Topological derivatives of leading-and second-order homogenized coefficients in bi-periodic media

Rémi Cornaggia, Bojan Guzina, Marc Bonnet

To cite this version:
Rémi Cornaggia, Bojan Guzina, Marc Bonnet. Topological derivatives of leading-and second-order homogenized coefficients in bi-periodic media. WAVES 2017 - 13th International Conference on Mathematical and Numerical Aspects of Wave Propagation, May 2017, Minneapolis, United States. hal-02065548

HAL Id: hal-02065548
https://hal.archives-ouvertes.fr/hal-02065548
Submitted on 12 Mar 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract We derive the topological derivatives of the homogenized coefficients associated to a periodic material, with respect of the small size of a penetrable inhomogeneity introduced in the unit cell that defines such material. In the context of antiplane elasticity, this work extends existing results to (i) time-harmonic wave equation and (ii) second-order homogenized coefficients, whose contribution reflects the dispersive behavior of the material.

Keywords: homogenization, topological derivatives.

Introduction Consider an elastic material occupying a 2D domain and characterized by periodic shear modulus μ and density ρ. The unit cell Y has characteristic length ℓ. Under time-harmonic conditions, the antiplane displacement u satisfies the wave equation:

$$\nabla \cdot (\mu \nabla u) + \omega^2 \rho u = 0$$

For long-wavelength configurations (i.e. $\ell \ll \lambda$), two-scale periodic homogenization of this equation in terms of $\varepsilon = \ell/\lambda$ [4] leads to the equation satisfied by the mean field U:

$$\begin{align*}
\mu^0 : \nabla^2 U + \omega^2 \rho U & = -\varepsilon^2 [\mu^2 : \nabla^4 U + \omega^2 \rho^2 : \nabla^2 U] + O(\varepsilon^4),
\end{align*}$$

where the leading-order and second-order homogenized coefficients $(\mu^0, \rho^0, \mu^2, \rho^2)$ are constant tensors and $\nabla^k U$ stands for the k-th gradient of U.

This study considers a periodic perturbation of this material, whereby a penetrable inhomogeneity B_a, of size a and shape B, characterized by contrasts $(\Delta \mu, \Delta \rho)$ is introduced at point $z \in Y$ (Fig. 1). Then, the leading-order expansion coefficients of $(\mu^0, \rho^0, \mu^2, \rho^2)$ w.r.t. a, namely their topological derivatives, are computed, as in [3] for in-plane elastostatics.

Leading-order coefficients Let $\langle \cdot \rangle = \frac{1}{|Y|} \int_Y \cdot$ denote an average on the unit cell. The homogenized density ρ^0 is defined by $\rho^0 = \langle \rho \rangle$, so that the perturbed coefficient ρ^0_a and the topological derivative $\mathcal{D} \rho^0$ are exactly given by:

$$\begin{align*}
\rho^0_a & = \rho^0 + a^2 |Y|^{-1} \mathcal{D} \rho^0; \quad \mathcal{D} \rho^0 = |B| \Delta \rho.
\end{align*}$$

The homogenized shear modulus μ^0 is defined by $\mu^0 = \langle \mu (I + \nabla P) \rangle^S$, where I is the identity tensor, the first cell function P [4] is the Y-periodic and zero-mean vector-valued solution of:

$$\nabla \cdot (\mu (I + \nabla P)) = 0$$

and the superscript S means symmetrization w.r.t. all index permutations. Consequently, μ^0_a is computed as:

$$\mu^0_a = \mu^0 + \langle \mu \nabla p_a \rangle^S + \langle \chi_{B_a} \Delta \mu (I + \nabla P_a) \rangle^S$$

where $p_a := P_a - P$ is the perturbation of P. The analysis of this perturbation is done by re-formulating problem (1) and its perturbed counterpart using domain integral equations [2]. With the help of the adjoint state method, it leads to the following leading-order expansion:

$$\mu^0_a = \mu^0 + a^2 |Y|^{-1} \mathcal{D} \mu^0(z) + o(a^2 |Y|^{-1}),$$

with the topological derivative $\mathcal{D} \mu^0$ given by:

$$\mathcal{D} \mu^0(z) = [\langle (I + \nabla P) \cdot A \cdot (I + \nabla P)^T \rangle (z)$$

and $A(z) = A(B, \mu(z), \Delta \mu)$ is the polarization tensor [1] associated to shape B and moduli $\mu(z)$ and $\mu(z) + \Delta \mu$. Under notational adjustments, this result is similar to [3]. For homogeneous background materials, in which case $P = 0$, it reduces to $\mathcal{D} \mu^0 = A$ as shown by [1].
Second-order coefficients The second-order homogenized density is defined by \(\rho^2 = \langle \rho Q \rangle^S \), where the second cell function \(Q \) is the \(Y \)-periodic, zero-mean, tensor-valued solution of:

\[
\nabla \cdot (\mu (P \otimes I + \nabla Q)) = -\mu (I + \nabla P) + (\rho/\rho^0) \mu^0 \quad (3)
\]

Relying on the same integral equation framework, and with careful analysis of the influence of the source terms involving \(P_a \) when addressing the perturbed cell function \(Q_a \), we show that \(\rho^2_a \) has an expansion of the same form as (2), with its topological derivative \(\mathcal{D} \rho^2 \) given by:

\[
\mathcal{D} \rho^2(z) = \left[(I + \nabla P) \cdot A \cdot \left(\beta I + \nabla X[\beta] \right) \right]^T \]
\[
- (P \otimes I + \nabla Q) \cdot A \cdot \nabla \beta \]
\[
- (\mathcal{D} \mu^0 - (\mathcal{D} \rho^0/\rho^0) \mu^0) \langle \rho(\beta/\rho^0) \rangle \]
\[
- \mathcal{D} \rho^0 \left((\beta/\rho^0) \mu^0 - Q \right) \right]^S (z). \quad (4)
\]

The above expression features (i) various combinations of the previously computed cell solutions and topological derivatives and (ii) two new adjoint fields \(\beta \) and \(X[\beta] \) defined as the \((Y \)-periodic, zero-mean) solutions of:

\[
\nabla \cdot (\mu \nabla \beta) = -\langle \rho - \rho^0 \rangle
\]
\[
\text{and} \quad \nabla \cdot (\mu (\beta I + \nabla X[\beta])) = -\mu \nabla \beta.
\]

In particular, all the fields involved in (4) solve problems posed on the unperturbed cell.

The second-order homogenized shear modulus is defined by \(\mu^2 = \langle \mu (Q \otimes I + \nabla R) \rangle^S \) in terms of \(Q \) and a third cell function \(R \). Once again, an analysis of the problems satisfied by \(R \) and \(R_a \) is conducted. As a result, \(\mu_a^2 \) is found to have an expansion similar to (2), and its topological derivative \(\mathcal{D} \mu^2 \) (not shown here for brevity) is expressed in terms of the cell solutions \((P, Q, R) \) and the previously determined topological derivatives \((\mathcal{D} \rho^0, \mathcal{D} \mu^0, \mathcal{D} \rho^2) \).

Perspectives. The obtained expansions of the homogenized coefficients are useful on their own right, e.g. for computing quickly an approximation of the properties of a perturbed periodic material for several trial inhomogeneity locations \(z \) without solving the new cell problems. As an example, an approximation of \(\mu_a^0 \) is obtained by neglecting the remainder in (2), as illustrated on Fig. 2 for a chessboard-like cell.

Figure 2: Relative error \(|\mu_a^0 - \mu^0 - \frac{\bar{a}^2}{\bar{Y}} \mathcal{D} \mu^0/\mu_a^0|\) for an ellipsoidal inhomogeneity of semi-axes \((a, 0.2a)\) placed at \(z = (0.25, 0.25) \) in a chessboard-like cell \(Y = [0, 1]^2 \). In this case, since the medium is locally homogeneous around \(z \), the remainder can be shown to be in \(O(a^4) \) as observed.

However, as already intended in [3], the main usefulness of such expansions occurs for optimizing a periodic structure towards some desirable property. Since they address the time-harmonic case and the second-order homogenized coefficients, our results should notably allow to tune the dispersive properties of the homogenized material, in particular the so-called band-gaps (forbidden frequencies for which no wave propagates through the structure).

References

