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Inner approximations of the maximal positively

invariant set for polynomial dynamical systems0

Antoine Oustry1, Matteo Tacchi2, and Didier Henrion3

May 7, 2019

Abstract

The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is

used to compute inner approximations of the maximal positively invariant set for continuous-

time dynamical systems with polynomial vector fields. Convergence in volume of the hierar-

chy is proved under a technical growth condition on the average exit time of trajectories. Our

contribution is to deal with inner approximations in infinite time, while former work with vol-

ume convergence guarantees proposed either outer approximations of the maximal positively

invariant set or inner approximations of the region of attraction in finite time.

1 Introduction

This paper is an effort along a research line initiated in [5] for developing convex optimization tech-

niques to approximate sets relevant to non-linear control systems subject to non-linear constraints,

with rigorous proofs of convergence in volume. The approximations are obtained by solving nu-

merically a hierarchy of semidefinite programming or linear matrix inequality (LMI) relaxations,

as proposed originally by Lasserre in the context of polynomial optimization [10]. Convergence

proofs are achieved by exploiting duality between non-negative continuous functions and Borel

measures, approximated respectively with sums of squares (SOS) of polynomials and moments,

justifying the terminology moment-SOS or Lasserre hierarchy. In the context of control systems,

the primal moment formulation builds upon the notion of occupation measures [11] and the dual

SOS formulation can be classified under Hamilton-Jacobi techniques [2].
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Previous works along this line include inner approximations of the region of attraction [8], outer

approximations of the maximal positively invariant (MPI) set [9], as well as outer approximations

of the reachability set [4]. These techniques were applied e.g. in robotics [12] and biological

systems [14]. In [5, 8] the regions of attraction are defined for a finite time horizon, which is

a technical convenient framework since the occupation measures have then finite mass. To cope

with an infinite time horizon and MPI sets, a discount factor was added in [9] so that the mass of the

occupation measure decreases fast enough when time increases. In [4], the mass was controlled by

enforcing a growth condition on the volume of complement sets. This condition, difficult to check

a priori, can be validated a posteriori using duality theory.

It must be emphasized here that, in general, the infinite time hoziron setup is more convenient

for the classical Lyapunov framework and asymptotic stability, see e.g. [3] and references therein,

whereas the finite time horizon setup is more convenient for approaches based on occupation mea-

sures. In the current paper, we make efforts to adapt the occupation measure framework to an

infinite time horizon setup, at the price of technical difficulties similar to the ones already en-

countered in [4]. Contrary to the outer approximations derived in [9], we have not been able to

use discounted occupation measures for constructing inner approximations. Instead, the technical

device on which we relied is a growth condition on the average exit time of trajectories.

The main contributions of this work are:

1. A moment-SOS hierarchy for constructing inner approximations of the MPI set for a poly-

nomial dynamical system with semialgebraic constraints;

2. A detailed, self-contained, rigorous proof of convergence of the hierarchy, under an assump-

tion on the average exit time of trajectories.

Section 2 presents the problem statement. Section 3 describes the MPI set inner approximation

method with proof of convergence under appropriate assumptions. Numerical results are analyzed

in Section 4. Conclusion and future work are discussed in Section 5.

2 Problem statement

Consider the autonomous system

ẋ(t) = f (x), x ∈ int(X)⊂ R
n, t ∈ [0,+∞[ (1)

with a given polynomial vector field f of degree d0. The state trajectory x(.) is constrained to the

interior int(X) of a nonempty compact basic semi-algebraic set

X := {x ∈ R
n : gi(x)≥ 0, i = 1, ...,nX}

where the gi are given polynomials of degree di. We define ∂X := X \ int(X).

The vector field f is polynomial and therefore Lipschitz on the compact set X . As a result, for

any x0 ∈ int(X), there exists a unique maximal solution x(.|x0) to ordinary differential equation (1)

with initial condition x(0|x0) = x0. The time interval on which this solution is defined contains the

time interval on which x(.|x0) ∈ int(X).



For any t ∈ R+∪{+∞}, we define the following set:

Xt := {x0 ∈ int(X) : ∀s ∈ [0, t], x(s|x0) ∈ int(X)}

With this notation, X∞ is the set of all initial states generating trajectories staying in int(X) ad

infinitum: X∞ is the MPI set included in int(X). Indeed, for any x0 ∈ X∞ and t ≥ 0, by definition,

x(t|x0) ∈ X∞. We make the following assumption implying that X∞ has non-empty interior:

Assumption 1 X contains a Lyapunov-stable equilibrium point for f .

The complementary set X c
t := int(X) \Xt is the set of initial conditions generating trajectories

reaching the target set ∂X at any time before t: this is the region of attraction of ∂X with free

final time lower than t. The complementary set X c
∞ is the region of attraction of ∂X with free and

unbounded final time.

In this paper we want to approximate the MPI set X∞ from inside as closely as possible.

3 Inner approximations of maximal positively invariant set

This section presents an infinite dimensional linear programming (LP) problem and a hierarchy of

convex linear matrix inequality (LMI) relaxations yielding a converging sequence (in the sense of

the Lebesgue measure) of inner approximations of the MPI set.

However, due to the infinite time horizon, such a strong result is available only under some as-

sumptions. It is based on the primal formulation of the MPI set computation problem.

For a given x0 ∈ X c
∞, we define the exit time as

τ(x0) := inf{t ≥ 0 : x(t|x0) /∈ int(X)}.

In the rest of this paper we make the assumption that the average exit time of trajectories leaving

int(X) is finite:

Assumption 2 τ := 1
λ (X)

∫

Xc
∞

τ(x)dx <+∞.

Remark 1 This assumption is necessary for the rigorous proof of convergence of the sequence of

approximations of X∞. It is difficult to check a priori. We will show however that, independently of

this assumption, the validity of our approximations can be checked numerically a posteriori.

3.1 Primal LP

For a given T ∈ R+, we define the following infinite-dimensional LP

pT = sup
µ0,µ̂0,µ∈M+(X)

µ∂∈M+(∂X)

µ0(X)

div( f µ)+µ∂ = µ0

s.t. µ0 + µ̂0 = λ
µ(X)≤ T λ (X)

(2)



with M+(A) denoting the cone of non-negative elements of the vector space M (A) of Borel

measures supported on the set A. With the notation M (A) = C (A)′ we emphasize that the vector

space M (A) is the topological dual to the vector space C (A) of continuous functions on A. The

duality of v ∈ C (A) with µ ∈ M (A) is the integration 〈µ,v〉 :=
∫

A v(x)dµ(x).

Remark 2 Here, T is introduced to ensure that all the feasible measures have a finite norm in

total variation ‖µ‖TV := µ(X)<+∞. Otherwise, the optimization problem would be ill-posed.

Note that problem (2) is linear in the decision variables which are the four measures. The two

following lemmas link the infinite-dimensional LP (2) and the MPI set X∞.

Lemma 1 Assuming that T ≥ τ , we have pT ≥ λ (X c
∞).

Proof:

• µ0 := λXc
∞
, µ̂0 := λ −µ0 = λX∞

• µ := A 7→
∫

Xc
∞

∫ τ(x0)
0 1A(x(t|x0)) dt dx0

• µ∂ =: A 7→
∫

Xc
∞
1A(x(τ(x0)|x0))dx0

define a feasible quadruplet. Indeed, one has :

• µ(X) =
∫

Xc
∞

(

∫ τ(x0)
0 dt

)

dx0 = τ λ (X)≤ T λ (X)

• the first constraint in (2) is satisfied, since ∀v ∈ C 1(X),

〈div( f µ),v〉=−

∫

Xc
∞

∫ τ(x0)

0
∇v(x(t|x0)) · f (x(t|x0))dtdx0

=−
∫

Xc
∞

(v(x(τ(x0)|x0))− v(x0))dx0

= 〈µ0 −µ∂ ,v〉.

then, pT ≥ µ0(X) = λXc
∞
(X) = λ (X c

∞). �

Lemma 2 For any quadruplet (µ0, µ̂0,µ,µ∂ ) feasible in (2), µ0 is supported on X c
∞, i.e. µ0(X∞) =

0.

The proof of this lemma uses the following assumption on the MPI set:

Assumption 3 ∀x ∈ ∂X∞ ∩ ∂X , f (x) · n(x) < 0, where n(x) stands for the unit normal vector to

∂X pointing towards R
n \X.

In words, at all points where ∂X∞ is tangent to ∂X, the trajectories strictly enter X. Up to the

choice of X, this assumption is reasonable for any physical system.



Proof: Let (µ0, µ̂0,µ,µ∂ ) be a feasible quadruplet for (2). Let ν := div( f µ) = µ0 −µ∂ ∈ M (X).
For x ∈ R

n, let

ϕ(x) :=

{

K exp
(

− 1
1−|x|2

)

if |x|< 1

0 else

where K > 0 is such that
∫

ϕ dλ = 1. Then, for ε > 0 and x ∈ R
n, let:

• ϕε(x) := 1
ε ϕ

(

x
ε

)

≥ 0

• µε(x) :=
∫

X
ϕε(y− x) dµ(y) ≥ 0

• νε(x) := div( f µε)(x).

According to the theory of mollifiers, ϕ , ϕε , µε and νε are smooth compactly supported functions,

and for any w ∈ C 0(Rn) compactly supported,

∫

Rn
w(x)µε(x) dx −→

ε→0

∫

X
w(x) dµ(x)

from which it directly follows that for v ∈ C 1(Rn) compactly supported

∫

Rn
v(x)νε(x) dx =

∫

Rn
v(x)div( f µε)(x) dx

=−
∫

Rn
∇v(x) · f (x)µε(x) dx

−→
ε→0

−
∫

Rn
∇v(x) · f (x) dµ(x)

=

∫

Rn
v(x) dν(x).

By density of C 1
c (R

n) in C 0
c (R) with respect to the supremum norm ‖.‖L∞(Rn) , this implies that

νελ weakly converges (in the sense of measures) to ν .

For a given δ > 0 consider the set

Xδ :=

{

x ∈ X∞ : inf
y∈∂X

|x− y| > δ

}

.

By definition, Xδ ∩∂X = /0, and then for any Borel set A ⊂ Xδ , one has ν(A) = µ0(A). In particular,

ν(∂Xδ ) = µ0(∂Xδ ) = 0 since µ0 ≤ λ . Then, we can apply the Portmanteau lemma (equality

marked with a ∗) to ν(Xδ ):

µ0(Xδ ) = ν(Xδ )

∗
= lim

ε→0

∫

Xδ

νε(x) dx

def
= lim

ε→0

∫

Xδ

div( f µε)(x) dx

= lim
ε→0

∫

∂Xδ

f (x) ·nδ (x)µε(x) dx



where nδ stands for the unit normal vector to ∂Xδ pointing towards X c
δ , according to Stokes’

theorem. Now, let ∆ be the function

∂X∞ ∩∂X −→ R+

x 7−→ sup

{

∆ > 0,∀δ ∈ (0,∆),∀y ∈ ∂Xδ

|x− y| < ∆ =⇒ f (y) ·nδ (y)≤ 0

}

.

In words, ∆(x) is the largest range around x in which the f · nδ are non-positive. According to

Assumption 3, f being continuous, ∆ takes only positive values. Moreover, due to the regularity of

f , X and X∞, ∆ is continuous on the compact set ∂X∞∩∂X , therefore it attains a minimum ∆∗ > 0.

Let δ ∈ (0,∆∗), x ∈ ∂Xδ . Then, there are two possibilities:

• either x ∈ ∂X∞, and then by positive invariance of X∞, f (x) ·nδ (x)≤ 0;

• or inf
y∈∂X

|x− y|= δ < ∆∗, and by definition of ∆∗, f (x) ·nδ (x)≤ 0.

It follows that for any x ∈ ∂Xδ , f (x) ·n(x)≤ 0. Thus, one obtains
∫

∂Xδ

f (x) ·nδ (x)µε(x) dx ≤ 0

and after letting ε tend to 0, we have µ0(Xδ ) ≤ 0, which means, by non-negativity of µ0, that

µ0(Xδ ) = 0.

Eventually, since Xδ ⊂ X∞ and µ0 ≤ λ , one has

µ0(X∞) = µ0(X∞)−µ0(Xδ )

= µ0(X∞ \Xδ )

≤ λ (X∞ \Xδ )

= λ ({x ∈ X∞ ; inf
y∈∂X

|x− y| ≤ δ})

−→
δ→0

λ (X∞∩∂X) = 0

which leads to the conclusion that µ0(X∞) = 0. �

Theorem 3 Assuming that T ≥ τ , the infinite-dimensional LP (2) has a value pT = λ (X c
∞). More-

over the supremum is attained, and the µ0 component of any solution is necessarily the measure

λXc
∞
.

Proof: This is a straightforward consequence of lemmas 1 and 2. �

3.2 Dual LP

For a given T ∈ R+, we cast problem (2) as particular instance of a primal LP in the canonical

form:
pT = sup

φ∈K1

〈φ ,c〉1

s.t. −A φ +b ∈ K2

(3)

with



• the vector space E1 := M (X)3×M (∂X) and its cone K1 := E+
1 of non-negative elements;

• the vector space F1 := C 0(X)3×C 0(∂X) and L1 := F+
1 ;

• the duality 〈., .〉1 : E1 × F1 → R, given by the integration of continuous functions against

Borel measures, since E1 is the dual of F1;

• the decision variable φ := (µ0, µ̂0,µ,µ∂ ) ∈ E1 and the objective function c := (1,0,0,0) ∈
F1;

• E2 := R×C 1(X)′ ×M (X), K2 := R+ ×{0} × {0} ⊂ E2 and the right hand side vector

b := (T λ (X),0,λ );

• F2 := R×C 1(X)×C 0(X), L2 := R+×C 1(X)×C 0(X);

• the linear operator A : E1 → E2 given by

A (µ0, µ̂0,µ,µ∂ ) :=





µ(X)
div( f µ)+µ∂ −µ0

µ0 + µ̂0



 .

Note that both spaces F1,F2 are equipped with the weak topologies σ(F1,E1), σ(F2,E2) and the

spaces E1,E2 are equipped with the weak-* topologies σ(E1,F1), σ(E2,F2). Using the same nota-

tions, the dual of the primal LP (3) in the canonical form reads:

dT = inf
ψ∈L2

〈b,ψ〉2

s.t. A ′ψ − c ∈ L1

(4)

with

• the Lagrange dual variable ψ := (u,v,w) ∈ F2;

• the adjoint linear operator A ′ : F2 → F1 given by:

A
′(u,v,w) :=









w− v

w

u−∇v · f

v|∂X









.

Using our original notations, the dual LP of problem (2) then reads:

dT = inf
u∈R+

v∈C 1(X)

w∈C 0(X)

∫

X
(w(x)+u T ) dλ (x)

∇v · f (x)≤ u, ∀x ∈ X

s.t. w(x) ≥ v(x)+1,∀x ∈ X

w(x) ≥ 0,∀x ∈ X

v(x) ≥ 0,∀x ∈ ∂X .

(5)



Lemma 4 Let (0,v,w) be a feasible triplet for problem (5). Then, the set X̂∞ := {x ∈ int(X) :

v(x)< 0} is a positively invariant subset of X∞.

Proof: Since X∞ is the MPI set included in X and X̂∞ ⊂ X by definition, it is sufficient to prove

that X̂∞ is positively invariant.

Let x0 ∈ X̂∞. Then, for any t > 0, it holds

v(x(t|x0)) = v(x0)+
∫ t

0
∇v · f (x(s|x0)) ds ≤ v(x0)< 0

using constraint ∇v · f (x)≤ u = 0.

We still have to show that x(t|x0) remains in int(X) at all times t ≥ 0. If not, then there exists a

t∂ > 0 such that x(t∂ |x0) ∈ ∂X according to the intermediate value theorem, the trajectory being of

course continuous in time. However, by feasibility of (0,v,w), one then has v(x(t∂ |x0))≥ 0, which

is in contradiction with the fact that v(x(t|x0))< 0 for all t > 0 which we just proved.

Thus, we obtain that for all t > 0, x(t|x0) ∈ int(X) and v(x(t|x0))< 0, i.e. x(t|x0) ∈ X̂∞. �

Remark 3 For a feasible triplet (u,v,w), if u 6= 0, then there is no guarantee that the solution of

(5) yields an inner approximation of X∞. However, it still gives access to inner approximations of

the Xt , t ∈ R+, and we will show that under Assumption 2, these approximations converge to X∞.

Lemma 5 For any triplet (u,v,w) feasible in (5), for any t > 0, X̂t := {x0 ∈ int(X),v(x0)+ ut <
0} ⊂ Xt .

Proof: Let (u,v,w) be a feasible triplet in (5) and let x0 be a element of X c
t for a given t > 0.

By definition of Xt we know that t ≥ τ(x0), where τ is the exit time, and that for any s∈ [0,τ(x0)],x(s|x0)∈
X . Thanks to the first constraint in (5), we can therefore say that for any s ∈ [0,τ(x0)],(∇v ·
f )(x(s|x0))≤ u. Hence for any s ∈ [0,τ(x0)],v(x(s|x0))≤ v(x0)+us. In particular, we deduce that

v(x(τ(x0)|x0))≤ v(x0)+uτ(x0)≤ v(x0)+ut

As x(τ(x0)|x0) ∈ ∂X , we know that v(x(τ(x0)|x0))≥ 0 and thus v(x0)≥−ut. This proves that

X c
t ⊂ {x0 ∈ int(X),v(x0)≥−ut}

hence X̂t ⊂ Xt . �

Theorem 6 There is no duality gap between primal LP problem (2) on measures and dual LP

problem (5) on functions in the sense that pT = dT .

Proof: According to a standard result [1, Chapter IV, Theorem (7.2)] of infinite-dimensional linear

programming, the zero duality gap follows from the closedness of the cone K := {(A φ ,〈φ ,c〉1) :

φ ∈E+
1 } in E2⊕R. In order to prove the closedness of K, we take a sequence φk =(µ0,k, µ̂0,k,µk,µ∂ ,k)

such that (A φk,〈φk,c〉1) weakly-* converges in E2 ⊕R and show that its limit is in K. Since

(A φk)k converges,
〈

A φk,
(

0

0

1

)〉

2
= µ0,k + µ̂0,k is convergent and thus bounded. This implies



- using non-negativity of considered measures - that both sequences µ0,k(X) and µ̂0,k(X) are

bounded. Boundedness of
〈

A φk,
(

1

0

0

)〉

2
= µk(X) implies that µk(X) is bounded as well. Finally,

we can remark that div( f µk)(X) = 0 for all k ∈ N, this is why boundedness of
〈

A φk,
(

0

1

0

)〉

2
=

div( f µk)+ µ∂ ,k − µ0,k and µ0,k(X) implies boundedness of µ∂ ,k(X). Thus the four sequences of

measures µ0,k, µ̂0,k,µk,µ∂ ,k are bounded in the sense of the weak-* topology. Hence, from the

weak-* compactness of the unit ball (Alaoglu’s Theorem [1, Chapter III, Theorem (2.9)]), there

exists a subsequence φki
that converges weakly-* to an element φ ∈E2 so that lim

k→∞
(A φk,〈φk,c〉1)=

(A φ ,〈φ ,c〉1) by weak-* continuity of A and 〈., .〉1. This proves that K is closed. �

3.3 LMI approximations

In what follows, Rk[x] denotes the vector space of real multivariate polynomials of total degree less

than or equal to k, and Σk[x] denotes the cone of sums of squares (SOS) of polynomials of degree

less than or equal to k.

Let κ :=
⌈

∑
nX

i=1 di/2
⌉

. For i = 0, . . . ,nX let ki := ⌈di/2⌉. Let kmin := max(k0,κ) and k ≥ kmin.

Throughout the rest of this section we make the following standard standing assumption:

Assumption 4 One of the polynomials modeling the set X is equal to gi(x) = R2 −|x|2.

This assumption is completely without loss of generality since a redundant ball constraint can be

always added to the description of the bounded set X.

Problem (5) admits a SOS tightening which can be written as follows:

dT
k = inf w′l+u T l0

s.t. u−∇v · f = p0 +∑i pi gi

w− v−1 = q0 +∑i qi gi

w = s0 +∑i si gi

v = t0+ t1 g1 · · ·gnX

(6)

where the infimum is with respect to u ≥ 0, v,w ∈ R2k[x], q0,s0, t0 ∈ Σ2k[x], qi,si ∈ Σ2(k−ki)[x],
i = 1, . . . ,nX , t1 ∈ R2(k−κ)[x] and p0, . . . , pnX

SOS polynomials with appropriate degree. Vector l

denotes the Lebesgue moments over X indexed in the same basis in which the polynomial w with

vector of coefficients w is expressed.

SOS problem (6) is a tightening of problem (5) in the sense that any feasible solution in (6) gives

a triplet (u,v,w) feasible in (5).

Theorem 7 Problem (6) is an LMI problem and any feasible solution (uk,vk,wk) gives inner ap-

proximations X̂ k
t := {x ∈ int(X),vk(x)+ ukt < 0} of the Xts. In particular, if uk = 0, X̂ k

∞ := {x ∈
int(X),vk(x)< 0} is an inner approximation of X∞.

Proof: As any linear optimization problem on SOS polynomials, (6) can be written as an LMI,

see e.g. [10] and references therein. Any constraint of the form σ = ∑
α∈N

n
2r

σαxα ∈ Σ2r[x] is indeed



equivalent to the existence of a positive semi-definite matrix Q = (qβ ,γ)β ,γ∈Nn
r

such that for any

α ∈ N
n
2r,σα = ∑β+γ=α qβγ . The inner approximation result is a direct consequence of Lemmas 4

and 5. �

This SOS tightening is a finite dimension convex optimization, and as such it admits a primal

formulation derived from Lagrangian theory, which can be seen as an LMI relaxation of infinite

dimensional LP (2) (see [10, Chapter 3] for details).

3.4 Convergence of the inner approximations

Theorem 8 Let T > τ . Then,

1. The sequence (dT
k ) is monotonically decreasing and converging to λ (X c

∞)

For every k ≥ kmin, let ψk := (uk,vk,wk) denote a 1
k
-optimal solution of the dual tightening of order

k. One has then :

2. uk −→
k→∞

0

3. wk

L1(X)
−→
k→∞

1Xc
∞

Proof:

1. dT
k is a decreasing sequence since the sequence of feasible sets of tightening (6) is increasing

in the sense of the inclusion (we are looking for solutions of increasing degree).

We are going to prove now that lim
k→∞

dT
k = dT . Let ε > 0. Let (u,v,w) be a strictly feasible

triplet for problem (5) such that dT ≤
∫

X(w(x)+u T ) dλ (x) ≤ dT + ε
2
. Such a triplet exists

since problem (5) has strictly feasible points (such as (u∗,v∗,w∗) = (1,x 7→ 1,x 7→ 3)). Let

ε1 > 0 such that:

– u−∇v · f (x)> ε1,∀x ∈ X ,

– w(x)− v(x)−1 > ε1,∀x ∈ X ,

– w(x)> ε1,∀x ∈ X ,

– v(x)> ε1,∀x ∈ ∂X .

Such an ε1 exists by strict feasibility of (u,v,w). Let ε2 := min
{

ε1
2

; ε1

1+‖ f ‖L∞(X)
; ε

2(1+T )λ (X)

}

.

According to an extension of the Stone-Weierstrass theorem found in [6], there exists a triplet

(û, v̂, ŵ)∈R+×R[x]2 such that |û−u|+‖v̂−v‖L∞(X)+‖∇(v̂−v)‖L∞(X)+‖ŵ−w‖L∞(X) < ε2.

Let x ∈ X , x̄ ∈ ∂X . Then, one has û−∇v̂ · f (x) = u−∇v · f (x)+(û−u)−∇(v̂−v) · f (x)>

ε1 − ε2(1+ ‖ f‖L∞(X)) ≥ 0, ŵ(x)− ˆv(x)− 1 = w(x)− v(x)− 1+(ŵ−w)(x)− (v̂− v)(x) >
ε1−2ε2 ≥ 0, ŵ(x) =w(x)+(ŵ−w)(x)> ε1−ε2 ≥ 0. v̂(x̄) = v(x̄)+(v̂−v)(x̄)> ε1−ε2 ≥ 0.

Hence, Assumption 4 enables to use Putinar’s Positivestellensatz [10, Theorem 2.14], giving

the existence of k ∈N and of q0,s0, t0 ∈Σ2k[x], qi,si ∈Σ2(k−ki)[x], i= 1, . . . ,nX , t1 ∈R2(k−κ)[x]



and p0, . . . , pnX
SOS polynomials with appropriate degree such that û−∇v̂ · f = q0+∑i qi gi,

ŵ− v̂− 1 = p0 +∑i pi gi, ŵ = s0 +∑i si gi and v̂ = t0 + t1g1 · · ·gnX
. This gives a feasible

solution of tightening (6) of order k. Moreover, we can check that
∫

X(ŵ(y)+ û T ) dλ (y) =
∫

X(w(y)+u T )dλ (y)+
∫

X(ŵ−w)(y)dλ (y)+T λ (X) (û−u)≤ dT + ε
2
+λ (X)ε2(1+T )≤

dT + ε which implies that dT ≤ dT
k ≤ dT + ε .

2. We define φ∗ := (µ0, µ̂0,µ,µ∂ ) feasible for (2) as in the proof of Lemma 1. In particular,

−A φ∗+ b = (T λ (X)− µ(X),0,0) ∈ K2 and 〈−A φ∗,ψk〉+ 〈b,ψk〉 = 〈−A φ∗+ b,ψk〉 =
(T λ (X)−µ(X))uk ≥ 0. On the other hand, 〈−A φ∗,ψk〉=−〈φ∗,A ′ψk〉 ≤−〈φ∗,c〉=−dT

since A ′ψk − c ∈ F+
1 and φ∗ ∈ E+

1 is optimal. Thus,

0 ≤ (T λ (X)−µ(X))uk ≤ 〈b,ψk〉−dT .

According to point 1, we have that 〈b,ψk〉 −→
k→∞

dT , so (T λ (X)−µ(X))uk −→
k→∞

0. Since by

assumption T > τ̄ =
µ(X)
λ (X) , this means that uk −→

k→∞
0.

3. Let ε > 0. Let t > 0 such that λ (Xt \X∞) ≤ ε . Let k̄ ≥ kmin such that for all k ≥ k̄ one has

that ‖ukt‖L1(X) ≤ ε and |
∫

X wkdλ −λ (X c
∞)| ≤ ε . Such an integer exists from points 1 and 2.

Using the triangular inequality and the fact that ‖ukt‖L1(X) ≤ ε one has

‖wk −1Xc
∞
‖L1(X) ≤ ‖wk +ukt −1Xc

∞
‖L1(X)+ ε. (7)

With the notation ∆ = ‖wk + ukt − 1Xc
∞
‖L1(X), one has that ∆ =

∫

Xc
t
|wk + ukt − 1Xc

∞
|dλ +

∫

Xt
|wk + ukt −1Xc

∞
|dλ . We denote by ∆1 and ∆2 these two terms, respectively. Using that

X c
t ⊂ X c

∞ and that wk(x)+ ukt ≥ 1+ vk(x) + ukt ≥ 1,∀x ∈ X c
t (from Theorem 7) we have

then that ∆1 =
∫

Xc
t

wk + ukt − 1dλ =
∫

Xc
t

wkdλ − λ (X c
t )+ λ (X c

t )ukt and since λ (X c
t )ukt ≤

‖ukt‖L1(X) ≤ ε ,

∆1 ≤

∫

Xc
t

wkdλ −λ (X c
t )+ ε. (8)

Moreover, we have that ∆2 ≤
∫

Xt
|wk|+ |ukt|+ |1Xc

∞
|dλ and therefore, using that wk ≥ 0 and

that ‖ukt‖L1(X) ≤ ε , it holds ∆2 ≤
∫

Xt
wkdλ + ε +λ (Xt \X∞). Since we have λ (Xt \X∞) ≤ ε

by choice of t, we deduce that ∆2 ≤
∫

Xt
wkdλ + 2ε . Combining this inequality with (8),

we have : ∆ = ∆1 +∆2 ≤
∫

X wkdλ −λ (X c
t )+3ε from which we deduce that ∆ ≤ 5ε , using

that |
∫

X wkdλ − λ (X c
∞)| ≤ ε and λ (X c

∞ \X c
t ) ≤ ε . Combining this with (7), we have that

‖wk −1Xc
∞
‖L1(X) ≤ 6ε .

�

Remark 4 Despite this convergence result, one should be aware of the fact that the computational

burden increases sharply with the dimension of the state space and the degree of the relaxations.

Indeed, the involved polynomials have
(

n+d
d

)

=
(

n+d
n

)

coefficients. Consequently, high values of n

and d might be intractable. A possible way to handle this consists in exploiting the structure of

the considered problems, such as sparsity. The key is to split the state space into low dimensional

subspaces and distribute the problem over the obtained partitioning (see [16] as a first example of

what can be done in practice for volume computation).



4 Numerical example

For this paper, we chose to focus on the simple example of the Van der Pol oscillator, as was done

in [5]:
{

ẋ1 =−2 x2

ẋ2 = 0.8 x1 +10 (1.022x2
1 −0.2) x2.

(9)

Let X = {x ∈ R
2 : x2

1 + x2
2 ≤ 1} and T = 100

π .

We implemented the hierarchy of SOS problems (6) in MATLAB, using the toolbox YALMIP

interfaced with the SDP solver MOSEK. For k = 6 and 7 (SOS degrees 12 and 14 respectively),

we compared the obtained regions to the outer approximations computed using the framework

presented in [9], see Figure 1. In this implementation, we checked at each realxation whether u was

-1 -0.5 0 0.5 1

x
2

-1

-0.5

0

0.5

1

x
1

Outer with k=6

Inner with k=6

Outer with k=7

Inner with k=7

Figure 1: Outer and inner approximations of the Van der Pol MPI set in the unit disk.

near to zero: for k = 6, we had u∼ 10−7, and for k = 7 we obtained u∼ 10−6, which is satisfactory.

Moreover, we also ran the hierarchy with constraint uk = 0 (to enforce inner approximations) and

obtained the same results.

However, we observed some difficulties:

• For low degrees, the only solution v found by the solver is very close to the zero polynomial:

the coefficients are of the order 10−5, therefore the plots are irrelevant; one loses conserva-

tiveness and several constraints are violated (namely the positivity constraint on v on ∂X ).

• For higher degrees, the basis of monomials is not adapted since for example in dimension 1

xα is close to the indicator of {−1,1}. As a result, the coefficients are of the order 105 or

more, and again the plots make little sense.

One can also find numerical applications of this method to actual eletrical engineering problems

in [13] with very promising results.



5 CONCLUSIONS

The original motivation behind our current work is the study of transient phenomena in large-scale

electrical power systems, see [7] and references therein. Our objective is to design a hierarchy of

approximations of the MPI set for large-scale systems described by non-linear differential equa-

tions. A first step towards non-polynomial dynamics can be found in [13]. Since the initial work [5]

relied on the mathematical technology behind the approximation of the volume of semi-algebraic

sets, we already studied in [16] the problem of approximating the volume of a large-scale sparse

semi-algebraic set. We are now investigating extensions of the techniques for approximating the

MPI set of large-scale sparse dynamical systems, and the current paper contributes to a better un-

derstanding of its inner approximations, in the small-scale non-sparse case. Our next step consists

of combining the ideas of [16] with those of the current paper, so as to design a Lasserre hierarchy

of inner approximations of the MPI set in the large-scale case, and apply it to electrical power

system models.
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