Technical note for the FS-MMSE-IC receiver
Titouan Petitpied, R Tajan, G. Ferré, Pascal Chevalier, S Traverso

To cite this version:
Titouan Petitpied, R Tajan, G. Ferré, Pascal Chevalier, S Traverso. Technical note for the FS-MMSE-IC receiver. 2019. hal-02063288

HAL Id: hal-02063288
https://hal.archives-ouvertes.fr/hal-02063288
Submitted on 11 Mar 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Technical note for the FS-MMSE-IC receiver

T. PetitpiedT, R. TajanT, G. FerreT, P. Chevalier†‡, S. Traverso†

T IMS, Univ. Bordeaux, Bordeaux INP, CNRS (UMR 5218), F-33405 Talence (FRANCE)
† THALES, 4 avenue des Louvresses, 92230 Gennevilliers (FRANCE)
\textsuperscript‡ CEDRIC laboratory – CONSERVATOIRE NATIONAL DES ARTS ET MÉTIERS
292 rue Saint-Martin, 75141 Paris Cedex 3 (FRANCE)

Email: forename.name@\{Tims-bordeaux.fr, †thalesgroup.com, \textsuperscript‡cnam.fr\}

February 2019

1 Definitions

For any scalars or vectors x and y with convenient sizes, we define:

\[
\begin{cases}
x_n &= e_n^\top x \\
R_{xy} &= E_{x,y}[xy^\top] \\
R_x &= R_{xx}
\end{cases}
\]

where e_n is the $(n+1)$th element of the canonic base. The operator $E_{x,y}[xy^\top]$ represents the statistical average with respect to x and y.

For any matrix A, we define A^\ast the conjugate matrix of A, A^T its transpose matrix and $A^\dagger = (A^T)^\ast$.

2 Context & Problem formulation

We suppose having the following expressions:

\[
\begin{cases}
r &= \text{HU}s + w \\
I(f, p) &= f^\dagger r + p \\
J(f, p) &= E_{I(f, p)} |I(f, p) - s_n|^2
\end{cases}
\]

where:

- f: a $(2N \times 1)$ vector,
- p: a scalar,
- H: a $(2N \times 2Ns)$ deterministic convolution matrix,
- U: a $(2Ns \times Ns)$ up-sampling matrix,
- $D = U^\dagger$: a down-sampling matrix,
- s: a $(Ns \times 1)$ probabilistic vector such that $E[s] = s^d$ and $R_{s_n,s_m} = (v_n^d + |s_n^d|^2)\delta(n-m) \implies E[(s - s^d)(s - s^d)^\dagger] = V^d = \text{diag}(v^d),$
- w: a $(2N \times 1)$ probabilistic vector such that $E[w] = 0_N$ and $R_{w} = \sigma_w^2 I_N,$
Typically, the vector \(r \) represents a band-limited received signal after the convolution operation of the shaping filter and the channel \(H \), corrupted by a centered circular white noise \(w \) with average power \(\sigma_w^2 \). Moreover, this holds if and only if the shaping filter bandwidth is bounded by \(\frac{2}{T_s} \). Hence, \(r \) represents a Fractionally-Spaced (FS) system model where \(I(f, p) \) is the estimator of \(s \) with Mean Square Error (MSE) \(J(f, p) \). Furthermore, considering the prior information \((s^d, V^d)\) on \(s \) leads to an Interference-Cancellation (IC) structure.

Problem formulation: We search for \(\hat{s}^c_n = I(f_n, p_n) \), \(\hat{v}^c_n = J(f_n, p_n) \) such that:

\[
(f_n, p_n) = \operatorname{argmin}_{(f, p)} J(f, p)
\]

Consequently, \(\hat{v}^c_n \) represents the Minimum MSE of the considered system model (FS-MMSE-IC) and with estimator \(\hat{s}^c_n \) of \(s_n \).

3 Problem resolution

3.1 Expression of the MSE minimizers

\[
J(f, p) = \mathbb{E}[I(f, p)]^2 - s_n^2 = f^\dagger R_f f + f^\dagger \mathbb{E}[r] p^* f + p \mathbb{E}[|r|^2] + 2 \mathbb{E}[s_n^*] R_s - \mathbb{E}[s_n] p^* + \sigma_w^2 \]

Minimizing \(J(f, p) \) leads us to nullify its the first partial derivatives.

\[
\frac{\partial J(f, p)}{\partial f} = 0 \iff 2R_f f + 2\mathbb{E}[r] p^* - 2R_{rs} = 0 \iff f = R_f^{-1}(R_{rs} \mathbb{E}[r] p^*)
\]

\[
\frac{\partial J(f, p)}{\partial p^*} = 0 \iff 2\mathbb{E}[r] f + 2p^* - 2\mathbb{E}[s_n^*] = 0 \iff p = \mathbb{E}[s_n] - f^\dagger \mathbb{E}[r]
\]

We check that such an extremum corresponds to a minimum:

\[
\begin{cases}
\frac{\partial^2 J(f, p)}{\partial f^2} = 2R_f \geq 0 \\
\frac{\partial^2 J(f, p)}{\partial p^*} = 2 \geq 0
\end{cases}
\]

3.2 Computation of the MSE minimizers

Let us first compute:

\[
\begin{align*}
\mathbb{E}[s_n] &= s_n^d \\
\mathbb{E}[r] &= HUs^d \\
R_f &= HUR_s \mathbb{E}[r] + \sigma_w^2 I_N \\
R_{rs} &= HUR_{rs_n}
\end{align*}
\]
Then, the MSE minimizers can be computed:

\[
f_n^\dagger = \left(R_{s_n r} - p_n E[r^\dagger] \right) R_r^{-1} \\
= \left(R_{s_n r} - E[s_n E[r^\dagger]] + f_n^\dagger \| E[r] \|^2 \right) R_r^{-1} \\
= \left(R_{s_n r} - E[s_n E[r^\dagger]] \right) R_r^{-1} \left(I_N - \| E[r] \|^2 R_r^{-1} \right)^{-1} \\
= \left(R_{s_n r} - E[s_n E[r^\dagger]] \right) \left(R_r^{-1} - \| E[r] \|^2 \right)^{-1} \\
= \left(R_{s_n r} - E[s_n E[s^\dagger]] \right) \left(DH \left(HUV d^\dagger DH + \sigma_w^2 I_{2N} \right) \right)^{-1} \\
= v_n^d e_n^\dagger DH^\dagger \left(HUV d^\dagger DH + \sigma_w^2 I_{2N} \right)^{-1}
\]

Using twice the Woodbury identity on any \((K_1 \times K_2)\) matrix \(A\) and \((K_2 \times K_1)\) matrix \(B\):

\[
A(BA + I_{K_2})^{-1} = A(BI_{K_1} A + I_{K_2})^{-1} \\
= A(I_{K_2} - B(I_{K_1} + AB)^{-1} A) \\
= (I_{K_2} - AB(I_{K_1} + AB)^{-1} A) \\
= (ABI_{K_1} + I_{K_1})^{-1} A \\
= (AB + I_{K_1})^{-1} A
\]

We identify \(A = \sigma_w^{-2} DH^\dagger\) leading to:

\[
f_n^\dagger = v_n^d e_n^\dagger DH^\dagger \left(HUV d^\dagger DH + \sigma_w^2 I_{2N} \right)^{-1} \\
= v_n^d e_n^\dagger \left(DH^\dagger HUV d^\dagger + \sigma_w^2 I_N \right)^{-1} DH^\dagger \\
= v_n^d e_n^\dagger \Sigma^{-1} DH^\dagger
\]

where \(\Sigma = GV^d + \sigma_w^2 I_N\) is the MMSE equalization matrix and \(G = DH^\dagger HU\) is also called global filter and gathers the up-sampling, channel and matched filtering and down-sampling operations.

\[
p_n = E[s_n] - f_n^\dagger E[r] \\
= s_n^d - v_n^d e_n^\dagger \Sigma^{-1} Gs^d
\]

3.3 Computation of the FS-MMSE-IC and its estimator

The FS-MMSE-IC estimator is given by:

\[
\hat{s}_n^c = f_n^\dagger r + p_n \\
= s_n^d + v_n^d e_n^\dagger \Sigma^{-1} (DH^\dagger r - Gs^d) \\
= s_n^d + v_n^d e_n^\dagger \Sigma^{-1} (y - Gs^d)
\]

where \(y = DH^\dagger r\) represents the received signal after matched filtering and down-sampling.
The FS-MMSE-IC \hat{c}_n^c of the estimator \hat{s}_n^c can be computed by first deriving:

$$R_{\hat{c}^c_n} = |s_n^d|^2 + 2(s_n^d)^*v_n^d e_n^d \text{Re} (\Sigma^{-1}E_y([y - G s^d])) + (v_n^d)^2 e_n^d \Sigma^{-1}E_y((y - G s^d)(y - G s^d)^\dagger) \Sigma^{-1} e_n$$

$$= |s_n^d|^2 + (v_n^d)^2 e_n^d \Sigma^{-1}E_s, w |G(s - s^d) + DH^I w|^2 \Sigma^{-1} e_n$$

$$= |s_n^d|^2 + (v_n^d)^2 e_n^d \Sigma^{-1}DH^I E_s, w |HU(s - s^d) + w|^2 \Sigma^{-1} e_n$$

$$= |s_n^d|^2 + (v_n^d)^2 e_n^d \Sigma^{-1}DH^I (HU^d DH^I + \sigma_w^2 I_N) HU \Sigma^{-1} e_n$$

$$= |s_n^d|^2 + (v_n^d)^2 e_n^d \Sigma^{-1} (DH^I HU^d + \sigma_w^2 I_N) DH^I HU \Sigma^{-1} e_n$$

$$= |s_n^d|^2 + (v_n^d)^2 e_n^d \Sigma^{-1} Ge_n$$

$$R_{x_n, \tilde{s}_n} = E_y[(s_n^d + v_n^d e_n^d \Sigma^{-1}(y - G s^d)) s_n^*]$$

$$= |s_n^d|^2 + (v_n^d)^2 e_n^d \Sigma^{-1} Ge_n (s - s^d) s_n^*$$

$$= |s_n^d|^2 + (v_n^d)^2 e_n^d \Sigma^{-1} Ge_n$$

$$R_{s_n} = |s_n^d|^2 + v_n^d$$

This leads to the FS-MMSE-IC \hat{c}_n^c expression:

$$\hat{c}_n^c = E_{s_n^c} \left[|s_n^c - s_n|^2 \right]$$

$$= R_{\hat{c}^c_n} - R_{x_n, \tilde{s}_n} - R_{s_n, \tilde{s}_n} + R_{s_n}$$

$$= R_{s_n} - R_{s_n, \tilde{s}_n}^c$$

$$= |s_n^d|^2 + v_n^d - |s_n^d|^2 - (v_n^d)^2 e_n^d \Sigma^{-1} Ge_n$$

$$= v_n^d (1 - v_n^d c_n)$$

where $c_n = e_n^d \Sigma^{-1} Ge_n$.

3.4 Unbiased FS-MMSE-IC and its estimator

We can note that the estimator \hat{s}_n^c of s_n has a residual bias:

$$E[s_n^d | E[s_n] = \mu] = E_{s_n \sim (n), w} [s_n^d + v_n^d e_n^d \Sigma^{-1} (y - G s^d) | E[s_n] = \mu]$$

$$= s_n^d + v_n^d e_n^d \Sigma^{-1} Ge_n (s - s^d | E[s_n] = \mu)$$

$$= s_n^d + (\mu - s_n^d) v_n^d c_n$$

$$= v_n^d c_n \mu + s_n^d (1 - v_n^d c_n)$$

where the vector $s_n \sim (n)$ represents all the components of s but s_n.

Removing the additive term $s_n^d (1 - v_n^d c_n)$ and dividing the multiplicative term $v_n^d c_n$ leads to:

$$s_n^c = (v_n^d c_n)^{-1} (s_n^c - s_n^d (1 - v_n^d c_n))$$

$$= s_n^d + c_n^{-1} e_n^d \Sigma^{-1} (y - G s^d)$$
We compute the new statistical matrices:

\[
R_{s_n} = |s_n|^2 + c_n e_n^\dagger \Sigma^{-1} \mathbb{E}_Y [(y - Gs^d) (y - Gs^d)^\dagger] \Sigma^{-1} e_n
\]

\[
= |s_n|^2 + c_n^{-1}
\]

\[
R_{s_n, s_n} = \mathbb{E}_Y [(s_n^d + c_n e_n^\dagger \Sigma^{-1} (y - Gs^d)) s_n^\dagger]
\]

\[
= |s_n|^2 + c_n e_n^\dagger \Sigma^{-1} G \mathbb{E}_s [(s - s^d) s_n^\dagger]
\]

\[
= |s_n|^2 + v_n^d
\]

\[
R_{s_n} = |s_n|^2 + v_n^d
\]

And finally we find the unbiased FS-MMSE-IC:

\[
v_n^c = \mathbb{E}_{s_n} |s_n^c - s_n|^2
\]

\[
= R_{s_n} - R_{s_n, s_n} - R_{s_n, s_n} + R_{s_n}
\]

\[
= |s_n|^2 + c_n^{-1} - |s_n^d|^2 - v_n^d - |s_n|^2 + v_n^d + |s_n^d|^2 + v_n^d
\]

\[
= c_n^{-1} - v_n^d
\]

4 Conclusion

The biased FS-MMSE-IC receiver is given by:

\[
\begin{align*}
\tilde{s}_n^c &= s_n^d + v_n^d e_n^\dagger \Sigma^{-1} (y - Gs^d) \\
\tilde{v}_n^c &= v_n^d (1 - v_n^d c_n)
\end{align*}
\]

where \(c_n = e_n^\dagger \Sigma^{-1} G e_n\) is a scalar, \(y = DH^\dagger r\) is the receive signal after matched filtering and down-sampling, \(G = DH^\dagger H U\) is the global effect including up-sampling, channel and matched filtering and down-sampling, \(\Sigma = GV^d + \sigma^2_w I_N\) is the MMSE equalization matrix.

Moreover, the unbiased FS-MMSE-IC receiver is given by:

\[
\begin{align*}
\tilde{s}_n^c &= s_n^d + c_n^{-1} e_n^\dagger \Sigma^{-1} (y - Gs^d) \\
\tilde{v}_n^c &= c_n^{-1} - v_n^d
\end{align*}
\]

Consequently, the FS-MMSE-IC receiver leads to a FS matched filter followed by a symbol time equalizer.