The SignAge Corpus: Recording older signers with low cost motion capture devices
Coralie Vincent, Fanny Catteau, Dominique Boutet, Marion Blondel

To cite this version:
Coralie Vincent, Fanny Catteau, Dominique Boutet, Marion Blondel. The SignAge Corpus: Recording older signers with low cost motion capture devices. Corpora for Language and Aging Research (CLARe 4), Feb 2019, Helsinki, Finland. hal-02065452

HAL Id: hal-02065452
https://hal.archives-ouvertes.fr/hal-02065452
Submitted on 13 Mar 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The SignAge Corpus: Recording older signers with low cost motion capture devices

Coralie Vincent (1), **Fanny Catteau** (1), **Dominique Boutet** (2), **Marion Blondel** (1)
(1) SFL, CNRS-Paris8 ULP, France; (2) DYLIS, Univ-Rouen, France

1. Introduction

Low cost motion capture (mocap) devices

For almost ten years, the marketing of low cost motion capture devices such as the Microsoft Kinect sensor has enabled numerous studies in real-life settings (Mosina, Hendri & Khezmem, 2014; Webster & Gott, 2014; Springer & Yoger Seligmann, 2016). Whereas most of this work with older people is studying gait and fall risks (see Mosina, Zumi, Rezaei, Mignotte, & Neumann, 2011 for example), we propose to focus on the building of the SignAge corpus dedicated to the study of signing in older deaf participants with low-cost motion capture devices.

Impact on sign language studies

Up to now, a (preferably multi-)camera setup was considered a basic requirement in sign language studies, sometimes completed with more intrusive or expensive equipment such as data gloves, optical motion capture systems (Channon, 2015, p. 132–133). But latest technology advancements allow us to quantify 3D motions and their time derivatives at a reasonable price. Our new SignAge corpus of interactions between older deaf signers in LSF takes advantage of such advancements.

2. Building the SignAge corpus

2 digital camcorders, 2 Noitom Perception Neuron body straps, 1 Kinect

<table>
<thead>
<tr>
<th>Data flows</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video</td>
<td>2 digital camcorders (as in Bolly & Boutet, 2016)</td>
</tr>
<tr>
<td>Mocap 1</td>
<td>2 Noitom Perception Neuron body straps with 25 IMU</td>
</tr>
<tr>
<td>Mocap 2</td>
<td>Kinect v2 depth sensor</td>
</tr>
</tbody>
</table>

A collection combining video (2D) and biomechanical (3D) data

Setup

- **Cameras, Kinect and Neuron**
- **Equipment and participants layout during the data gathering**
- **Real-world setup viewing**

3. Data workflow

<table>
<thead>
<tr>
<th>Flow</th>
<th>(1) Acquire</th>
<th>(2) Reformate and clean</th>
<th>(3) View</th>
<th>(4) Sync</th>
<th>(5) Annotate and analyse</th>
<th>(6) Assess quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video</td>
<td>ER+EE</td>
<td>.mts (HQ) , .mp4 (LQ)</td>
<td>ELAN</td>
<td>ELAN</td>
<td>Based on start and end claps for both ER and EE</td>
<td>Drift 60.6 Hz</td>
</tr>
<tr>
<td>Video</td>
<td>EE</td>
<td>.mts (HQ) , .mp4 (LQ)</td>
<td>ELAN</td>
<td>ELAN</td>
<td>MatLab MoCap Toolbox</td>
<td>Drift 60.6 Hz</td>
</tr>
<tr>
<td>Mocap</td>
<td>ER</td>
<td>Axis Neuron, Python b2d</td>
<td>Motion Inspector</td>
<td>MatLab MoCap Toolbox</td>
<td>Drift 60.6 Hz</td>
<td></td>
</tr>
<tr>
<td>Mocap</td>
<td>EE</td>
<td>Axis Neuron, Python b2d</td>
<td>Motion Inspector</td>
<td>MatLab MoCap Toolbox</td>
<td>Drift 60.6 Hz</td>
<td></td>
</tr>
<tr>
<td>Kinect</td>
<td>EE</td>
<td>Brekel Pro Body v2</td>
<td>Motion Inspector</td>
<td>MatLab MoCap Toolbox</td>
<td>Drift 60.6 Hz</td>
<td></td>
</tr>
</tbody>
</table>

Summary of the steps necessary to analyse the 5 data streams

- Hypotheses: Correlation age ↔ Articulatory segment involved (ER: Interviewee, EE: Interviewee)

4. Conclusions

- Low cost, portability, ease to get accustomed to wearing the body straps
- Limits in space resolution (Neuron) and time resolution (Kinect) → need more data to confirm Kinect and Neuron might still be an interesting choice to get usable additional 3D data in aging studies

In progress

- Short term: Compare accuracy of Neuron mocap data with simultaneously recorded OptiTrack Prime 13 mocap data
- Longer term: Develop annotation support tools; use OpenPose detection library

5. References

Bibliography

Workshop (equipment, software and corpus)

- OptiTrack Prime 13: http://www.optitrack.com
- ELAN: http://www.mpi.sfb118.de/software/elan
- OpenPose: https://github.com/CMU-PerceptualComputingLab/openpose
- NeuronMotion: http://www.neuron-motion.com
- NeuronMocap: http://www.neuronmocap.com

6. Acknowledgements

Nicolas Nebbert, Marie-Anne Nade, SCP-DIESE, our participants from Rouen and Le Havre (Normandy), Le Havre BJT, Fabien Lecaye, Gilles Dietrich