The relationship between word complexity and computational complexity in subshifts

Abstract : We prove several results about the relationship between the word complexity function of a subshift and the set of Turing degrees of points of the subshift, which we call the Turing spectrum. Among other results, we show that a Turing spectrum can be realized via a subshift of linear complexity if and only if it consists of the union of a finite set and a finite number of cones, that a Turing spectrum can be realized via a subshift of exponential complexity (i.e. positive entropy) if and only if it contains a cone, and that every Turing spectrum which either contains degree 0 or is a union of cones is realizable by subshifts with a wide range of 'intermediate' complexity growth rates between linear and exponential.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-02063174
Contributeur : Pascal Vanier <>
Soumis le : dimanche 10 mars 2019 - 23:06:46
Dernière modification le : mercredi 13 mars 2019 - 01:12:27

Fichiers

draft.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02063174, version 1
  • ARXIV : 1903.04325

Collections

Citation

Ronnie Pavlov, Pascal Vanier. The relationship between word complexity and computational complexity in subshifts. 2019. 〈hal-02063174〉

Partager

Métriques

Consultations de la notice

7

Téléchargements de fichiers

9