N

N

Linked Data Patch Format (W3C WG Note)

Alexandre Bertails, Pierre-Antoine Champin, Andrei Sambra,

» To cite this version:

Alexandre Bertails, Pierre-Antoine Champin, Andrei Sambra. Linked Data Patch Format (W3C WG
Note). [0] W3C. 2015. hal-02064319

HAL Id: hal-02064319
https://hal.science/hal-02064319
Submitted on 11 Mar 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02064319
https://hal.archives-ouvertes.fr

https://www.w3.org/TR/ldpatch/

WE

Linked Data Patch Format

This version:
http://www.w3.0rg/TR/2015/NOTE-Idpatch-20150728/
Latest published version:
http://www.w3.0org/TR/Idpatch/
Latest editor's draft:
https://dvcs.w3.org/hg/ldpwag/raw-file/ldpatch/ldpatch.html
Test suite:
https://github.com/pchampin/Id-patch-testsuite
Implementation report:
https://dvcs.w3.org/hg/ldpwa/raw-file/tip/tests/Idpatch/reports/ldpatch.html
Previous version:
http://www.w3.0rg/TR/2015/CR-Idpatch-20150303/
Editors:
Alexandre Bertails, alexandre@bertails.org
Pierre-Antoine Champin, Université de Lyon, pchampin®@liris.cnrs.fr
Andrei Sambra, MIT/W3C, andrei@w3.0org

Abstract

Linked Data Patch Format (LD Patch) defines a language for expressing a sequence of
operations for patching Linked Data resources; it is suitable for use with the HTTP PATCH
method.

Status of This Document

This section describes the status of this document at the time of its publication. Other

revision of this technical report can be found in the W3C technical reports index at
http://www.w3.0rg/TR/.

Although the Linked Data Platform (LDP) Working Group is currently favoring LD Patch, it seeks
more input in deciding which format to promote for use in LDP PATCH [LDP] operations on LDP
RDF Sources. Other viable candidates include:

e SPARQL 1.1 Update — already standardized, but quite complex for LDP scenarios

e SparglPatch — restricted to a simple subset of SPARQL 1.1 Update

e TurtlePatch — uses an even simpler subset, but requires unusual handling of blank nodes
e RDF Patch — simple, but also requires unusual handling of blank nodes

At this point, the advantage leans towards LD Patch in terms of simplicity, ease of
implementation, and run-time performance on anticipated data. We welcome data relevant to
this decision.

This specification was previously published as a Candidate Recommendation (CR). Due to lack
of sufficient implementations to meet the CR exit criteria within the time remaining under the

by another WG in the future, or not.

1o0f17

https://www.w3.org/TR/ldpatch/

This document was published by the Linked Data Platform Working Group as a Working Group
Note. If you wish to make comments regarding this document, please send them to public-Idp-
comments@w3.org (subscribe, archives). All comments are welcome.

is a draft document and may be updated, replaced or obsoleted by other documents at any
time. It is inappropriate to cite this document as other than work in progress.

This document was produced by a group operating under the 5 February 2004 W3C Patent

deliverables of the group; that page also includes instructions for disclosing a patent. An
individual who has actual knowledge of a patent which the individual believes contains
Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent

Policy.
This document is governed by the 1 August 2014 W3C Process Document.

Table of Contents

1. Introduction
2. Examples
2.1 Full example
2.2 rdf:List manipulation examples
3. Conformance
4. LD Patch Semantics
4.1 Nodes and triples Semantics
4.2 Path Expression
4.3 Patch Operations
4.3.1 Bind
4.3.2 Add
4.3.3 AddNew
4.3.4 Delete
4.3.5 DeleteExisting
4.3.6 Cut
4.3.7 UpdatelList
4.3.8 Error Handling
4.3.9 Pathological Graph
5. LD Patch compared to Turtle and SPARQL
6. Concrete Syntax
A. UpdatelList Algorithm
B. Internet Media Type, File Extension and Macintosh File Type
C. Acknowledgements
D. Change Log
D.1 Changes since March 2015 Candidate Recommendation
D.2 Changes since September 2014 First Public Working Draft
. References
E.1 Normative references
E.2 Informative references

m

1. Introduction

This section is non-normative.

Linked Data “describes a method of publishing structured data so that it can be interlinked and
become more useful. It builds upon standard Web technologies such as HTTP, RDF and IRIs, but
rather than using them to serve web pages for human readers, it extends them to share
information in a way that can be read automatically by computers. This enables data from
different sources to be connected and queried.” (source Wikipedia).

This document defines the Linked Data Patch Format (LD Patch), a format for describing
changes to apply to Linked Data. It is suitable for use with HTTP PATCH [RFC5789], a method to
perform partial modifications to Web resources.

An instance of the LD Patch language (or LD Patch document) defines a list of operations to be
performed against a Linked Data resource, namely the addition or removal of RDF [rdf11-

20f17

https://www.w3.org/TR/ldpatch/

concepts] triples in the graph representing this resource.

The LD Patch format described in this document should be seen as a language for updating RDF
Graphs in a resource-centric fashion. It is the intention to confine its expressive power to an
RDF diff with partial support for blank nodes and rdf:List manipulations. For more powerful
operations on RDF Graphs and Quad Stores, the LDP WG recommends the reader to consider

SPARQL Update [sparqglll-update].
2. Examples

This section is non-normative.

2.1 Full example

The following RDF Graph describes the relation between a person named Tim Berners-Lee
(denoted by <http://example.org/timbl#=) and two events he attended.

@prefix schema: <http://schema.org/> .
@prefix profile: <http://ogp.me/ns/profile#> .
@prefix ex: <http://example.org/vocab#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
<#> a schema:Person ;
schema:alternateName "TimBL" ;
profile:first name "Tim" ;
profile:last name "Berners-Lee" ;
schema:workLocation [schema:name "W3C/MIT"] ;
schema:performerIn :bl, :b2 ;
ex:preferredLanguages ("en" "fr").

:bl schema:name "F2F5 - Linked Data Platform" ;
schema:url <https://www.w3.0rg/2012/1ldp/wiki/F2F5> .

:b2 a schema:Event ;

schema:name "TED 2009" ;

schema:startDate "2009-02-04" ;

schema:url <http://conferences.ted.com/TED2009/> .

The following is an example HTTP Patch request, conveying an LD Patch document:

PATCH /timbl HTTP/1.1
Host: example.org
Content-Length: 478
Content-Type: text/ldpatch
If-Match: "abcl23"

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix schema: <http://schema.org/> .

@prefix profile: <http://ogp.me/ns/profile#> .

@prefix ex: <http://example.org/vocab#> .

Delete { <#> profile:first_name "Tim" } .
Add {
<#> profile:first name "Timothy" ;
profile:image <https://example.org/timbl.jpg> .
} .

Bind ?workLocation <#> / schema:workLocation .
Cut ?workLocation .

UpdatelList <#> ex:preferredLanguages 1..2 ("fr-CH")

Bind ?event <#> / schema:performerIn [/ schema:url = <https://www.w3.0rg/2012/ldp/wiki/F2F5>]
Add { ?event rdf:type schema:Event } .

Bind ?ted <http://conferences.ted.com/TED2009/> / ~schema:url !
Delete { ?ted schema:startDate "2009-02-04" } .
Add {
?ted schema:location [
schema:name "Long Beach, California" ;

3of17

https://www.w3.org/TR/ldpatch/

schema:geo [
schema:latitude "33.7817" ;
schema:longitude "-118.2054"
]
1
} .

This example introduces most features of the LD Patch format: eprefix and prefixed names, the
Add, Delete, Cut, and UpdateList operations, the node Binding mechanism, and blank node
creation. The "text/Idpatch" media type is prospectively used to identify such LD Patch
documents.

The following is the resulting (patched) document.

@prefix schema: <http://schema.org/> .
@prefix profile: <http://ogp.me/ns/profile#> .
@prefix ex: <http://example.org/vocab#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
<#> a schema:Person ;
schema:alternateName "TimBL" ;
profile:first _name "Timothy" ;
profile:last_name "Berners-Lee" ;
profile:image <https://example.org/timbl.jpg> ;
schema:performerIn :bl, :b2 ;
ex:preferredLanguages ("en" "fr-CH")

:bl a schema:Event ;
schema:name "F2F5 - Linked Data Platform" ;
schema:url <https://www.w3.0rg/2012/ldp/wiki/F2F5> .

:b2 a schema:Event ;
schema:name "TED 2009" ;
schema:url <http://conferences.ted.com/TED2009/> ;
schema:location [

schema:name "Long Beach, California";

schema:geo [schema:latitude "33.7817" ; schema:longitude "-118.2054"]
1.

2.2 rdf:List manipulation examples

All the LD Patch examples in this section are applied against the following RDF graph (target IRI
http://example.org/timbl):

<#> <http://example.org/vocab#preferredLanguages> ("lorem" "ipsum" "dolor" "sit" "amet")

How to replace elements

This example shows how to replace one element (here the second one) with a new one:

UpdatelList <#> <http://example.org/vocab#preferredLanguages> 1..2 ("fr")

Output graph:

<#> <http://example.org/vocab#preferredLanguages> ("lorem" "fr" "dolor" "sit" "amet")

How to insert new elements

This example shows how to insert new elements at a specific index (here 2):

4 of 17

https://www.w3.org/TR/ldpatch/

UpdatelList <#> <http://example.org/vocab#preferredLanguages> 2..2 ("en" "fr") .

Output graph:

<#> <http://example.org/vocab#preferredLanguages> ("lorem" "ipsum" "en" "fr" "dolor" "sit" "amet") .

How to append elements

This example shows how to append elements at the end of a collection:

UpdatelList <#> <http://example.org/vocab#preferredLanguages> .. ("en" "fr") .
Output graph:

<#> <http://example.org/vocab#preferredLanguages> ("lorem" "ipsum" "dolor" "sit" "amet" "en" "fr") .

How to replace all the elements after a given index

This example shows how to replace all the elements after the index 2 with the provided
collection:

UpdatelList <#> <http://example.org/vocab#preferredLanguages> 2.. ("en" "fr") .

Output graph:

<#> <http://example.org/vocab#preferredLanguages> ("lorem" "ipsum" "en" "fr") .

How to replace the n last elements

This example shows how to replace the last 3 elements of the provided collection:

UpdatelList <#> <http://example.org/vocab#preferredLanguages> -3.. ("en" "fr") .

Output graph:

<#> <http://example.org/vocab#preferredLanguages> ("lorem" "ipsum" "en" "fr") .

How to remove elements

This example shows how to remove elements (here the second and the third) from a collection:

50f17

https://www.w3.org/TR/ldpatch/

UpdatelList <#> <http://example.org/vocab#preferredLanguages> 1..3 () .

Output graph:

<#> <http://example.org/vocab#preferredLanguages> ("lorem" "sit" "amet") .

How to empty a collection

Finally, this example shows how to empty a collection:

Updatelist <#> <http://example.org/vocab#preferredLanguages> 0.. () .

Output graph:

<#> <http://example.org/vocab#preferredLanguages> () .

3. Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and
notes in this specification are non-normative. Everything else in this specification is normative.

The key words MUST and MUST NOT are to be interpreted as described in [RFC2119].
This specification defines conformance criteria for:

LD Patch documents
LD Patch parsers
LD Patch processors
LD Patch servers

A conforming LD Patch document is a Unicode string that conforms to the grammar defined
in the Concrete Syntax section.

A conforming LD Patch parser is a system capable of parsing LD Patch documents. The
resulting abstract concept is called a Linked Data patch, or simply patch when the context is
unambiguous. Parsers should treat Literals as being composed of a lexical form and an optional
language tag [BCP47] (as used by Turtle [Turtle]) or datatype IRI.

A conforming LD Patch processor is a system capable of executing a Linked Data patch
against an RDF Graph and whose semantics follow the ones defined in the LD Patch Semantics
section. It would either return a new graph or update the input graph in place.

A conforming LD Patch server is a system capable of processing an LD Patch document
through an HTTP PATCH request as defined in LDP PATCH [LDP]. It musT handle errors as defined
in the Error Handling section.

The IRI that identifies the LD Patch format is: http://www.w3.0rg/ns/formats/LD Patch.

4. LD Patch Semantics

An LD Patch document is applied to a Linked Data resource identified by an IRI (the target IRI)
and represented by an RDF graph (the target graph). It is made of a prologue followed by a
list of statements. The prologue declares a number of prefixes used to abbreviate IRIs as
PrefixedNames. Then, each statement either binds a variable to a matching node from the
target graph, or specifies a modification on the target graph.

60f17

https://www.w3.org/TR/ldpatch/

4.1 Nodes and triples Semantics

LD Patch borrows much of its syntax and semantics from Turtle [Turtle] for describing nodes and
triples. Especially, whenever production rules triples or collection are used, Turtle semantics
must be applied to parse them as a set of triples that we call an argument graph.

There are however a few points that need to be highlighted in the way LD Patch parses an
argument graph compared to Turtle:

e The base IRl used to resolve relative IRIs is the target IRI.

e LD Patch allows variables in subject and object positions.

e The value of a variables is the last node to which it was bound (in case it appears in
several Bind statements).

e The scope of blank node identifiers is the whole LD Patch document. That means
that argument graphs across statements can share blank nodes.

As IRIs and RDF Literals have global scopes, such nodes in an argument graph represent the
same resource as in the target graph. Blank nodes, on the other hand, pose a problem, as they
have no global identifiers. Indeed, since the scope of blank node identifiers is limited to the LD
Patch document in which they appear, any blank node identifier appearing in an LD Patch
document is understood to denote a fresh blank node, distinct from any node initially present in
the target graph. Therefore blank node identifiers in LD Patch cannot interfere with pre-existing
blank nodes in the target graph.

However, LD Patch provides mechanisms to address those pre-existing blank nodes: binding a
variable to a blank node reachable through a path expression, cutting a whole tree made of
blank nodes, or using UpdateList to deal with those blank nodes that constitute RDF collections.
There are cases where those mechanisms will not be able to unambiguously address a given
blank node, but those cases are deemed pathological, and are out of the scope of this
specification.

4.2 Path Expression

A Path expression can be used to locate RDF nodes within the target graph. A path expression
consists of a series of one or more Steps (introduced by a "/") or Constraints, which are applied
in order from left to right. The main goal is to allow addressing a blank node by “walking” the
arcs of the graph from an previously identified node.

/ behaves like a left-associated operator where the left operand is a node set, the right operand
is a Step, and the result is a node set. A Constraint behaves like a predicate function whose
implicit parameter is the node set on which it is applied. In the context of a Filter, this implicit
node set becomes the left operand for /.

A Step can be of three kinds:

e A StepForward is defined by an IRI, and consists in following the corresponding outgoing
arcs in the target graph.

e A StepBackward is defined by an IRl preceded by the caret ("~") sign, and consists in
following the corresponding incoming arcs in reverse in the target graph.

e A StepAt is defined by an integer n, and consists in following n rdf:rest arcs and one
rdf:first arc in order to reach the corresponding member of an RDF collection. It is
equivalent to a sequence of n+1 StepForwards with the corresponding IRIs. A negative
index n denotes the n-th element from the end of the list counting backwards.

A Constraint can be of two kinds:

e A Unicity constraint, described by the bang ("!") character, checks that the current node
set contains exactly one node.

e A Filter, consisting of a Path expression between square brackets ("1", "1"), keeps only the
nodes that “satisfy” the enclosed path, i.e. those from which the enclosed path reaches at
least one node.

e Additionally, the path in a filter can specify an equality constraint with the use of the equal
("=") sign and a Value. In that case, only the nodes for which that particular value is
reached through the enclosed path are kept.

7 of 17

https://www.w3.org/TR/ldpatch/

The following path expression (taken from the Examples section) will look for all events
matching the predicate schema:performerin, keeping only the one matching the IRI
<https://www.w3.0rg/2012/1dp/wiki/F2F5>.

/ schema:performerIn [/ schema:url = <https://www.w3.0rg/2012/1dp/wiki/F2F5>]

4.3 Patch Operations
4.3.1 Bind

The Bind operation is used to bind an RDF Term to a variable. The process results in the variable
being bound to exactly one node. After being bound, the variable can be used in the
subsequent statements. Another Bind can override the value of a previously bound variable.

The Bind operation is defined by three components: Var, Value and Path, the last component
being optional (can be considered equivalent to the empty path).

Var contains a unique name for the new variable. Variables are prefixed by the "?" character,
which is not part of the variable name.

Value is the RDF Term that will be used as starting point when following the path expression.

Path is the expression that is used to identify the RDF Term to which the Variable will be bound.
It is comprised of Step(s) and/or Constraint(s).

Following the example above, the Bind operation creates a new variable called event, starting
from the RDF Term <#- and following the path expression / schema:performerIn [/ schema:url =
<https://www.w3.0rg/2012/1dp/wiki/F2F5> 1 in order to identify the RDF Term to which this variable will
be bound to - i.e. :b2in the target graph.

Bind ?event <#> / schema:performerIn [/ schema:url = <https://www.w3.0rg/2012/1dp/wiki/F2F5>] .

4.3.2 Add

The Add operation is used to append new RDF triples to the target graph.

It has a single argument: an argument graph g. All triples in g must be added to the target
graph. If an argument graph contains one or more triples that already exist in the target graph,
the Add operation does not fail.

Add {
<#> profile:first_name "Timothy" ;
profile:image <https://example.org/timbl.jpg> .
} .

Add { ?event rdf:type schema:Event } .

4.3.3 AddNew

The AddNew operation is used to append new RDF triples to the target graph. It behaves like
Add but unlike its counterpart, AddNew fails when trying to add an already existing triple.

4.3.4 Delete

The Delete operation is used to remove RDF triples from the target graph.

It has a single argument: an argument graph g. All triples in g must be removed from the target
graph. It does not fail if one of those triples did not exist in the target graph. Blank nodes

8of17

https://www.w3.org/TR/ldpatch/

identifiers are allowed in Delete statements but they remain scoped to the LD Patch document,
so they can only match a blank node previously added by the same LD Patch document.

Delete { <#> profile:first name "Tim" } .

Delete { ?ted schema:startDate "2009-02-04" } .

4.3.5 DeleteExisting

The DeleteExisting operation is used to remove RDF triples from the target graph. It behaves
like Delete but unlike its counterpart, DeleteExisting fails when trying to delete a non-existing
triple.

4.3.6 Cut

The Cut operation is used to remove one or more triples connected to a specific blank node b.
More precisely, it removes all the outgoing arcs for b from the target graph, and does the same

recursively for all objects of those triples being blank nodes. Finally, it removes all incoming
arcs of b.

Cut ?workLocation .

4.3.7 UpdatelList

The UpdatelList operation is used to update some members of an RDF collection. It works in a
similar way to slicing in Python or similar languages: it replaces a slice of a list by another list.

The UpdatelList operation is defined by four components: a variable or IRI, a predicate, a Slice
expression, and an argument graph containing an RDF collection.

The Slice expression is composed of two optional 0-based indexes imjn and imax Separated by
"..". A negative index denotes elements from the end of the list counting backwards, e.g. the
last element of any non-empty list always has the index -1. An omitted value is interpreted as
the length of the collection. The Slice expression will denote the slice of the list being preceded
by imin elements, and spanning over (imax - imin) €lements.

For example, here are some Slice expressions for the list ("lorem" "ipsum" "dolor" "sit" "amet"):

e 2. .4 denotes the slice ("dolor" "sit"), i.e. the elements between the indexes 2 and 4
e 0.. denotes the slice ("lorem" "ipsum" "dolor" "sit" "amet"), i.e. the whole list

e 3.. denotes the slice ("sit" "amet"), i.e. all the elements after the index 3

e -2.. denotes the slice ("sit" "amet"), i.e. the last 2 elements

¢ 2..2 denotes the empty slice located between "ipsumn" and "dotlor"

e .. denotes the empty slice located at the end of the list

Appendix A contains a detailed algorithm for implementing the UpdateList logic using reified
rdf:List.

4.3.8 Error Handling

LD Patch abides to the semantics of the HTTP PATCH method [RFC5789], in that the server
“MUST apply the entire set of changes atomically and never provide (e.g., in response to a GET
during this operation) a partially modified representation. If the entire patch document cannot
be successfully applied (e.g., one of the instructions has failed), then the server musTt NOT apply
any of the changes”. In the case LD Patch operations fail to be applied, Error Handling, Section
2 of [RFC5789] specifies the error codes to be used.

Here are some additional error conditions more specific to LD Patch:

9o0f17

https://www.w3.org/TR/ldpatch/

If a Bind statement fails to match exactly one node, then a HTTP 422 (Unprocessable
Entity) error status code mMusT be returned.

If a Unicity constraint is violated, then a HTTP 422 (Unprocessable Entity) error status code
MUST be returned.

If a Cut operation fails to remove any triple, then a HTTP 422 (Unprocessable Entity) error
status code MUST be returned.

If a Cut operation is called on a variable not bound to a blank node, then a HTTP 422
(Unprocessable Entity) error status code MUST be returned.

If a DeleteExisting attempts to remove a non-existing triple, then a HTTP 422
(Unprocessable Entity) error status code MUST be returned.

If a AddNew attempts to add an already existing triple, then a HTTP 422 (Unprocessable
Entity) error status code mMusT be returned.

If the subject and predicate provided to an UpdateList do not have a unique object, or if
this object is not a well-formed collection, then a HTTP 422 (Unprocessable Entity) error
status code MuUST be returned.

If the indexes in a slice expression are in the wrong order (e.g. 2868..42), then the parsing
fails and a 400 (Bad Request) error status code MUST be returned.

If an index in a slice expression is greater than the length of the rdf:List, then a 422
(Unprocessable Entity) error status code MusT be returned.

If a prefix name (PNAME_NS) is used without being previously declared, then the parsing
fails and a 400 (Bad Request) error status code MUST be returned.

If a variable is used without being previously bound, then the parsing fails and a 400 (Bad
Request) error status code MusT be returned.

Note: 422 (Unprocessable Entity) is defined in 422 Unprocessable Entity, Section 11.2 of
[RFC4918].

4.3.9 Pathological Graph

There exists a particular case which LD Patch is not able to address. Given an RDF graph G, a
blank node b is said to be unambiguous in G if there exists a couple (n, p) where

nis an IRl or a literal
p is a Path Expression

such that applying p to {n} results in the singleton set {b}.
It is easy to see that only the unambiguous blank nodes of a graph can be handled in LD Patch.

Consider for example the following graph:

<#> foaf:name "Alice" ; foaf:knows _:bl, _:b2 .
_:bl a foaf:Person .

_:b2 a foaf:Person ; schema:workLocation _:b3 .
_:b3 schema:name "W3C/MIT" .

The blank nodes :b2 and :b3 are unambiguous as they can be reached unambiguoulsy from

that can match it would also match :b2.

Another example is a graph containing only blank nodes. All its nodes are therefore ambiguous
as they can not be reached from an IRI or a literal. Such a graph is not interesting in the context
of Linked Data as it contains no IRI to link to or from it.

Therefore, ambiguous blank nodes are considered a pathological case in the context of Linked
Data, and so the fact that they cannot be coped with in LD Patch is deemed acceptable.
Furthermore, their presence in a graph does not prevent the other nodes of that graph to be
handled by LD Patch. Most notably, all non-lean graphs [rdf11-mt] are also pathological.

5. LD Patch compared to Turtle and SPARQL

This section is non-normative.

10 of 17

https://www.w3.org/TR/ldpatch/

The LD Patch syntax uses a Turtle [Turtle] style syntax for its triples production. This production
differs from the Turtle language in that the subject and object production rules allow the use of
variables.

LD Patch variables are restricted to the VAR1 production rule from SPARQL 1.1 [sparqglll-query],
only allowing a leading '?'.

Finally, the prefix directive is restricted to the prefixID production rule in Turtle [Turtle], only
allowing @prefix.

6. Concrete Syntax

Production labels consisting of a number and a final 's', e.g. [135s], reference the production
with that number in the SPARQL 1.1 Query Language grammar [sparqll1l-query]. Production
labels consisting of a number and a final 't', e.qg. [6t], reference the production with that number
in the Turtle grammar [Turtle]. A production label containing an extra trailing '*' denotes a
modified rule, e.g. [10t*] and [12t*].

[1] Idpatch
[2] prologue

[3] statement

[4] bind

[5] add

[6] addNew

[7] delete

[8] deleteExisting
[9] cut

[10] updatelist

[11] varOrlRI
[12] wvalue

[13] path

[14] step

[15] constraint
[16] slice

[17] [INDEX
[143s] VAR1
[166s] VARNAME

[4t] prefixID

[18] graph
[6t] triples

[7t] predicateObjectList
[8t] objectList

[9t] verb

[10t*] subject

[11t] predicate

[12t*] object

[13t] literal
[14t] blankNodePropertylList

[15t] collection
[16t] NumericlLiteral
[128s] RDFLiteral

::= prologue statement*
.= prefix|D*

"7 | cut | updateList
::= ("Bind" | "8") VARL value path? "."

(
("AddNew" | "aN") "{" graph "3" "."
("petete" | "D") "{" graph "3" "."
::= ("DeleteExisting" | "DE") "{" graph "3" "."
("cut"] "c") VAR1 "."
. ("updateList" | "uL") varOrIRI predicate slice
" collection "."
;= iri | VARL
:i=ri | literal | VARL
('/' step | constraint)*
!AUiri | iri | INDEX
'[' path ('=' value)? '1" ["1
= INDEX? '.." INDEX?
n=""2?[0-9]+
='?' VARNAME

(PN_CHARS U | [0-9]) (PN_CHARS U | [0-9]
;= | #x00B7 | [#x0300-#x036F] |
[#x203F-#x2040])*

::="@prefix" PNAME_NS IRIREF "."

1= triples ('." triples)*'.'?

.. subject predicateObjectList |

" blankNodePropertyList predicateObjectList?
::=verb objectList (';' (verb objectList)?)*

::= object (',' object)*

;1= predicate | 'a'

::=iri | BlankNode | collection | VAR1

n=ir

.. Iri | BlankNode | collection |

" blankNodePropertylList | literal | VAR1
RDFLiteral | NumericlLiteral | BooleanLiteral
'[' predicateObjectList "1

'(" object*')!

;1= INTEGER | DECIMAL | DOUBLE

;1= String (LANGTAG | '~~" iri)?

11 of 17

https://www.w3.org/TR/ldpatch/

[133s] BooleanlLiteral 1= "true' | 'false’'

STRING_LITERAL QUOTE |
.._ STRING_LITERAL_ SINGLE QUOTE |

[17] String "7 STRING_LITERAL LONG SINGLE QUOTE |
STRING LITERAL LONG QUOTE

[135s]iri ::= |RIREF | PrefixedName

[136s] PrefixedName ;= PNAME_LN | PNAME_NS

[137s] BlankNode ::= BLANK NODE_LABEL | ANON
([N #X00-#x20<>"{}|""\] | UCHAR)* '>' /*

[18] IRIREF 1= #x00=NULL #01-#x1F=control codes
#x20=space */

[139s] PNAME NS ::=PN_PREFIX? "'

[140s] PNAME LN ::= PNAME_NS PN _LOCAL

[141s] BLANK_NODE_LABEL = F;N (Cp—l_'}'Agg)A?RS U | 10-9]) ((BN_CHARS | ".)*

[144s] LANGTAG n="'a' [a-zA-Z]+ ('-' [a-ZA-Z0-9]+)*

[19] |INTEGER n=[+-1? [0-9]+

[20] DECIMAL n=[+-]1?7 [0-9]* '.' [0-9]+

. [+-17 ([0-9]+ "." [0-9]* EXPONENT | '." [0-9]+

[21] DOUBLE *= EXPONENT | [0-9]+ EXPONENT)

[154s] EXPONENT ::=[eE] [+-]? [0-9]+
([N #x22#x5C#xA#XD] | ECHAR |
[22] STRING LITERAL QUOTE 1= UCHAR)* "' /* #x22=" #x5C=\ #xA=new

line #xD=carriage return */
([#X2T #X5C#xA#xD] | ECHAR |

[23] STRING_LITERAL SINGLE QUOTE 1= UCHAR)* """ [* #x27="#x5C=\ #xA=new
line #xD=carriage return */
n,,,n ((II,II | ||,,||)? ([/\I\] | ECHAR I UCHAR))*

[24] STRING_LITERAL LONG_SINGLE_QUOTE ::= . .,

[25] STRING _LITERAL LONG QUOTE n= :: (C)2 (7] | ECHAR | UCHAR))®

“\\u' HEX HEX HEX HEX | "\\v' HEX HEX HE

[26] UCHAR "= HEX HEX HEX HEX HEX
[159s] ECHAR n="\'[tbnrf"'\]

[161s] WS = #x20 | #x9 | #xD | #£xA
[162s] ANON = WS

[A-Z] | [a-z] | [#x00CO-#x00D6] |
[#x00D8-#x00F6] | [#X00F8-#x02FF] |
[#x0370-#x037D] | [#x037F-#x1FFF] |

[163s] PN_CHARS_BASE 1= [#x200C-#x200D] | [#x2070-#x218F] |
[#x2C00-#x2FEF] | [#x3001-#xD7FF] |
[#xF900-#xFDCF] | [#xFDFO-#xFFFD] |
[#x10000-#XEFFFF]

[164s] PN_CHARS U ;= PN_CHARS BASE | "'

.._PN_CHARS U | '-'| [0-9] | #x00B7 |
"7 [#x0300-#x036F] | [#x203F-#x2040]

__ PN_CHARS_BASE ((PN_CHARS | '.")*

[166s] PN_CHARS

[167s] PN_PREFIX

"7 PN CHARS)?
__(PN_CHARS_U | ':' | [0-9] | PLX) ((PN_CHARS |
[168s] PN_LOCAL =77 | PLX)* (PN_CHARS | *:' | PLX))?
[169s] PLX ::= PERCENT | PN_LOCAL ESC
[170s] PERCENT ="' HEX HEX
[171s] HEX = [0-9] | [A-F] | [a-f]
[172s] PN_LOCAL_ESC L A R L R L U
e e B B I AAN I B BRI S

A. UpdatelList Algorithm

12 of 17

https://www.w3.org/TR/ldpatch/

This section is non-normative.

Below is an algorithm explaining how updateList s p ipin..inax collection can be processed in the
presence of a reified rdf:List, i.e. encoded with rdf:first and rdf:rest. Implementers may take
advantage of a more native encoding for rdf:List.

Let spre be s, ppre be p and opre the object of the triple (s, p, ?) from the target graph.
Repeat i, times:

o Set Spre 0 Opre, Ppre tO rdf:rest and opre to the object of the triple (opre, rdf:rest, ?)
from the target graph.

Let spost be Spre, Ppost D€ Ppre @Nd 0Opost be Opre.
Repeat (imax-imin) times:

o Remove from the target graph the arcs (Spost, Ppost: Opost)-

o Let elt be the object of the triple (0post, rdf:first, ?). Remove from the target graph
the arc (opost, rdf:first, elt). If elt is a blank node, Then apply the Cut operation on
elt.

o Set Spost t0 Oposts Ppost tO rdf:rest and Opost to the object of the triple (opost, rdf:rest,
?) from the target graph.

Remove from the target graph the arcs (Spre, Ppre: Opre) and (Spost, Ppost: Opost)- (NB: in
some situations, they may be the same arc, or have already been removed by a previous
step)
If col is the empty collection
o Then
= Add in the target graph the arc (spre, Ppre, Opost)-
o Else
m Add all the arcs resulting from the parsing of col to the target graph, let fst be
the first node of the corresponding new collection, and /st the last node of that
collection (excluding rdf:nil).
m Remove from the target graph the arc (/st, rdf:rest, rdf:nil).
= Add in the target graph the arcs (spre, Ppre, fst) and (Ist, rdf:rest, Opost)-

Here is an illustration of the previous algorithm.

Consider the graph represented in Fig. 1 Graph with a collection. The result of applying the
operation updateList :s :p 2..4 ("foo" "bar" "baz") . on the collection in that graph can be seen in
Fig. 2 Applying UpdateList.

Fig. 1 Graph with a collection

13 of 17

https://www.w3.org/TR/ldpatch/

Ilipsumll

IIfOOII Ilbarll Ilbazll

Fig. 2 Applying updateList
B. Internet Media Type, File Extension and Macintosh File Type

Contact:
Andrei Vlad Sambra
see also:
How to Register a Media Type for a W3C Specification

Internet Media Type reqgistration, consistency of use
TAG Finding 3 June 2002 (Revised 4 September 2002)

The Internet Media Type / MIME Type for LD Patch is "text/ldpatch".

I Pending discussion/registration with IETF.

It is recommended that LD Patch files have the extension ".Idp" (all lowercase) on all platforms.
I Possible namespace conflict for .Idp!

It is recommended that LD Patch files stored on Macintosh HFS file systems be given a file type
of "TEXT".

Type name:
text

Subtype name:
Idpatch

Required parameters:
None

Optional parameters:
charset — this parameter is required when transferring non-ASCIl data. If present, the
value of charset is always UTF-8 [UTF-8].

Encoding considerations:
The syntax of LD Patch is expressed over code points in Unicode [UNICODE]. The encoding
is always UTF-8. Unicode code points may also be expressed using an \uxxxx (U+0000 to
U+FFFF) or \uxxxxxxxx syntax (for U+10000 onwards) where x is a hexadecimal digit [0-9A-
Fa-f].

Security considerations:
Because of it's relation with Turtle, the same security considerations can be applied here.
Applications may evaluate given data to infer more assertions or to dereference IRIs,
invoking the security considerations of the scheme for that IRI. Note in particular, the
privacy issues in [RFC3023] section 10 for HTTP IRIs. Data obtained from an inaccurate or
malicious data source may lead to inaccurate or misleading conclusions, as well as the
dereferencing of unintended IRIs. Care must be taken to align the trust in consulted
resources with the sensitivity of the intended use of the data; inferences of potential
medical treatments would likely require different trust than inferences for trip planning.
Application rendering strings retrieved from untrusted LD Patch sources must ensure that
malignant strings may not be used to mislead the reader. The security considerations in

14 of 17

https://www.w3.org/TR/ldpatch/

the media type registration for XML ([RFC3023] section 10) provide additional guidance
around the expression of arbitrary data and markup. LD Patch uses IRIs as term identifiers.
Applications interpreting data expressed in LD Patch should address the security issues of
Internationalized Resource Identifiers (IRIs) [RFC3987] Section 8, as well as Uniform
Resource Identifier (URI): Generic Syntax [RFC3986] Section 7. Multiple IRIs may have the
same appearance. Characters in different scripts may look similar (a Cyrillic "o" may
appear similar to a Latin "0"). A character followed by combining characters may have the
same visual representation as another character (LATIN SMALL LETTER E followed by
COMBINING ACUTE ACCENT has the same visual representation as LATIN SMALL LETTER E
WITH ACUTE). Any person or application that is writing or interpreting LD Patch data must
take care to use the IRI that matches the intended semantics, and avoid IRIs that may look
similar. Further information about matching of similar characters can be found in Unicode
Security Considerations [UNICODE-SECURITY] and Internationalized Resource Identifiers
(IRIs) [RFC3987] Section 8.

Interoperability considerations:
There are no known interoperability issues.

Published specification:
This specification.

Applications which use this media type:
No widely deployed applications are known to use this media type. It may be used by
some web services and clients consuming their data.

Additional information:

Magic number(s):
LD Patch documents may have the string '@prefix' (case sensitive) near the beginning of
the document.
File extension(s):
".Idp"
Macintosh file type code(s):
"TEXT"
Person & email address to contact for further information:
Andrei Vlad Sambra <andrei@w3.org>
Intended usage:
COMMON
Restrictions on usage:
None
Author/Change controller:

over this specifications.

C. Acknowledgements

This section is non-normative.

The following people (in alphabetic order) have been instrumental in providing thoughts,
feedback, reviews, content, criticism and input in the creation of this specification:

Andy Seaborne, Arnaud Le Hors, Ashok Malhotra, Eric Prud'hommeaux, Henry Story, John
Arwe, Sandro Hawke, Steve Speicher, Tim Berners-Lee

D. Change Log
This section is non-normative.

D.1 Changes since March 2015 Candidate Recommendation

e Closed ACTION-156 by changing reference to "bcp47, as used by turtle”, based on i18n-
issue-410.

e Fixed example

e Fixed typo resolution re: ISSUE-102

e Added Conformance section

D.2 Changes since September 2014 First Public Working Draft

15 0f 17

https://www.w3.org/TR/ldpatch/

¢ Negative indexes in Path and Slice (ISSUE-102 and ISSUE-104)

e New section comparing LD Patch with Turtle and SPARQL 1.1

e Add and Delete now takes Turtle as argument (ISSUE-101)

e New operations AddNew and DeleteExisting (ISSUE-103)

The leading slash for Path expression is required (ISSUE-100)

New dedicated Example section

New section for Media Type registration

New section about Error Handling, with specific behaviours

Improvements and fixes in the grammar

Removed the abstract model section, leading to a lighter operational semantics

E. References
E.1 Normative references

[BCP47]
A. Phillips; M. Davis. Tags for Identifying Languages. September 2009. IETF Best Current
Practice. URL: https://tools.ietf.org/html/bcp4d7
[LDP]
Steve Speicher; John Arwe; Ashok Malhotra. Linked Data Platform 1.0. 26 February 2015.
W3C Recommendation. URL: http://www.w3.0org/TR/Idp/
[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best
Current Practice. URL: https://tools.ietf.org/html/rfc2119
[RFC3023]
M. Murata; S. St. Laurent; D. Kohn. XML Media Types. January 2001. Proposed Standard.
URL: https://tools.ietf.org/html/rfc3023
[RFC3986]
T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifier (URI): Generic Syntax.
January 2005. Internet Standard. URL: https://tools.ietf.org/html/rfc3986
[RFC3987]
M. Duerst; M. Suignard. Internationalized Resource Identifiers (IRIs). January 2005.
Proposed Standard. URL: https://tools.ietf.org/html/rfc3987
[RFC4918]
L. Dusseault, Ed.. HTTP Extensions for Web Distributed Authoring and Versioning
(WebDAV). June 2007. Proposed Standard. URL: https://tools.ietf.org/htmi/rfc4918
[RFC5789]
L. Dusseault; J. Snell. PATCH Method for HTTP. March 2010. Proposed Standard. URL:
https://tools.ietf.org/html/rfc5789
[Turtle]
Eric Prud'hommeaux; Gavin Carothers. RDF 1.1 Turtle. 25 February 2014. W3C
Recommendation. URL: http://www.w3.org/TR/turtle/
[UNICODE]
The Unicode Standard. URL: http://www.unicode.org/versions/latest/
[UNICODE-SECURITY]
Mark Davis; Michel Suignard. Unicode Security Considerations. URL.:
http://www.unicode.org/reports/tr36/
[UTF-8]
F. Yergeau. UTF-8, a transformation format of ISO 10646. November 2003. Internet
Standard. URL: https://tools.ietf.org/html/rfc3629
[rdfll-concepts]
Richard Cyganiak; David Wood; Markus Lanthaler. RDF 1.1 Concepts and Abstract Syntax.
25 February 2014. W3C Recommendation. URL: http://www.w3.0rg/TR/rdf11-concepts/
[rdfll-mt]
Patrick Hayes; Peter Patel-Schneider. RDF 1.1 Semantics. 25 February 2014. W3C
Recommendation. URL: http://www.w3.org/TR/rdf11-mt/
[sparqlll-query]
Steven Harris; Andy Seaborne. SPARQL 1.1 Query Language. 21 March 2013. W3C
Recommendation. URL: http://www.w3.org/TR/sparglll-query/

E.2 Informative references

[sparqlll-update]

16 of 17

https://www.w3.org/TR/ldpatch/

Paul Gearon; Alexandre Passant; Axel Polleres. SPARQL 1.1 Update. 21 March 2013. W3C
Recommendation. URL: http://www.w3.0rg/TR/sparglll-update/

17 of 17

