 51–70.

Pleming JB, Manteufel RD (2005). “Replicated Latin Hypercube Sampling.” In 46th Struc-
tures, Structural Dynamics & Materials Conference (16–21 April 2005) – AIAA 2005-1819.

Pronzato L, Müller WG (2012). “Design of Computer Experiments: Space Filling and Be-
yond.” Statistics and Computing, 22(3), 681–701.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Richet Y, Deville Y, Chevalier C (2013). DiceView: Plot Methods for Computer Experiments
Design and Models. R package version 1.3-1, URL http://CRAN.R-project.org/package=

DiceView.

Roustant O, Franco J, Carraro L, Jourdan A (2010). “A Radial Scanning Statistic for Se-
lecting Space-Filling Designs in Computer Experiments.” In A Giovagnoli, AC Atkinson,
B Thorsney, C May (eds.), MODA-9 – Advances in Model-Oriented Design and Analysis,
pp. 189–196. Springer-Verlag.

Roustant O, Ginsbourger D, Deville Y (2012). “DiceKriging, DiceOptim: Two R Packages
for the Analysis of Computer Experiments by Kriging-Based Metamodelling and Optimiza-
tion.” Journal of Statistical Software, 51(1), 1–55. URL http://www.jstatsoft.org/v51/

i01/.

Roustant O, Ginsbourger D, Deville Y (2015). DiceKriging: Kriging Methods for Com-
puter Experiments. R package version 1.5.4, URL http://CRAN.R-project.org/package=

DiceKriging.

Santiago J, Claeys-Bruno M, Sergent M (2012). “Construction of Space-Filling Designs using
WSP Algorithm for High Dimensional Spaces.” Chemometrics and Intelligent Laboratory
Systems, 113, 26–31.

http://CRAN.R-project.org/package=polspline
http://www.R-project.org/
http://CRAN.R-project.org/package=DiceView
http://CRAN.R-project.org/package=DiceView
http://www.jstatsoft.org/v51/i01/
http://www.jstatsoft.org/v51/i01/
http://CRAN.R-project.org/package=DiceKriging
http://CRAN.R-project.org/package=DiceKriging

38 DiceDesign and DiceEval: Design and Analysis of Computer Experiments in R

Santner TJ, Williams BJ, Notz WI (2003). The Design and Analysis of Computer Experi-
ments. Springer-Verlag.

Shewry MC, Wynn HP (1987). “Maximum Entropy Sampling.” Journal of Applied Statistics,
14(2), 165–170.

Sobol’ IM (1967). “On the Distribution of Points in a Cube and the Approximate Evaluation
of Integrals.” USSR Computational Mathematics and Mathematical Physics, 7(4), 56–117.

Stein M (1987). “Large Sample Properties of Simulations using Latin Hypercube Sampling.”
Technometrics, 29(2), 143–151.

Wuertz D (2013). fOptions: Basics of Option Valuation. R package version 3010.83, URL
http://CRAN.R-project.org/package=fOptions.

Affiliation:

Delphine Dupuy
UR LSTI – team CROCUS
École Nationale Supérieure des Mines de Saint-Étienne
158, cours Fauriel
42032 Saint-Étienne Cedex 2, France
E-mail: dupuy@emse.fr

Céline Helbert
Institut Camille Jordan – UMR5208
36 av. Guy de Collongue
69134 Ecully Cedex, France
E-mail: Celine.Helbert@ec-lyon.fr

Jessica Franco
Recovery Mechanisms
TOTAL DGEP/GSR/TG/COP/REC
L5 1005
Avenue Larribau
64018 Pau Cedex, France
E-mail: jessica.franco@total.com

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 65, Issue 11 Submitted: 2012-07-30
June 2015 Accepted: 2014-10-15

http://CRAN.R-project.org/package=fOptions
mailto:dupuy@emse.fr
mailto:Celine.Helbert@ec-lyon.fr
mailto:jessica.franco@total.com
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	DiceDesign package
	Quality criteria for computer experiment designs
	Distance criteria
	Discrepancy criteria
	Radial scanning statistic

	Space filling designs
	Dmax designs
	Strauss designs

	DiceEval package
	Illustration on a two-dimensional function
	Choice of a design of experiments in dimension 2

	Construction and prediction
	Additive models
	MARS and PolyMARS models
	Kriging models
	Fitting of a model with package DiceEval

	Validation
	Cross validation
	Model comparison
	Conclusions of the study of the 2-dimensional toy function

	An industrial case study in dimension 5
	Context of the study and description of the data set
	Package DiceEval in use
	Data of the IRSN case
	Adjustment
	Checking for prediction quality
	Determination of the best parameterization
	Model comparison

	Conclusions

