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This paper addresses the problem of profit-oriented disassembly line design and balancing considering partial disassembly,
presence of hazardous parts and uncertainty of task processing times. Few papers have studied the stochastic disassembly
line balancing problem and existing approaches have focused on heuristic and metaheuristic methods. Most existing work
has concentrated on complete disassembly where task times are assumed to be normal random variables and where AND/OR
graphs are not considered. The objective of this paper is the design of a serial line that obtains the maximum revenue and
then balances the workload under uncertainty. The processing time of a disassembly task is assumed to be a random variable
with any known probability distribution. An AND/OR graph is used to model the precedence relationships among tasks.
Stochastic programming models and exact-based solution approaches combining the L-shaped algorithm and Monte Carlo
sampling techniques are proposed. The relevance and applicability of the proposed models and solution methods are shown
by solving efficiently a set of disassembly problem instances from the literature.

Keywords: product recovery; disassembly; line design and balancing; uncertainty; Monte Carlo sampling; sample average
approximation

1. Introduction

Product recovery is becoming more important due to its social, environmental and economic benefits. Product recovery

preserves resources by reducing the consumption of virgin raw materials, water and energy. In addition, this process plays a

key role in minimising the amount of waste sent to landfills and diminishing air and water pollution (Ashby 2012). Through

recycling, remanufacturing and reuse, product recovery aims to retrieve valuable parts and materials from discarded or End

of Life (EOL) products. A mandatory step and most challenging part of product recovery process is disassembly.

Disassembly is a revalorising process, a methodical and organised separation of parts and materials of outdated products

for recycling, remanufacturing and reuse. A disassembly line is more suitable than a single workstation or a disassembly cell

to carry out disassembly operations with a higher productivity rate and automated disassembly. Figure 1 illustrates forward

and reverse logistics flows and positions disassembly in the closed loop logistics (Ma et al. 2011). This study particularly

focuses on design of disassembly systems and more specifically on disassembly line design.

Although disassembly seems to be the reverse of assembly, the disassembly process has unique characteristics which make

it more complex than assembly. Gupta and Güngör (2001) provide a comparison of operational and technical considerations

of assembly and disassembly lines. Indeed, the most obvious difference is the flow process which is convergent for assembly

and is divergent for disassembly. In a disassembly environment, a product is broken down into many parts and subassemblies

whose qualities, quantities and reliabilities cannot be controlled as in an assembly environment. The assembly process has

to be complete while the disassembly process, due to technical and economic restrictions, does not have to be carried out

completely and hence disassembly is usually a partial process (Lambert 2002). For example, irreversible connections of

components of a product can be considered as a technical restriction with the disassembly cost being greater than the revenue

obtained from retrieved parts as an economic restriction. The structure and quality of EOL products are very uncertain

and even the number of components in such products cannot be predicted. Consumers may remove certain components or

parts before disposing of the product or these components may be unfastened during their period of use. Moreover, an EOL

product may contain certain hazardous parts necessitating special handling at a workstation of a disassembly line. These

unique complex characteristics make disassembly processes and especially disassembly lines more challenging. Therefore,
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Figure 1. Forward and reverse logistics (Ma et al. 2011).

efficient decision-making tools are needed in order to optimise their performance and cost effectiveness. Such tools must

take into account the high degree of uncertainty in the structure and the quality of the products to be disassembled.

This paper considers in particular the design and balancing of disassembly lines under uncertainty. Such a line consists of

an ordered sequence of workstations connected by a material handling system, which allows the transportation of work-pieces

(parts and subassemblies) from one workstation to another. Certain parts or subassemblies may be hazardous and require

a particular treatment incurring a supplementary cost. As mentioned above, the disassembly process is typically partial.

The optimisation problem considered aims to assign a given set of disassembly operations (tasks) to an ordered sequence

of workstations while respecting precedence and cycle time constraints under uncertainty. The case of partial disassembly

is studied and the objective is to maximise the profit produced by the line. The line profit is calculated as the difference

between the positive revenue generated by recovered parts, and the line operation cost taken as negative revenue. The latter

includes the workstation operation costs, additional costs of workstations handling hazardous parts of the EOL product, as

well as penalty costs caused by the cycle time constraint violations. This objective allows the minimisation of the number

of workstations of the line, which in turn minimises the total idle time. Then, for this minimum number of workstations,

an optimal balance is determined under uncertainty for the resulting disassembly line. The obtained balance ensures that

idle times are as similar as possible for all the line workstations. This scheme of lexicographic optimisation is motivated for

economic reasons. In fact, the revenue generated by EOL products recovery constitutes one of the most important attractions

for investment in disassembly lines. Thus, the criterion of line profit is considered as dominant for disassembly lines.

In order to help designers to design economically viable disassembly lines and therefore to facilitate the implementation

of disassembly end of life scenarios in practice, this paper develops an efficient procedure to design disassembly lines under

uncertainty brought by the EOL products. The added value of this work is the ability to assess the disassembly profit or cost

for a product at the end of life. Such an assessment may help to take the decisions not only for EOL options but even at the

product design stage. The proposed model is rather complete and is capable of treating at the same time partial disassembly,

presence of hazardous material and uncertainty of task processing times.

The remainder of the paper is organised as follows: Section 2 provides an overview of the relevant literature on disassembly

line design and balancing. Section 3 follows with a formal description of the considered optimisation problem. Section 4

presents the developed solution algorithm that combines the L-shaped method with Monte Carlo sampling techniques.



Section 5 is dedicated to the analysis of numerical experiments and Section 6 concludes the paper and suggests further

research directions.

2. Previous work

The disassembly line design problem was introduced by Güngör and Gupta (1999). This problem called DLBP consists of

the assignment of disassembly tasks to workstations of a disassembly line with the objective of optimising some measures

of effectiveness (time, labour or money).

To deal with the deterministic DLBP, heuristic and metaheuristic approaches were developed. An iterative heuristic using

branch and bound technique was developed in Lambert and Gupta (2005) to deal with the line balancing problem subjected to

sequence dependent costs. A multi-objective heuristic for U-shaped DLBP was developed in Avikal, Jain, and Mishra (2013).

The authors considered several performance criteria in a lexicographic order: minimise the workstation idle times, maximise

the priority of removing hazardous components and maximise the priority of removing high-demand components. Two multi-

objective metaheuristics, a distributed agent ant system and an uninformed deterministic search, for the design and balancing

of disassembly lines were developed and compared in McGovern and Gupta (2005). Other multi-objective formulations

of the DLBP were presented in McGovern and Gupta (2006), Ding et al. (2010) where the objectives are also ordered

lexicographically. Ant colony-based approaches were developed for this problem. Several metaheuristic approaches were

developed to solve problems of disassembly process planning, disassembly scheduling and sequence dependent disassembly

line balancing, respectively, a Petri Net-based approach (Tiwari et al. 2002), constraint-based simulated annealing approach

(Prakash, Ceglarek, and Tiwari 2012) and particle swarm optimisation, a tabu search, ant colony optimisation (Kalayci

and Gupta 2013). A beam search-based approach for DLBP was proposed in Mete et al. (2016) to minimise the number

of workstations. Tang and Zhou (2006) developed a Petri net approach where a heuristic was employed to maximise the

line productivity. Qualitative and quantitative comparisons of different heuristics and metaheuristics for DLBP, including

genetic algorithm, ant colony optimisation method, greedy algorithm, greedy/hill-climbing, greedy/2-opt hybrid heuristics

and hunter-killer heuristics, were undertaken in McGovern and Gupta (2007).

Mathematical programming formulations and exact solution approaches were also proposed for the DLBP. Altekin,

Kandiller, and Ozdemirel (2008) developed an integer programming formulation for profit maximisation for the case of

partial disassembly. Koc, Sabuncuoglu, and Erel (2009) considered DLBP with the objective of minimising the number

of workstations. Two exact approaches based on mixed integer and dynamic programmes were developed. To balance a

mixed-model disassembly line, a linear physical programming approach was proposed in Ilgin, Akçay, and Araz (2017). A

comprehensive survey on production line design and balancing particularly on disassembly can be found in the literature

(Ilgin and Gupta 2010; Battaïa and Dolgui 2013; Bentaha, Battaïa, and Dolgui 2015a).

Few studies in the literature, however, have studied the DLBP under uncertainty (Bentaha, Battaïa, and Dolgui 2015a).

In Riggs, Battaïa, and Hu (2015), the joint precedence graph approach, known from assembly line balancing, was adapted

for disassembly line balancing in order to deal with EOL product states. A fuzzy coloured Petri net model with a heuristic

solution method was proposed by Turowski and Morgan (2005) to deal with the human factors (uncertainty of disassembly

task times) and product condition. A collaborative ant colony algorithm for stochastic mixed-model U-shaped disassembly

line balancing was developed in Agrawal and Tiwari (2006). Task times were assumed stochastic with known normal

probability distributions. A self-guided ants metaheuristic was proposed in Tripathi et al. (2009) for the disassembly line

sequencing problem, where fuzzy optimisation model was developed with the objective of maximising the net revenue of

the disassembly process. Tuncel, Zeid, and Kamarthi (2014) used a Monte Carlo-based reinforcement learning technique

to solve the multi-objective DLBP under demand variations of the EOL products. Güngör and Gupta (2001) proposed a

heuristic to deal with task failures caused by defective parts or joints in the EOL product. A MIP-based predictive-reactive

approach to deal with task failures was also developed in Altekin and Akkan (2011). In these two studies, a task failure can

be seen as a disruption and the authors proposed remedial actions to deal with such short-term disturbances. A first study

to deal dynamically with real time production line disturbances is proposed in Antoine et al. (2016). A binary bi-objective

non-linear programme was developed in Aydemir-Karadag and Turkbey (2013) for disassembly line design and balancing

under uncertainty of the task times. Disassembly task times were assumed to be independent random variables with known

normal probability distributions. Complete disassembly was considered and a genetic algorithm was designed to solve the

problem.

This literature review shows that there are few papers that have dealt with stochastic DLBP and these are either restricted

to the study of demand fluctuations, task failures, condition of the EOL products or stochastic task times (as normal random

variables) with only heuristic/metaheuristic solution methods being proposed without information about the solution quality.

Many of these works have not considered the case of partial disassembly and have not used an AND/OR graph to model the

precedence relationships among tasks. It is shown in the literature (Koc, Sabuncuoglu, and Erel 2009) that the integration



of the AND/OR graphs in the DLBP formulation allowed better solutions to be obtained compared to the use of AND

precedence diagrams. Most of the AND/OR graphs used in the literature are part-based diagrams, and such graphs do not

exploit the precedence relations among tasks and parts of the EOL product. The existing solution methods are unadapted to

simultaneously take into account other sources of uncertainty, and only consider task times that are normally distributed.

To bridge the gap, we developed in Bentaha et al. (2014), Bentaha, Battaïa, and Dolgui (2014a, 2014b, 2014c, 2014d),

Bentaha, Battaïa, and Dolgui (2015b), Bentaha et al. (2015) mathematical models and exact solution approaches to design

disassembly (or assembly) lines under uncertainty of the task processing times. Partial disassembly has been taken into

account and complex and/or precedence relationships among tasks have been integrated.

In Bentaha et al. (2014), Bentaha, Battaïa, and Dolgui (2014a, 2014b, 2014c), uncertainty was modelled using workstation

expectation times. This problem was introduced in Bentaha et al. (2014). In Bentaha, Battaïa, and Dolgui (2014a), the joint

problem of disassembly line design and tasks sequencing was studied. In Bentaha, Battaïa, and Dolgui (2014c), a Lagrangian

relaxation was proposed to maximise the disassembly line profit. In Bentaha, Battaïa and Dolgui (2014b), the line balancing

problem has been undertaken under the assumption of the fixed number of workstations. In Bentaha, Battaïa, and Dolgui

(2015b), Bentaha et al. (2015), the goal was to guarantee a certain operational level defined by the designer. Uncertainty was

modelled using joint probabilistic cycle time constraints. In Bentaha, Battaïa, and Dolgui (2014d), uncertainty was modelled

using the notion of recourse cost. In other words, this study aimed in minimising the line stoppage costs caused by the task

processing time uncertainties. In Bentaha, Battaïa, and Dolgui (2014d), the objective was the line cost minimisation. The

line cost includes the operation costs for workstations and penalty costs generated by the cycle time constraint violations.

Thus, revenue generated by recovered parts was not considered. However, as mentioned in Section 1, the revenue generated

by EOL products recovery constitutes one of the most important attractions for investment in disassembly lines. In addition,

handling hazardous parts and balancing the workload of the resulted line in Bentaha, Battaïa, and Dolgui (2014d) were not

considered.

The present paper deals with the profit-oriented partial DLBP under uncertainty of the disassembly task times (SP-

DLBP) which are assumed to be random variables with known probability distributions. Task times can be modelled using

any probability distribution. To deal with this uncertainty, a stochastic programme is developed.AnAND/OR graph is used to

model the precedence relations among tasks. The objective is to maximise the net revenue produced by the line.As mentioned

in Section 1, the line profit is calculated as the difference between the positive revenue generated by recovered parts, and

the line operation cost, considered as negative revenue. The cost includes the workstation operation costs, additional costs

of workstations handling hazardous parts of the EOL product, as well as penalty costs incurred by the cycle time constraint

violations. This work addresses the aforementioned shortcomings in Bentaha, Battaïa, and Dolgui (2014d).

The optimisation procedure proposed in this paper consists of two phases: (1) a minimum number of workstations for the

line is found by the maximisation of the line revenue and (2) for this minimum number of workstations, an optimal balance

is determined under uncertainty. An exact-based solution method is developed. The method integrates efficient Monte Carlo

sampling techniques with the L-shaped algorithm. The developed solution method computes lower and upper bounds for the

problem solutions and provides the corresponding confidence intervals as well as optimality gaps. In addition, the proposed

solution approach deals with any probability distribution for task times and can be extended to deal with additional stochastic

parameters without additional complexities. A detailed problem formulation is given in the next section.

3. Problem definition and formulation

In this section, the SP-DLBP and the graph used to model disassembly alternatives of an EOL product and relationships

among tasks and subassemblies are defined (Section 3.1). The first phase of the SP-DLBP is formulated in Section 3.2 while

the second phase is formulated in Section 3.3.

3.1 AND/OR graph and disassembly alternatives

The SP-DLBP consists of the assignment of the disassembly tasks, a set I , of an EOL product to an ordered sequence of

workstations, a set J , while satisfying precedence and cycle time constraints under uncertainty of the task times. The cycle

time (CT ) is the amount of time allocated to each station to complete its assigned tasks. It is the ratio of the planning period

length to the number of products that need to be disassembled in order to meet the demand.

The solution method developed in this paper considers the following assumptions: a single type discarded product is to be

partially (or completely) disassembled on a straight paced line; the EOL products are sufficiently available and their demand

quantities are deterministic; all received EOL products contain all their parts with no addition or removing of components.

Disassembly tasks of every product have to be assigned to the workstations in the same manner. All products are assumed



to be of the same type. Certain components of a product are hazardous. Task times are assumed to be random variables with

known probability distributions. A disassembly task can be performed by all workstations but only by one at a time.

Each component or subassembly of a product has a certain recovery (resale) value which is considered the same for

all components or subassemblies of the same type. This is particularly the case if the resale value of a given component or

subassembly is only based on the contained materials. In this paper, the study is focused on the variability in disassembly

task processing times. A fixed cost is allocated per operating time unit of a workstation with an additional fixed cost per

operating time unit of a workstation handling hazardous parts.

All possible disassembly alternatives of an EOL product are modelled using an AND/OR graph (Homem de Mello and

Sanderson 1990; Koc, Sabuncuoglu, and Erel 2009; Bentaha, Battaïa, and Dolgui 2015b). Such a graph represents explicitly

the precedence relationships existing among tasks and parts or subassemblies (Bentaha, Battaïa, and Dolgui 2014d; Bentaha

et al. 2015). The use of an AND/OR graph is illustrated with a rigid caster example (see Figure 2 and Table 1).

Figure 2. A rigid caster example.

Table 1. The rigid caster associated disassembly tasks and the corresponding subassemblies and/or components.

Task Subassembly Components Task Subassembly Components

1 1:5,7:9 6 17 1,3,9 8

2 1:6,8,9 7 18 1,3,8 9

3 1:7,9 8 19 1,3,9 7

4 1:8 9 20 1,2,7 3;4;5;9

5 1,3,8,9 2;4;5;7 21 1,3,8 2;4;5;7

6 1:5,7,9 8 22 1,2,7 3;4;5;8

7 1:5,7,8 9 23 1,3,9 2;4;5;6

8 1,3,8,9 2;4;5;6 24 1,2,6 3;4;5;9

9 1:6,9 8 25 1,3,8 2;4;5;6

10 1:6,8 9 26 1,2,6 3;4;5;8

11 1:5,7,9 6 27 1,2,7 6

12 1:6,9 7 28 1,6,6 7

13 1,2,6,7 3;4;5;9 29 – 1;3;9

14 1:5,7,8 6 30 – 1;3;8

15 1:6,8 7 31 – 1;2;7

16 1,2,6,7 3;4;5;8 32 – 1;2;6

The product to be disassembled is composed of nine components as shown in Figure 2. The AND/OR graph in Figure 3

corresponds to the rigid caster example and is constructed as follows: each subassembly is represented by a node labelled

Ak, k ∈ K . For example, node A0 represents the rigid caster which can be noted as ‘1:9’, A1 represents the subassembly

‘1:5,7:9’, etc. (see Table 1). Subassemblies with one component are not represented; set K contains the indices of all possible

subassemblies that can be generated by the tasks from I . Each node labelled Bi , i ∈ I , represents a disassembly task. For



instance, node B1 represents disassembly task ‘1’, B2 represents disassembly task ‘2’, etc. Two types of arcs define the

precedence relations between the subassemblies and disassembly tasks: AND and OR. The first type imposes a mandatory

precedence relation and the second type is employed for optional precedence dependencies where only one option is chosen

for a final solution. For example, if a disassembly task generates two subassemblies or more, then it is related to these

subassemblies by AND-type arcs (in bold in Figure 3). If several concurrent disassembly tasks may be performed on a

subassembly, this subassembly is related to these disassembly tasks by OR-type arcs. A sink node s is introduced and linked

with dummy arcs to all disassembly tasks. Thus, if the dummy task s is assigned to a workstation, the disassembly process

is finished (partial or complete disassembly). Table 1 summarises all the possible disassembly tasks that can be performed

on the rigid caster in Figure 2. For each task, the corresponding generated components and/or subassemblies are given.

Figure 3. A rigid caster AND/OR graph.

3.2 First phase: line profit maximisation

As mentioned earlier, disassembly task times ti , i ∈ I, are assumed to be stochastic variables with known probability

distributions. They are represented by a random vector ξ̃ = (t̃1, t̃2, . . . , t̃N) from a set 4 ⊂ R
N
+.

Let t̃i = ti (ξ̃ ), i ∈ I .Adisassembly task i ∈ H ⊂ I is called hazardous if its execution generates a hazardous subassembly

or component. Disassembly tasks have to be assigned to the workstations of the line under precedence constraints given by

the AND/OR graph, i.e. exactly one alternative sequence of the disassembly process is chosen, and at the same time the line

profit is maximised. In this paper, the line profit is the difference between the positive revenue generated by recovered parts

and the line operation cost taken as negative revenue. The line cost includes the workstation operation costs, additional costs

of workstations handling hazardous parts and penalty costs incurred by workstation overloads. Each time the duration of

tasks assigned to one workstation exceeds the given line cycle time CT , a corrective action is needed, and its cost is included

in the objective function.

To formulate the SP-DLBP, the following notation is used.

3.2.1 Sets and parameters

I : set of disassembly task indices: I = {1, 2, . . . , N}, N ∈ N
∗;

J : set of workstation indices: J = {1, 2, . . . , M}, M ∈ N
∗;

H : hazardous disassembly task index set;

L: set of part indices: L = {1, 2, . . . , L}, L ∈ N
∗;

K : set of indices for the generated subassemblies: K = {0, 1, . . . , K}, K ∈ N;



L i : set of retrieved parts by the execution of disassembly task Bi , i ∈ I ;

Ak : a subassembly, k ∈ K ;

Bi : a disassembly task, i ∈ I ;

s: the AND/OR graph’s sink node;

rl : revenue generated by part l, l ∈ L;

Fc: fixed cost per operating time unit of a workstation, Fc > 0;

q: time unit fixed recourse cost;

CT : cycle time, CT > 0;

Ch : additional cost per time unit for stations handling hazardous parts, Ch > 0;

Pk : set of indices for predecessors of Ak , k ∈ K , i.e. Pk = {i | Bi precedes Ak};
Sk : set of indices for successors of Ak , k ∈ K , Sk = {i | Ak precedes Bi }.

3.2.2 Decision variables

xi j =





1, if disassembly task Bi is assigned

to workstation j;
0, otherwise.

h j =





1, if a hazardous task is assigned

to workstation j;
0, otherwise.

xs j =





1, if the dummy task s is assigned

to workstation j;
0, otherwise.

y j (ξ̃ ) > 0, j ∈ J , measures the amount of time exceeding CT if there is any.

For the problem described, the following mathematical model has been developed.

3.2.3 Stochastic mixed integer programme

max




∑

i∈I

∑

j∈J

∑

l∈L i

rl · xi j −
[
CT

(
Fc ·

∑

j∈J

j · xs j + Ch ·
∑

j∈J

h j

)
+ Eξ̃

(
q ·

∑

j∈J

y j (ξ̃ )
)]



 (I)

s.t.∑

i∈S0

∑

j∈J

xi j = 1 (1)

∑

j∈J

xi j 6 1,∀i ∈ I (2)

∑

i∈Sk

∑

j∈J

xi j 6
∑

i∈Pk

∑

j∈J

xi j ,∀k ∈ K\{0} (3)

∑

i∈Sk

xiv 6
∑

i∈Pk

v∑

j=1

xi j ,∀k ∈ K\{0}, ∀v ∈ J (4)

∑

j∈J

xs j = 1 (5)

∑

j∈J

j · xi j 6
∑

j∈J

j · xs j ,∀i ∈ I (6)

h j > xi j ,∀ j ∈ J,∀i ∈ H (7)∑

i∈I

ti (ξ̃ ) · xi j − y j (ξ̃ ) 6 CT ,∀ j ∈ J (8)

(xs j , xi j , h j ) ∈ X ⊆ {0, 1}|J |·(|I |+2) (9)

y j (ξ̃ ) > 0,∀ j ∈ J (10)



The terms of the objective function represent, respectively, the earned profit of retrieved parts, the cost of operating

workstations, the additional cost for handling hazardous parts and the expected recourse cost Eξ̃ with respect to the distribution

of ξ̃ .

If the dummy task s is assigned to workstation j , then j defines the number of processed stations. Constraint (1) imposes

the selection of only one disassembly task, i.e. OR-successor, to begin the disassembly process. Without loss of generality, we

assume that at least one task is required for the disassembly process. Naturally, this task has to be selected from the alternative

disassembly tasks realisable for the initial EOLproduct A0. Only one alternative has to be selected. The following disassembly

options will be determined by the corresponding A-node and B-nodes connected to it. Constraint set (2) indicates that a task

is to be assigned to at most one workstation. Constraints (3) ensure that only one OR-successor is selected. Constraint set (4)

defines the precedence relations among tasks. Constraint (5) imposes the assignment of the dummy task s to one station.

Constraints (6) ensure that all disassembly tasks are assigned to lower or equal-indexed workstations than the one to which

s is assigned. Constraints (7) ensure the value of h j to be 1 if at least one hazardous task is assigned to a workstation j .
Constraints (8) represent the cycle time limitation. The variable y j (ξ̃ ), j ∈ J measures the amount of time exceeding CT if

there is any at each opened workstation. Finally, sets (9) and (10) represent constraints on the possible values of the decision

variables.

Let Z be the set of all possible solutions of programme (I). An assignment of the disassembly tasks to workstations of

the line is always possible and the number of the possible assignments is finite, i.e. Z 6= ∅ and finite. It is straightforward

that 0 6 Eξ̃

(
q ·

∑
j∈J y j (ξ̃ )

)
< ∞.

Since Z is not empty and the objective function defines finite values, then problem (I) possesses an optimal solution.

Let x be a vector of decision variables xi j , xs j , h j , ∀i ∈ I,∀ j ∈ J and X = {x | constraints (1)-(7) and (9) are satisfied}.
If ξ̃ has a finite-discrete distribution {(ξℓ, pℓ), ℓ ∈ D, pℓ > 0,∀ℓ ∈ D}, where D = {1, 2, . . . ,D}, D ∈ N

∗ and pℓ is the

realisation probability of ξℓ of ξ̃ , then programme (I) is an ordinary linear programme with a dual decomposition structure.

Programme (II) given below represents a deterministic equivalent version of programme (I) and shows its particular block

structure; each programme (11) can be seen as a block. The programme (II) is a two-stage stochastic linear mixed integer

programme with fixed recourse (Birge and Louveaux 1997). This same programme, i.e. (II), will be used in the solution

method.

max




∑

i∈I

∑

j∈J

∑

l∈L i

rl · xi j −
[
CT

(
Fc ·

∑

j∈J

j · xs j + Ch ·
∑

j∈J

h j

)
+ QD(x)

]
 (II)

s.t. x ∈ X

whereQD(x) =
D∑

ℓ=1

pℓ · Q(x, ξℓ)

and Q(x, ξℓ) = min
{
q ·

∑

j∈J

y j (ξℓ)|
∑

i∈I

ti (ξℓ) · xi j − y j (ξℓ) 6 CT , y j (ξℓ) > 0,∀ j ∈ J
}
, ℓ ∈ D (11)

Depending on the number of realisations of ξ̃ , i.e. D, programme (II) may become very large in scale, but its block

structure can be exploited efficiently by specially designed algorithms such as the L-shaped algorithm (Ahmed and Shapiro

2002). The L-shaped method, proposed by Van Slyke and Wets (1969), is a variant of Benders’ decomposition. The initial

problem (I) is decomposed into a master problem and a subproblem. In this paper, the 0–1 binary decision variables, x ∈ X,

in the master problem are called master variables and the continuous variables, y j (ξ), ξ ∈ 4, ∀ j ∈ J , of the subproblem are

called subproblem variables.

3.3 Second phase: idle time leveling

In the first phase, a number of workstations m∗ = j∗ 6 M (where xs j∗ = 1) and a subset of tasks I ∗ ⊂ I (a disassembly

alternative) are determined under uncertainty of the task times. An example of such a disassembly alternative and a selected

subset I ∗ of disassembly tasks is illustrated in Figure 4. The selected alternative (in bold) is represented by an AND-graph

and I ∗ = {B2, B9, B23}. There are no more OR-relations since a decision of disassembling partially a product is made. For

this reason, only direct precedence relationships among tasks are considered, i.e. generated subassemblies {A0, A2, A8} are

simply deleted. The simple graph in Figure 5 is then created.

In the second phase, a balance measure is optimised.This measure seeks to assign the disassembly tasks I ∗ to them∗ stations

ensuring (if possible) similar idle time at each workstation, i.e. total idle time balancing or levelling. Let J ∗ = {1, 2, . . . ,m∗},



Figure 4. A selected disassembly alternative.

Figure 5. Obtained simple AND-graph.

ST j (ξ̃ ) =
∑

i∈I ∗ ti (ξ̃ ) · xi j ,∀ j ∈ J ∗ and Pred(i) = {i ′ ∈ I ∗| i ′ precedes i}, i ∈ I ∗. The maximum of the expectations of the

differences among all workstations workloads is minimised in the non-linear programme (III) as follows.

min max
∀ j, j ′∈J∗, j 6= j ′

Eξ̃

(∣∣∣ST j (ξ̃ ) − ST j ′(ξ̃ )

∣∣∣
)

(III)

s.t.
∑

j∈J∗
xi j = 1,∀i ∈ I ∗ (12)

∑

j∈J∗
j · xi ′ j 6

∑

j∈J∗
j · xi j ,∀i ∈ I ∗,∀i ′ ∈ Pred(i) (13)

xi j ∈ {0, 1},∀i ∈ I ∗,∀ j ∈ J ∗ (14)

Constraints (12) ensures that a task is assigned to only one workstation. Constraint set (13) models the precedence

relationships among tasks.

Let x be a vector of decision variables xi j , ∀i ∈ I ∗,∀ j ∈ J ∗ and X = {x | constraints (12), (13) and (14) are satisfied}.
Let B = {1, 2, . . . ,B},B ∈ N

∗ and Sl(ξ̃ ) =
(
ST j (ξ̃ ) − ST j ′(ξ̃ ), j, j ′ ∈ J ∗, j 6= j ′

)
, l ∈ B, where B =

(|J∗|
2

)
. The

programme (IV) given below represents an equivalent version of programme (III).

min Y (IV)

s.t. x ∈ X

Y > Eξ̃

(∣∣Sl(ξ̃ )
∣∣
)
,∀l ∈ B



Note that the recourse cost Eξ̃

(
q ·y j (ξ̃ )

)
, j ∈ J ∗, may change for some workstations, caused by the possible reassignment

of disassembly tasks I ∗ in the second phase. Thus, the total recourse cost Eξ̃

(
q ·

∑
j∈J y j (ξ̃ )

)
may increase or decrease. No

reassignment of hazardous tasks will be considered.

Let x, x ′ be the optimal solutions of problems (I) and (III), and QD(x) and QD(x ′) the corresponding recourse costs,

respectively. The solution x ′ is retained if

η =
QD(x ′) − QD(x)

QD(x)
× 100 6 ̺

Otherwise, x ′ is not considered and x is retained (̺ is a percentage fixed by the decision-maker). In other words, x ′ is

retained if the percentage of the recourse cost’s increase in phase 2 does not exceed a certain percentage, i.e. ̺, fixed by the

decision-maker.

The solution approach proposed is detailed in the next section.

4. Solution method

Computing the expected value Eξ̃

(
q ·

∑
j∈J y j (ξ̃ )

)
for a given task assignment to workstations is quite difficult, since it

requires numerical integration of implicitly defined probability density functions of variables y j (ξ), ξ ∈ 4, ∀ j ∈ J . Even

for the discrete distribution of ξ̃ , the number of linear programmes of type (11) to solve may increase exponentially. Although

the exact evaluation of the expectation term in (I) is possible, its optimisation presents serious difficulties (Santoso et al.

2005). Indeed, Eξ̃

(
q ·

∑
j∈J y j (ξ̃ )

)
is implicitly defined. In order to deal with these difficulties, the so-called SampleAverage

Approximation (SAA) method is used (Kleywegt, Shapiro, and Homem-De-Mello 2001). It combines Monte Carlo sampling

techniques detailed in Section 4.1 with the L-shaped algorithm presented in Section 4.2.1.

4.1 Monte Carlo sampling

As introduced earlier, disassembly task times are modelled by a random vector ξ̃ varying over a set 4 ⊂ R
N
+ (of a given

probability space (4,F, P) introduced by ξ̃ ). The integral

Eξ̃

(
q ·

∑

j∈J

y j (ξ̃ )
)

= Eξ̃

[
Q(x, ξ̃ )

]
=

∫

4

(
q ·

∑

j∈J

y j (ξ̃ )

)
dP

represents the expected value Eξ̃

[
Q(x, ξ̃ )

]
of the function

Q(x, ξ) = min



q ·

∑

j∈J

y j (ξ)|
∑

i∈I

ti (ξ) · xi j − y j (ξ) 6 CT , y j (ξ) > 0,∀ j ∈ J



 , ξ ∈ 4

A Monte Carlo estimation Qλ(x) of the expected value Eξ̃

[
Q(x, ξ̃ )

]
is obtained with a random generation of a λ-sample(

ξ1, ξ2, . . . , ξλ

)
of the random vector ξ̃ , using computer generated pseudo-random numbers. We have then: Qλ(x) =

1
λ

∑λ
ℓ=1 Q(x, ξℓ). Random variable Qλ(x, ξ̃ ) defined by Qλ(x, ξ̃ ) = 1

λ

∑λ
ℓ=1 Q(x, ξ̃ℓ) represents the Monte Carlo estimator

of Eξ̃

[
Q(x, ξ̃ )

]
. It is an unbiased estimator for Eξ̃

[
Q(x, ξ̃ )

]
.

4.2 Solution method of the first phase

4.2.1 L-shaped algorithm

The main idea of the L-shaped method is to approximate the non-linear term in the objective function of the stochastic

programme with fixed recourse (I). The fixed recourse is called simple recourse (Kall and Wallace 1994) if the matrix of

recourse variable coefficients in programme (11) has the following form: (I,−I), where I represents the identity matrix.

The SP-DLBP has a simple recourse. In fact, we have:

A = {a|a = Wy = I y′ − I y, y, y′ > 0} = R
|J |, i.e. the second stage programme is always feasible for any feasible

solution of the first phase and for any realisation scenario ξ of ξ̃ ;

Q(x, ξ) = min
{
qTy | I y′ − I y = ~(ξ) − T (ξ)x, y, y′ > 0

}
,∀x ∈ X,∀ξ ∈ 4, defines the matrix formula-

tion of the second-stage programme, where q = (q, . . . , q)T, ~(ξ) = (CT , . . . ,CT )T and T (ξ) = (T, . . . , T )T , T =
(t1, . . . , tN),∀ξ ∈ 4, represent, respectively, the recourse vector, the cycle time vector and the technological matrix.



The result above (i.e. SP-DLBP has a simple recourse) can be proved as follows:

∀x ∈ X,∀ξ ∈ 4, we have
∑

i∈I

ti (ξ) · xi j − y j (ξ) 6 CT ⇐⇒
∑

i∈I

ti (ξ) · xi j − y j (ξ) + y′
j (ξ) = CT

⇐⇒ y′
j (ξ) − y j (ξ) = CT −

∑

i∈I

ti (ξ) · xi j

y j (ξ), y′
j (ξ) > 0,∀ j ∈ J

Since y j (ξ), y′
j (ξ) > 0,∀ j ∈ J,∀ξ ∈ 4, we have then, ∀ j ∈ J,∀ξ ∈ 4, y′

j (ξ) − y j (ξ) ∈ R. It follows from the above

that A = {a|a = Wy = I y′ − I y, y, y′ > 0} = R
|J |, i.e. ∀ξ ∈ 4, ∀x ∈ X, the second stage programme

Q(x, ξ) = min
{
q ·

∑

j∈J

y j (ξ)|
∑

i∈I

ti (ξ) · xi j − y j (ξ) 6 CT , y j (ξ) > 0,∀ j ∈ J
}

is feasible.

Since the problem addressed in the L-shaped algorithm is a minimisation one and since max f (x) = − min
(
− f (x)

)

where f (x) is a function of decision variables x , in order to solve problem (I) its equivalent minimisation version

min



CT

(
Fc ·

∑

j∈J

j · xs j + Ch ·
∑

j∈J

h j

)
−

∑

i∈I

∑

j∈J

∑

l∈L i

rl · xi j + Eξ̃

(
q ·

∑

j∈J

y j (ξ̃ )
)


 (15)

is used. The optimal value of problem (I) is then the symmetric value of (15). Consider the minimisation version of

programme (I) and the matrix formulation of problem (II) given below, where cTx = CT

(
Fc ·

∑
j∈J j · xs j + Ch ·

∑
j∈J h j

)
−

∑
i∈I

∑
j∈J

∑
l∈L i

rl · xi j and ~ℓ = (CT , . . . ,CT )T,∀ℓ ∈ D.

min
{
cTx + QD(x), x ∈ X

}

where QD(x) =
D∑

ℓ=1

pℓ · Q(x, ξℓ) and

Q(x, ξℓ) = min
{
qTy |Wy = ~ℓ − T (ξℓ)x, y > 0

}

In the L-shaped algorithm given below, counters h and υ are used, respectively, for the optimality cuts and for the algorithm

iterations; Eν and eν are defined in the algorithm. In the objective function of the master problem, a new variable ϕ

is introduced. It verifies the inequality ϕ > QD(x). Since QD(x) is implicitly defined by a relatively large number of

optimisation problems, the master programme is not directly solved with this inequality. The L-shaped algorithm processes

as follows.

L-shaped algorithm

Step 0. Set h = υ = 0

Step 1. Set υ = υ + 1. Solve the master programme:

min
{
cTx + ϕ

}

s.t.

x ∈ X

Eν · x + ϕ > eν, ν = 1, 2, . . . , h (16)

x binary, ϕ > 0

Let (xυ , ϕυ) be an optimal solution.

Step 2. For ℓ = 1, 2, . . . ,D, solve the subprogramme:

min W = qT · y

s.t.

Wy = ~ℓ − T (ξℓ) · xυ

y > 0



Let ωυ
ℓ be the simplex multipliers associated with an optimal solution of problem ℓ above;

define

Eh+1 =
∑

ℓ∈D

pℓ · (ωυ
ℓ )T · Tℓ

and

eh+1 =
∑

ℓ∈D

pℓ · (ωυ
ℓ )T · ~ℓ

Let θυ = eh+1 − Eh+1 · xυ . If ϕυ > θυ , stop: xυ is an optimal solution.

Else, generate an optimality cut of type (16), set h = h + 1, add constraint of type (16) and

return to Step 1.

4.2.2 Sample average approximation procedure

The SAA strategy deals with an approximate computation of the expected recourse cost. It is used to compute lower and

upper bounds of the objective function for problem (I). Therefore, the optimality gap and statistical confidence intervals on

the quality of the approximate solutions are evaluated.

The SAA strategy is implemented as follows: for a random sample of ξ̃ , generated using MCS and having size 3, the

term Eξ̃

[
Q(x, ξ̃ )

]
is approximated by the sample average function Q3(x) = 1

3
·
∑3

ℓ=1 Q(x, ξℓ). Thus, problem (I) is

approximated by problem (II) where pℓ = 1
3

, ℓ = 1, 2, . . . , 3. Then, problem (II) is solved with the L-shaped algorithm.

Let γ3, x3 and γ ∗, x∗ be the optimal objective values and optimal solutions of problems (II) and (I), respectively. We

have then,

γ ∗ = min
x∈X

{
f (x) = cTx + Eξ̃

[
Q(x, ξ̃ )

]}

and

γ3 = min
x∈X

{
f3(x) = cTx +

1

3
·

3∑

ℓ=1

Q(x, ξℓ)

}

Note that

E
(
f3(x)

)
= cTx +

1

3
· E

(
3∑

ℓ=1

Q(x, ξℓ)

)
= f (x)

The strong law of large numbers implies that γ3 −→3→∞ γ ∗ with probability 1. Moreover, in Kleywegt, Shapiro, and

Homem-De-Mello (2001) it is shown that, under certain weak conditions, as 3 increases, x3 converges to x∗ with probability

approaching 1 exponentially fast. In order to get a good approximate solution to problem (I), the sample size 3 is determined

as

3 >
3σ 2

max

ε2
log

(
|X|
α

)
(17)

where ε > 0 and α ∈]0, 1[, σ 2
max represents the maximum variance of function differences on Q3(x) (Kleywegt, Shapiro,

and Homem-De-Mello 2001); X, as introduced in constraint (9) of programme (I), defines the set of the possible values of

decision variables x .

This sample size is sufficient to get an ε-solution x̂3 of problem (I) with a probability at least equal to (1 − α), i.e.

a solution with an absolute optimality gap ε. Even if it may be too conservative in practice, estimate (17) shows that the

required sample size 3 is linear in the number of disassembly tasks and workstations: |X| 6 2|J |·(|I |+2) = 2M×(N+2) and

|X| 6 2M×(N+2) ⇒ log |X| 6 (log 2) · M × (N + 2).

Practically, the SAA strategy consists of generating � independent random samples (ξn
1 , ξn

2 , . . . , ξn
3), n = 1, 2, . . . , �,

of a modest sample size 3. Then, estimates of lower and upper bounds and the optimality gap depending on � and 3 are

computed. In this study, � and 3 are chosen so as to obtain approximate solutions of a reasonable quality.



4.2.3 SAA procedure

Step 1. Lower Bound Estimation
Generate � independent random samples (ξn

1 , ξn
2 , . . . , ξn

3), n = 1, 2, . . . , � of size 3 each. Solve the corresponding

problem (II) with the L-shaped algorithm, compute an optimal solution xn
3 and the corresponding objective value γ n

3, for

each value of n. Compute a lower bound: LB3� = 1
�

·
∑�

n=1 γ n
3.

Let X∗ be a set of the optimal solutions of problem (I). Then,

γ3 6 min
x∈X∗

f3(x) and E
(
γ3

)
6 E

(
min
x∈X∗

f3(x)
)

6 min
x∈X∗

E
(
f3(x)

)
= γ ∗

Since E
(
LB3�

)
= 1

�
· E

(∑�
n=1 γ n

3

)
= E(γ3), we have then, LB3� 6 γ ∗. The variance σ 2

LB3�
of LB3� is estimated as

follows:

σ 2
LB3�

=
1

�(� − 1)
·

�∑

n=1

(γ n
3 − LB3�)2

By the application of CLT, we have: LB3� ❀ N

(
E(γ3), σLB√

�

)
, σLB =

√
Var(γ3). A confidence interval of the level

(1 − α) for E(γ3) is then given by:

[
LB3� −

zα/2 · σLB3�√
�

, LB3� +
zα/2 · σLB3�√

�

]

where zα is the quantile of the standard normal distribution N (0, 1) verifying P
(
N (0, 1) 6 zα

)
= 1 − α.

Step 2. Upper Bound Estimation
Generate a sample (ξ1, ξ2, . . . , ξλ) of size λ independent from the � generated samples in Step 1. Let xn

3 be a feasible

solution obtained in Step 1; xn
3 should be the one for which fλ(x) is minimum. Since xn

3 is a feasible solution of problem

(I), then f (xn
3) > γ ∗. Compute the following upper bound: UBλ = fλ(xn

3).

UBλ is an unbiased estimator of f (xn
3): E

(
fλ(xn

3)
)

= f (xn
3), we have then UBλ > γ ∗. The variance σ 2

UBλ
of UBλ

can be estimated with:

σ 2
UBλ

=
1

λ(λ − 1)
·

λ∑

ℓ=1

(cTxn
3 + Q(xn

3, ξℓ) − UBλ)
2

By the application of the CLT, we have: UBλ ❀ N

(
f (xn

3),
σUB√

λ

)
, σUB =

√
Var

(
fλ(xn

3)
)
.

A confidence interval of the level (1 − α) of f (xn
3) is then given by:

[
UBλ −

zα/2 · σUBλ√
λ

,UBλ +
zα/2 · σUBλ√

λ

]
, P

(
N (0, 1) 6 zα

)
= 1 − α

Step 3. Optimality Gap Estimation
Here, the optimality gap is the difference between upper and lower bound values:

OGλ�3 = UBλ − LB�3. Note that E
(
OGλ�3

)
= f (xn

3) − E(γ3) > f (xn
3) − γ ∗. It follows that OGλ�3 is a biased

estimator of the optimality gap, it overestimates
(
f (xn

3) − γ ∗). Its bias
(
γ ∗ − E(γ3)

)
is monotonically decreasing in 3

(Mak, Morton, and Wood 1999; Norkin, Ruszczynski, and Pflug 1998). The variance σ 2
OGλ�3

of OGλ�3 can be estimated

with:

σ 2
OGλ�3

= σ 2
LB3�

+ σ 2
UBλ

The flowchart in Figure 6 summarises the steps of the SAA method. The random samples are generated using MCS.



Figure 6. Flowchart of the SAA procedure.

4.3 Solution method of the second phase

In this subsection, a lower and upper bounding schemes are defined in order to approximate problem (IV).

4.3.1 Upper bound of programme (IV)

In the same way as in Section 4.1, let Sl(ξ̃ ) = |Sl(ξ̃ )| and consider the random variable Sλ
l (ξ̃ ) = 1

λ

∑λ
ℓ=1 Sl(ξ̃ℓ), l ∈ B.

Then, Sλ
l (ξ̃ ), l ∈ B, represents an unbiased estimator of Eξ̃

(
Sl(ξ̃ )

)
, l ∈ B:

Eξ̃

[
Sλ
l (ξ̃ )

]
= E

(
1

λ

λ∑

ℓ=1

Sl(ξ̃ℓ)

)
=

1

λ

λ∑

ℓ=1

E
(
Sl(ξ̃ℓ)

)
= Eξ̃

[
Sl(ξ̃ )

]



Let zℓl > Sl(ξℓ) = |Sl(ξℓ)|, ℓ = 1, 2, . . . , λ,∀l ∈ B. Using a λ-sample (ξ1, ξ2, . . . , ξλ) of the random vector ξ̃ , the

optimal value of linear programme (V) below is an approximation of the optimal value of programme (IV).

min Y (V)

s.t. x ∈ X

Y >
1

λ
·

ℓ=λ∑

ℓ=1

zℓl ,∀l ∈ B

− zℓl 6 Sl(ξℓ) 6 zℓl ,∀l ∈ B, ℓ = 1, 2, . . . , λ (18)

Y > 0, zℓl > 0, ℓ = 1, 2, . . . , λ, ∀l ∈ B

Recall that, in phase 2, X = {x | constraints (12)–(14) are satisfied}. Constraint set (18) can be replaced with:

uℓl + Sl(ξℓ) = zℓl ,∀l ∈ B, ℓ = 1, 2, . . . , λ

0 6 uℓl 6 2zℓl ,∀l ∈ B, ℓ = 1, 2, . . . , λ

Proposition 1 The optimal value of problem (V) is an upper bound of the optimal value of problem (IV).

Proof. Since zℓl > Sl(ξℓ), ℓ = 1, 2, . . . , λ, ∀l ∈ B, then

ℓ=λ∑

ℓ=1

zℓl >

ℓ=λ∑

ℓ=1

Sl(ξℓ),∀l ∈ B

and

Y >
1

λ
·

ℓ=λ∑

ℓ=1

zℓl >
1

λ
·

ℓ=λ∑

ℓ=1

Sl(ξℓ),∀l ∈ B

4.3.2 Lower bound of programme (IV)

The optimal value of programme (VI) given below defines an approximation of the optimal value of programme (IV).

min max
l∈B

∣∣∣Eξ̃

(
Sl(ξ̃ )

)∣∣∣ (VI)

s.t. x ∈ X

Proposition 2 The optimal value of problem (VI) is a lower bound of the optimal value of problem (IV).

Proof. Obvious since

∣∣∣Eξ̃

(
Sl(ξ̃ )

)∣∣∣ 6 Eξ̃

(∣∣Sl(ξ̃ )
∣∣
)
, l ∈ B

The programme (VI’) below represents an equivalent version of programme (VI).

min Y (VI’)

s.t. x ∈ X

− Y 6 Eξ̃

(
Sl(ξ̃ )

)
6 Y,∀l ∈ B

Y > 0

Using a λ-sample (ξ1, ξ2, . . . , ξλ) of the random vector ξ̃ , the expectation Eξ̃

(
Sl(ξ̃ )

)
can be approximated with 1

λ

∑λ
ℓ=1

Sl(ξℓ), l ∈ B.

5. Numerical results

The first phase, i.e. profit maximisation with the SAA method, and the second one, i.e. idle time levelling with programmes

(V) and (VI’), were implemented with C++ (under Linux) and ILOG CPLEX 12.4 was used to solve the different models

on a PC with a Pentium(R) Dual-Core CPU T4500, 2.30 GHz and 3GB RAM. These two sequential phases have been

applied to the problem instance illustrated in Figure 3 and to six instances available in the literature. These six instances

are used as benchmarking problems and contain process alternatives for disassembly. The names of the problem instances



were, respectively, composed of the first letters of authors’ names and the year of publication, i.e. BBD13 (Bentaha, Battaïa,

and Dolgui 2014a), BBD13b (Bentaha, Battaïa, and Dolgui 2014c), KSE09 (Koc, Sabuncuoglu, and Erel 2009), L99a and

L99b from (Lambert 1999) and MJKL11 from (Ma et al. 2011). BBD13a corresponds to the rigid caster product instance

(see Figures 2 and 3). The input data for each problem instance are given in Table 2. The columns ‘AND-relations’ report

the number of disassembly tasks with no successor in subcolumn 0, with one AND-type arc in subcolumn 1 and with two

AND-type arcs in subcolumn 2. The column ‘arcs’ gives the total number of AND-type and OR-type arcs.

Table 2. Instances from the literature used as benchmark problems in the numerical experiments.

AND-relations

N K L Arcs 0 1 2 M CT

MJKL11 37 22 33 76 4 27 6 10 35

BBD13a 32 14 23 60 4 28 0 4 0.80

L99a 30 18 28 60 2 26 2 9 30

BBD13b 25 11 27 49 4 18 3 4 91

KSE09 23 13 20 47 4 14 5 6 20

L99b 20 13 23 41 5 9 6 9 5.5

BBD13 10 5 12 18 3 6 1 3 0.51

Table 3 reports the optimisation results of phase 1 obtained for the processed instances using Monte Carlo sampling

for different values of 3 and λ. The number of generated samples � was 10, the recourse cost q was fixed at 5, operating

workstation cost Fc at 3, additional cost for stations handling hazardous parts Ch = 2, the confidence intervals level was

95%, and 25% of tasks were taken as hazardous. The remaining parameters rl , l ∈ L and t̃i , i ∈ I were randomly generated:

• rl ∈ [0, rmax], where rl is the revenue of part l, l ∈ L and rmax is its maximum value; rl , l ∈ L is generated uniformly

in the interval [0, rmax]. The value of rmax depends on the instance used. As an example, the rmax value of BBD13 is 12.

• t̃i is assumed to be a random variable with a normal distribution of known mean µi and standard deviation σi , where

σi = µi/5; and t̃i is the processing time of the disassembly task i, i ∈ I .

Although using different probability distributions for task times is possible, they were assumed, without loss of generality,

to be normally distributed. Columns ‘LB’ and ‘UB’ report the lower and upper bound values and the corresponding

confidence intervals, respectively. Column ‘OG’ reports the optimality gap OGλ�3 and the associated standard deviation

σOGλ�3 . Finally, columns ‘o-tasks’, ‘s-tasks’, ‘n-stations’, ‘h-stations’, ‘CPU time’ report the original number of tasks

of the selected disassembly alternative, the number of selected tasks of the selected alternative, the optimal number of

workstations, the number of hazardous workstations with the corresponding rank for each station, and the resolution time in

seconds, respectively.

The numerical results in Table 3 show that a higher chosen value of 3 resulted in a higher quality solution. In

particular, solutions of instances MJKL11 and L99b represent good quality solutions since their optimality gap values

and the corresponding standard deviations are significantly reduced. The resolution time, however, illustrated in Figure 7

increases considerably as the value of 3 increases. This depends on the complexity of the instance (e.g. the number of tasks

with 2 AND-type arcs) but is due mainly to the escalating number of subproblems to solve for each master problem. Figure 8

illustrates the convergence of LB3� and UBλ values for the instance L99b.

In order to show the ability of the proposed approach to handle different probability distributions for the task times,

instances BBD12 and L99a are solved for three different cases as illustrated in Table 4. In the first case, each task time

t̃i , i ∈ I is assumed to follow a triangular distribution T (ai , bi , ci ), i ∈ I where bi = µi ,∀i ∈ I ; ai , ci , i ∈ I are

chosen randomly. In the second one, each task time is assumed to follow a continuous uniform distribution U(ai , ci ), i ∈ I
where ai , ci have the same values as for triangular distributions. In the third case, a mix of normal, triangular and uniform

distributions is considered. Approximatively, 40% of task times are assumed to follow normal distributions, 40% triangular

distributions and 20% uniform distributions.

All the returned solutions were the same as the solutions obtained in Table 3 for instances BBD12 and L99a; CPU times

are of the same order of magnitude. The only difference is the objective values of the returned solutions (which are slightly

greater) and their associated confidence intervals. These values depend on the used probability distributions of the task

processing times.

Table 5 reports the optimisation results obtained for phase 2 using Monte Carlo sampling for different values of λ. The

values of the remaining parameters were the same as in phase 1. Columns ‘Upper bound’ and ‘Lower bound’ report the

optimisation results of programmes (V) and (VI’), respectively. Sub-column ‘Reassignment’ indicates the value 0 if the



Table 3. Obtained results: profit maximisation using normal probability distributions for the task times.

3, λ LB U B OG o-tasks s-tasks n-stations h-stations CPU time

MJKL11

100, 200 34.214 ± 0.192 34.032 ± 0.384 −0.182, 2.785 7 5 2 (1 : 1) 101

300, 600 33.753 ± 0.088 33.865 ± 0.127 0.112, 1.591 7 5 2 (1 : 1) 738

600, 900 33.942 ± 0.096 33.826 ± 0.085 −0.116, 1.307 7 5 2 (1 : 1) 2836

800, 1200 33.921 ± 0.093 33.782 ± 0.064 −0.139, 1.139 7 5 2 (1 : 1) 4506

1000, 1500 34.027 ± 0.034 34.063 ± 0.051 0.036, 1.006 7 5 2 (1 : 1) 7122

BBD13a

100, 200 180.400 ± 0.010 180.420 ± 1.778 0.020, 12.831 4 2 1 (1 : 1) 44

300, 600 180.425 ± 0.008 180.446 ± 0.592 0.021, 7.396 4 2 1 (1 : 1) 333

600, 900 180.428 ± 0.003 180.424 ± 0.394 −0.004, 6.037 4 2 1 (1 : 1) 1103

800, 1200 180.434 ± 0.003 180.423 ± 0.296 −0.011, 5.227 4 2 1 (1 : 1) 1973

1000, 1500 180.425 ± 0.002 180.439 ± 0.236 0.014, 4.675 4 2 1 (1 : 1) 3057

L99a

100, 200 499.168 ± 0.402 499.614 ± 5.191 0.446, 37.461 9 7 3 – 133

300, 600 499.628 ± 0.184 501.170 ± 1.727 1.542, 21.591 9 7 3 – 1104

600, 900 500.096 ± 0.148 500.376 ± 1.151 0.280, 17.624 9 7 3 – 3852

800, 1200 500.176 ± 0.146 499.462 ± 0.863 −0.714, 15.262 9 7 3 – 7791

1000, 1500 500.136 ± 0.141 500.403 ± 0.691 0.267, 13.649 9 7 3 – 11309

BBD13b

100, 200 208.532 ± 1.056 209.080 ± 2.779 0.548, 20.125 4 3 2 – 65

300, 600 204.841 ± 0.694 206.941 ± 0.924 2.100, 11.599 4 3 2 – 549

600, 900 207.779 ± 0.476 205.562 ± 0.618 −2.217, 9.491 4 3 2 – 1863

800, 1200 207.859 ± 0.463 204.477 ± 0.462 −3.382, 8.209 4 3 2 – 3069

1000, 1500 207.089 ± 0.268 207.443 ± 0.369 0.354, 7.317 4 3 2 – 4826

KSE09

100, 200 896.117 ± 0.142 895.766 ± 8.842 −0.351, 63.802 6 4 2 (1 : 2) 53

300, 600 895.988 ± 0.068 895.582 ± 2.942 −0.406, 36.774 6 4 2 (1 : 2) 457

600, 900 895.692 ± 0.053 895.901 ± 1.961 0.209, 30.018 6 4 2 (1 : 2) 1393

800, 1200 895.806 ± 0.050 895.910 ± 1.471 0.104, 25.992 6 4 2 (1 : 2) 2415

1000, 1500 895.680 ± 0.053 895.823 ± 1.176 0.143, 23.246 6 4 2 (1 : 2) 3845

L99b

100, 200 75.261 ± 0.006 75.055 ± 0.742 −0.206, 5.353 8 6 3 – 235

300, 600 75.204 ± 0.008 75.197 ± 0.247 −0.007, 3.085 8 6 3 – 2422

600, 900 75.206 ± 0.003 75.246 ± 0.165 0.040, 2.518 8 6 3 – 8731

800, 1200 75.232 ± 0.005 75.225 ± 0.123 −0.007, 2.180 8 6 3 – 14913

1000, 1500 75.216 ± 0.007 75.223 ± 0.099 0.007, 1.950 8 6 3 – 24439

BBD12

100, 200 92.917 ± 0.006 92.895 ± 0.923 −0.022, 6.658 3 3 2 (1 : 2) 40

300, 600 92.914 ± 0.004 92.894 ± 0.307 −0.020, 3.837 3 3 2 (1 : 2) 328

600, 900 92.910 ± 0.004 92.916 ± 0.205 0.006, 3.132 3 3 2 (1 : 2) 1103

800, 1200 92.913 ± 0.003 92.906 ± 0.153 −0.007, 2.712 3 3 2 (1 : 2) 1981

1000, 1500 92.912 ± 0.002 92.932 ± 0.123 0.020, 2.426 3 3 2 (1 : 2) 3205

solution of phase 2 remains the same as in phase 1 and indicates the value 1 if this solution is different. The last column gives

the optimality gap defined by Gap = UB−LB
LB · 100.

The results in Table 5 show that the proposed lower and upper bounding schemes of the line balancing phase returned

solutions of good quality, except for instance BBD13b where the solution is of an average quality. For each value of λ, the

returned solution was the same for both the upper and lower bounds. CPU time of the lower bound is better due to the reduced

number of constraints and variables of programme (V’) compared to programme (V). Except for instance L99b, the solution

of phase 1 stays unchanged in phase 2. This can be explained by the fact that each unchanged solution is represented by a

simple path (see Figure 5) for its precedence graph. In such a case, no reassignment is possible. All instances were solved

in a few seconds due to the elimination of hard cycle time constraints. Cycle time constraints are not needed in phase 2

since the number of workstations is fixed. The selected alternative and the corresponding selected tasks for instance L99b

are illustrated in Figure 9. Note that this selected alternative is represented by a tree.



Figure 7. CPU time of phase 1 (in seconds).

Figure 8. UB and LB convergence for instance L99b.

Table 6 establishes a comparison of the solution quality (in terms of line profit) for different values of λ between the

solution of instance L99b in phase 1, i.e. x , and its solution in phase 2, i.e. x ′. The column ‘Estimated recourse cost’ reports

the recourse cost of workstations 1, 2, 3 in subcolumns ‘RW1’, ‘RW2’, ‘RW3’, respectively and ‘Rtotal’ represents the total

recourse cost. Variable η and parameter ̺, introduced in Section 3.3, indicate the percentage recourse cost increases in phase 2

and the percentage the recourse cost is allowed to increase, respectively.

The comparison between x and x ′ is illustrated in Figure 10, whose objective is to prove the importance and the added

value of phase 2. As shown in Table 6, solution x ′ of phase 2 is notably better than solution x of phase 1. In fact, the three

workstations are better balanced with x ′ than with x , and the recourse cost in the second phase is decreased by about 85%

when compared to the recourse cost from the first phase. Equivalently, the recourse cost of phase 2 represents only 15% of the

recourse cost of phase 1. As a consequence, η ≪ ̺ and x ′ is to be retained as the best and final solution. CPU time increases



Table 4. Obtained results: profit maximisation using different probability distributions for the task times.

3,λ LB UB OG o-tasks s-tasks n-stations h-stations CPU time

L99a

100,200 507.069 ± 0.136 508.520 ± 5.188 1.451,37.436 9 7 3 – 134

Triangular distribution

300,600 507.086 ± 0.113 507.597 ± 1.726 0.511,21.578 9 7 3 – 1088

600,900 506.797 ± 0.108 506.482 ± 1.151 -0.315,17.614 9 7 3 – 3874

800,1200 506.924 ± 0.089 507.072 ± 0.863 0.148,15.252 9 7 3 – 7704

1000,1500 506.912 ± 0.066 506.772 ± 0.690 -0.140,13.640 9 7 3 – 11370

BBD12

100,200 93.251 ± 0.005 93.278 ± 0.923 0.027,6.658 3 3 2 (1:2) 42

300,600 93.276 ± 0.003 93.274 ± 0.307 -0.002,3.837 3 3 2 (1:2) 354

600,900 93.269 ± 0.002 93.278 ± 0.205 0.009,3.132 3 3 2 (1:2) 1141

800,1200 93.271 ± 0.002 93.261 ± 0.153 -0.010,2.712 3 3 2 (1:2) 1853

1000,1500 93.264 ± 0.001 93.266 ± 0.123 0.002,2.426 3 3 2 (1:2) 3287

L99a

100,200 504.650 ± 0.370 506.233 ± 5.189 1.583,37.448 9 7 3 – 132

Uniform distribution

300,600 504.987 ± 0.156 505.917 ± 1.727 0.930,21.583 9 7 3 – 1070

600,900 505.207 ± 0.120 505.489 ± 1.151 0.282,17.617 9 7 3 – 3911

800,1200 505.230 ± 0.114 505.063 ± 0.863 -0.167,15.255 9 7 3 – 7650

1000,1500 504.737 ± 0.104 505.224 ± 0.690 0.487,13.644 9 7 3 – 11251

BBD12

100,200 93.431 ± 0.008 93.447 ± 0.923 0.016,6.658 3 3 2 (1:2) 39

300,600 93.443 ± 0.005 93.443 ± 0.307 0.000,3.837 3 3 2 (1:2) 343

600,900 93.434 ± 0.002 93.446 ± 0.205 0.012,3.132 3 3 2 (1:2) 1186

800,1200 93.431 ± 0.002 93.435 ± 0.153 0.004,2.712 3 3 2 (1:2) 1897

1000,1500 93.438 ± 0.002 93.445 ± 0.123 0.007,2.426 3 3 2 (1:2) 3258

L99a

100,200 503.173 ± 0.462 503.806 ± 5.190 0.633,37.456 9 7 3 – 132

Mix of distributions

300,600 503.434 ± 0.220 503.936 ± 1.727 0.502,21.588 9 7 3 – 1125

600,900 502.822 ± 0.169 503.877 ± 1.151 1.055,17.623 9 7 3 – 3888

800,1200 502.990 ± 0.174 503.139 ± 0.863 0.149,15.260 9 7 3 – 7662

1000,1500 503.034 ± 0.163 503.412 ± 0.691 0.378,13.648 9 7 3 – 11298

BBD12

100,200 92.948 ± 0.008 92.902 ± 0.923 -0.046,6.658 3 3 2 (1:2) 45

300,600 92.956 ± 0.008 92.977 ± 0.307 0.021,3.837 3 3 2 (1:2) 356

600,900 92.960 ± 0.003 92.961 ± 0.205 0.001,3.132 3 3 2 (1:2) 1118

800,1200 92.949 ± 0.004 92.954 ± 0.153 0.005,2.712 3 3 2 (1:2) 1938

1000,1500 92.949 ± 0.002 92.964 ± 0.123 0.015,2.426 3 3 2 (1:2) 3160

Figure 9. Selected alternative and disassembly tasks for instance L99b.



Table 5. Obtained results: idle time leveling.

Upper bound Lower bound
Gap(%)

UB Reassignment CPU time λ LB Reassignment CPU time

MJKL11

500 16.03 0 0.016 15.86 0 0.001 1.07

1000 16.18 0 0.047 15.74 0 0.020 2.79

1500 15.82 0 0.031 15.82 0 0.020 0

BBD13a

500 0 0 0.000 0 0 0.001 0

1000 0 0 0.000 0 0 0.001 0

1500 0 0 0.000 0 0 0.001 0

L99a

500 7.679 0 26.22 7.092 0 0.500 8.27

1000 7.523 0 90.57 7.011 0 0.08 7.30

1500 7.644 0 269.19 6.709 0 0.06 13.94

BBD13b

500 22.95 0 0.078 17.95 0 0.001 27.85

1000 23.00 0 0.172 18.88 0 0.020 21.82

1500 23.72 0 0.296 18.72 0 0.001 26.71

KSE09

500 6.533 0 0.016 6.532 0 0.020 0.01

1000 6.539 0 0.062 6.451 0 0.001 1.36

1500 6.526 0 0.034 6.448 0 0.001 1.21

L99b

500 1.904 1 44.73 1.803 1 0.100 5.60

1000 1.791 1 198.64 1.789 1 0.06 0.11

1500 1.827 1 543.09 1.776 1 0.08 2.87

BBD12

500 0.498 0 0.030 0.493 0 0.001 1.01

1000 0.499 0 0.020 0.497 0 0.001 0.40

1500 0.499 0 0.030 0.497 0 0.020 0.40

Table 6. Recourse cost analysis of instance L99b.

Estimated recourse cost

λ RW1 RW2 RW3 Rtotal η(%) ̺(%) CPU time

x

5000 0 0.00006 0.25006 0.25012 −85.75 5
24

7500 0 0.00008 0.23578 0.23586 54

10000 0 0.00005 0.24539 0.24544 −85.07 5
94

12500 0 0.00010 0.24623 0.24633 144

15000 0 0.00007 0.24874 0.24881 −85.80 5
204

x ′

5000 0.00948 0 0.02617 0.03565 25

7500 0.00809 0 0.02712 0.03521 −85.24 5
53

10000 0.00883 0 0.02601 0.03484 94

12500 0.00873 0 0.02763 0.03636 −85.64 5
145

15000 0.00847 0 0.02727 0.03574 204

insignificantly compared to the increasing value of λ, which is due to the continuity of the linear programmes solved for

each value of λ. Indeed, if λ = 100, then 100 continuous linear programmes of the same type as in step 2 of the L-shaped

algorithm are solved.



Figure 10. Idle time levelling and recourse cost decreasing for instance L99b: (a) tasks assignment and profit maximisation in phase 1;
(b) tasks reassignment and idle time levelling in phase 2.

6. Conclusion and future research directions

In this paper, profit-oriented disassembly line design and balancing problems were studied under uncertainty. The case of

partial disassembly and the presence of hazardous parts are considered and disassembly task times were assumed to be

random variables with known probability distributions. To solve the defined problems with an assessment of solution quality,

two phases were addressed. In the first phase, a two-stage stochastic linear mixed integer programme with fixed recourse

and the SAA strategy were proposed for line design. The SAA method combined the L-shaped algorithm with Monte Carlo

sampling techniques. This procedure provided lower and upper bounds for the optimal value of the optimisation problem

solved and associated 95% confidence intervals. The corresponding optimality gaps and deviations were also provided. In

the second phase, a min–max formulation and an upper bound mixed integer programme were developed in order to balance,

under uncertainty, the line derived from the first phase.

The SAA procedure from the line design phase and the lower and upper bound MIPs from the line balancing phase were

evaluated by a set of instances from the literature. The obtained results of phase 1 have shown that high-quality solutions

require large Monte Carlo samples and a resolution time which increases considerably with the increase of sample sizes. All

instances were solved in less than four hours, except one which was solved in just under seven hours with our previously

specified machine. Since the installation of a disassembly line is usually based on a long-term decision, a resolution time of

several hours for the problem of disassembly line design and balancing is acceptable. In the line balancing phase, all problem

instances were solved in very little time. The numerical results have shown that the solution from phase 1 remained optimal in

phase 2 for the majority of problem instances excluding one instance for which the line balance could be improved, resulting

in a decrease of the recourse cost. This proved the added value of the line balancing phase.

The obtained results show the applicability of the developed optimisation model in real disassembly context. Indeed, the

computational time is acceptable enough for giving to the designer the opportunity to generate different design alternatives

depending on the profit expected from the retrieved parts. This model helps to make a decision on the disassembly alternative

to be realised in the line and on the assignment of these tasks to workstations. Therefore, the choice between complete or

partial disassembly can be made on the basis of the economic arguments. The modelling process presented can be easily

adapted for real life cases like End of Life Vehicles or Waste Electrical and Electronic Equipment (WEEE). Undertaking

such case studies is one of our next research objectives.

The presented study opens numerous further research directions for problem modelling and algorithmic enhancements.

We believe that the computing time at the first solution stage can be reduced by generating new optimality cuts, using a

computational grid in order to parallelise the optimisation process or by implementing penalty function techniques. The



developed model should also be extended to more sophisticated line configurations, for example, with parallel workstations

and consider multi-product types with different end-of-life states.
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