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Abstract This work takes advantage of semiparametric modelling which improves
significantly in many situations the estimation accuracy of the purely nonparamet-
ric approach. Herein for semiparametric estimations of probability mass function
(pmf) of count data, and an unknown count regression function (crf), the kernel
used is a binomial one and the bandiwdth selection is investigated by developing
Bayesian approaches. About the latter, Bayes local and global bandwidth ap-
proaches are used to establish data-driven selection procedures in semiparametric
framework. From conjugate beta prior distributions of the smoothing parameter
and under the squared errors loss function, Bayes estimate for pmf is obtained in
closed form. This is not available for the crf which is computed by the Markov
Chain Monte Carlo technique. Simulation studies demonstrate that both proposed
methods perform better than the classical cross-validation procedures, in particu-
lar the smoothing quality and execution times are optimized. All applications are
made on real data sets.

Keywords Count regression function · Cross-validation · Discrete associated
kernel · MCMC · Probability mass function

1 Introduction

The use of a discrete kernel is more suitable than the use of a continuous kernel for
both estimations of the probability mass function (pmf) of a discrete variable, and
of an unknown regression function of discrete explanatory variables. For small and
moderate sample sizes, the discrete kernel approach needs a non-naive discrete
kernel which is called discrete associated kernel as detailed in Kokonendji and
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Senga Kiessé (2011). For a fixed point x in a discrete support T and a bandwidth
parameter h > 0, a discrete associated kernel Kx,h(·) is defined to be a pmf with
support Sx such that

x ∈ Sx (A1),
limh→0 E(Kx,h) = x (A2),
limh→0 V(Kx,h) = 0 (A3),

where Kx,h is the discrete random variable of pmf Kx,h(·). These conditions are
gathered to obtain good asymptotic behaviours (similar to the Dirac or naive
discrete kernel) of the corresponding estimators, as developped in Kokonendji and
Zocchi (2010) for the family of discrete triangular kernels. However, for small
and moderate sample sizes, the class of the so-called standard discrete kernels,
satisfying only (A1) and (A4) - (A5) below, works also very well:

E(Kx,h) = x+ h (A4),
limh→0 V(Kx,h) ∈ V(0) (A5),

with V(0) a set in the neighborhood of zero (Kokonendji and Senga Kiessé, 2011).
Amongst standard discrete kernels, the most interesting is the binomial kernel
denoted Bx,h on the support Sx = {0, 1, . . . , x + 1} and with the bandwidth
parameter in the interval [0, 1]:

Bx,h(y) =
(x+ 1)!

y!(x+ 1− y)!

(
x+ h

x+ 1

)y (
1− h

x+ 1

)x+1−y

1Sx(y), (1)

with 1A denoted the indicator function of any given event A ⊂ T. Note that Bx,h

follows the binomial distribution B(x+1; (x+h)/(x+1)) with a number of trials
x+1 and a success probability in each trial (x+h)/(x+1). In addition to discrete
kernel choice, one of the main issues of the discrete kernel method is the bandwidth
selection procedure. The classical cross-validation procedure is used for conducting
bandwith choice in most of the works about discrete kernel estimations. That
concerns the semiparametric estimation of count regression functions (crf) as in
Abdous et al. (2012) and Cuny and Senga Kiessé (2014), nonparametric estimation
of pmf in Kokonendji and Senga Kiessé (2011), semiparametric estimation of pmf
in Kokonendji et al. (2009ab) and, Senga Kiessé and Cuny (2014).

Recently, Bayesian approaches using binomial kernel in equation (1) have been
proposed as an alternative to cross-validation procedure for bandwidth selections
but only for nonparametric estimations of pmf and crf (Zougab et al., 2012, 2014a).
This paper pursues the latter works in semiparametric framework since the semi-
parametric approach is demonstrated to significantly improve the purely nonpara-
metric modelling in many situations (Abdous et al., 2012). This work aims to take
both advantages of semiparametric kernel estimation in comparison with nonpara-
metric kernel estimation of count data and of Bayes approach in comparison with
cross-validation procedure for bandwidth selection.

The first procedure in Section 2 is related to a pmf of count data formulated
as a weighted Poisson distribution. The second method presented in Section 3
stduies an unknown regression function of count data considered as a weighted
parametric regression model. The particular choice of binomial kernel in equation
(1) is connected to Bayesian calculations: the bandwidth h will be treated as a
parameter with a prior distribution, the posterior densitiy can be obtained via
the likelihood cross validation and the prior distribution using Bayes rule. The
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performances of Bayesian bandwidth selection methods are compared to the cross-
validation procedures for each of the estimators studied through simulated data
sets in Section 4 and applications on real data sets in Section 5. Finally, Section 6
contains concluding remarks.

2 Poisson-weighted semiparametric binomial kernel estimation

2.1 Estimator and cross-validation procedure

Let X1,X2, . . . , Xn be a sequence of i.i.d. random variables with an unknown
pmf f on the set T = N of non-negative integers. Let us assume that any pmf
f(·) := P(X1 = ·) can be represented as a weighted count distribution with a given
parametric part p(· ;µ) and its corresponding count weight function part ω[f ](· ;µ)
(Kokonendji and Pérez-Casany, 2012). We consider the Poisson-weighted semi-

parametric estimator f̂n,h(·) := p(· ; µ̂) × ω̂
[f ]
n,h(· ; µ̂) of f proposed by Kokonendji

et al. (2009a) for the binomial kernel as follows:

f̂n,h(x) =
1

n

n∑
i=1

p(x; µ̂)

p(Xi; µ̂)
Bx,h(Xi), ∀x ∈ N, (2)

where p(x;µ) = µxe−µ/x! > 0 is the pmf of the Poisson distribution with mean
parameter µ > 0, µ̂ = n−1 ∑n

i=1 Xi is the sample mean, and Bx,h(·) is the binomial
kernel defined in (1) with h = h(n) ∈ [0, 1] an arbitrary sequence of smoothing
parameters that fulfills lim

n→∞
h(n) = 0. The continuous version of semiparametric

estimator in (2) for probability density function was discussed in Hjort and Glad
(1995), Hjort and Jones (2004) or Naito (2004).

Remark 1 From Kokonendji and Senga Kiessé (2011), for purely nonparametric

estimator from (2), we have f̂n,h(x) ∈ [0, 1] for all x ∈ N and
∑

x∈N f̂n,h(x) = Cn,h,
where Cn,h is not necessarly one but a positive and finite constant. In fact, it is
easy to check that Cn,h = 1 for Aitchison-Aitken and Wang-vanRyzin kernels; see
Examples 3 and 4 in Kokonendji and Senga Kiessé (2011). In general, we have
Cn,h ̸= 1 if we use binomial, Poisson and discrete triangular kernels; see Senga
Kiessé (2008, p. 193) and Wansouwé et al. (2015) for numerical results. Thus, a

normalization of f̂n,h is necessary for providing a pmf. Finally, we can investigate

the behaviour of Cn,h from 1 through the bias and variance of f̂n,h by

E(Cn,h) = 1 +
∑
x∈N

Bias
{
f̂n,h(x)

}
and

V ar(Cn,h) =
∑
x∈N

V ar
{
f̂n,h(x)

}
.

If the ratio p(x; µ̂)/p(Xi; µ̂) from (2) is equal to 1 for all Xi and x ∈ N, f̂n,h

corresponds to the nonparametric estimator of pmf f with binomial kernel (Koko-
nendji and Senga Kiessé, 2011). The Poisson parametric part in (2) is generally
retained because of its equidispersion property with respect to over- and under-
dispersion phenomenon in the family of count distributions (Kokonendji, 2014).
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Then, the classical cross-validation procedure is often used for finding an op-
timal bandwidth

hcv = argmin
h>0

CVf (h)

minimizing the function

CVf (h) =
∑
x∈N

f̂2
n,h(x)−

2

n

n∑
i=1

f̂n,h;−i(Xi)

=
1

n2

n∑
i=1

n∑
j=1

1

p(Xi; µ̂)p(Xj ; µ̂)

∑
x∈N

p2(x; µ̂)Bx,h(Xi)Bx,h(Xj)

− 2

n(n− 1)

n∑
i=1

∑
j ̸=1

BXi,h(Xj)
p(Xi; µ̂−i)

p(Xj ; µ̂−i)
.

The function f̂n,h;−i(x) = (n − 1)−1 ∑n
j ̸=i Bx,h(Xj) is the leave-one-out kernel

estimator of f̂n(x) and µ̂−i is computed as µ̂ by excluding Xi. The score function
CVf is an estimator asymptotically unbiased of the term depending on parameter

h > 0 in the mean integrated squared error (MISE) of estimator f̂n,h(x).

2.2 Posterior estimate of local bandwidth

In this part we assume that the smoothing parameter h ∈ [0, 1] in (2) is a random
quantity with a prior distribution π(·) in Bayesian framework. According to Zougab
et al. (2012), we first define a discrete function fh given by

fh(x) =
∑
y∈N

f(y)Bx,h(y) = E{Bx,h(Y )}, ∀x ∈ N,

with Bx,h the binomial kernel in (1) and Y a random variable with pmf f . Under

the assumptions (A4) - (A5), fh(x) and also f̂n,h(x) in equation (2) are close to
f(x) as n goes to ∞ and h = h(n) → 0, as studied by Kokonendji and Senga

Kiessé (2011) for fh(x), and Kokonendji et al. (2009a) for f̂n,h(x).

By considering h as a scale parameter for fh(x), the approach developed here

consists of using fh(x), which is also estimated by f̂n,h(x) in equation (2), and

constructing a local Bayesian estimator ĥn(x) for h at the point x. Indeed, let
π(h) be a prior distribution. Bayes theorem enables to express the posterior of h
at the point of estimation x as follows:

π(h|x) = fh(x)π(h)∫
fh(x)π(h)dh

.

Hence, an estimate of the posterior π(h|x) is given by the posterior density

π̂(h|x,X1, X2 . . . , Xn) =
f̂n,h(x)π(h)∫
f̂n,h(x)π(h)dh

, (3)
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where f̂n,h is a semiparametric estimator as in equation (2) of the unknown func-
tion fh. Under the squared error loss, Bayes estimator of the smoothing parameter
h is the mean of the previous posterior density given by

ĥn(x) =

∫
h π̂(h|x,X1, X2, . . . , Xn) dh. (4)

Now let us apply estimate of h in equation (4) to Poisson-weighted semipara-
metric binomial estimation in equation (2) for finding an explicit local bandwidth
for given x ∈ N. A natural conjugate prior density of h ∈ [0, 1] is the well-known
beta prior distribution with positive parameters α and β given by

π(h) =
1

b(α, β)
hα−1(1− h)β−1

1[0,1](h), (5)

with mean α/(α+ β) and

b(α, β) =

∫ 1

0

tα−1(1− t)β−1dt, α, β > 0.

First, let us consider the numerator of π̂ in equation (3): from equations (1), (2)
and the binomial expansion (x+ h)Xi =

∑Xi

k=0
Xi!

k!(Xi−k)!x
khXi−k, we have

f̂n,h(x)π(h) =
1

nb(α, β)

n∑
i=1

p(x; µ̂)

p(Xi; µ̂)
Bx,h(Xi)× hα−1(1− h)β−1

=
1

nb(α, β)

n∑
i=1

p(x; µ̂)

p(Xi; µ̂)

(x+ 1)!

Xi!(x+ 1−Xi)!

(
x+ h

x+ 1

)Xi
(
1− h

x+ 1

)x+1−Xi

×hα−1(1− h)β−1

=
1

nb(α, β)

n∑
i=1

p(x; µ̂)

p(Xi; µ̂)

(x+ 1)!

Xi!(x+ 1−Xi)!
×

∑Xi

k=0 Xi/{k!(Xi − k)!}xkhXi−k

(x+ 1)Xi

× (1− h)x+1−Xi

(x+ 1)x+1−Xi
× hα−1(1− h)β−1

=
1

nb(α, β)

n∑
i=1

Xi∑
k=0

p(x; µ̂)

p(Xi; µ̂)

(x+ 1)!

(x+ 1−Xi)!k!(Xi − k)!

xk

(x+ 1)x+1

×hXi+α−k−1(1− h)x+β−Xi .

Then, the denominator of π̂ in (3) is written by∫
f̂n,h(x)π(h)dh =

1

nb(α, β)

n∑
i=1

Xi∑
k=0

p(x; µ̂)

p(Xi; µ̂)

(x+ 1)!

(x+ 1−Xi)!k!(Xi − k)!

xk

(x+ 1)x+1

×
∫

hXi+α−k−1(1− h)x+β−Xidh

=
1

nb(α, β)

n∑
i=1

Xi∑
k=0

p(x; µ̂)

p(Xi; µ̂)

(x+ 1)!

(x+ 1−Xi)!k!(Xi − k)!

xk

(x+ 1)x+1

×b(Xi + α− k, x+ β −Xi + 1).
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Hence, taking the ratio of the previous calculus results, we easily deduce the pos-
terior density:

π̂(h|x,X1,X2, . . . , Xn) =

∑n
i=1

∑Xi

k=0 p(x; µ̂)x
k/{(x+ 1−Xi)!k!(Xi − k)!p(Xi; µ̂)}∑n

i=1

∑Xi

k=0 p(x; µ̂)x
k/{(x+ 1−Xi)!k!(Xi − k)!p(Xi; µ̂)}

× hXi+α−k−1(1− h)x+β−Xi

b(Xi + α− k, x+ β −Xi + 1)
.

Therefore, the local bandwidth ĥn(x) of (4) is expressed as

ĥn(x) =

∑n
i=1

∑Xi

k=0 p(x; µ̂)x
k/{(x+ 1−Xi)!k!(Xi − k)!p(Xi; µ̂)}∑n

i=1

∑Xi

k=0 p(x; µ̂)x
k/{(x+ 1−Xi)!k!(Xi − k)!p(Xi; µ̂)}

×b(Xi + α− k + 1, x+ β −Xi + 1)

b(Xi + α− k, x+ β −Xi + 1)
, (6)

with Xi ≤ x+ 1.
The following theorem shows the convergence of ĥn(x) to zero as n → ∞ for

judicious choices of prior parameters α and β.

Theorem 1 For given x ∈ N, Bayesian bandwidth ĥn(x) in (6) converges to zero
almost surely as n → ∞ for prior parameter sequences satisfying α > 0 and β = βn

with lim
n→∞

βn = ∞.

Proof Following the proof of Theorem 2.1 in Zougab et al.(2012), we can easily
show that

α

βn + α+ x+ 1
≤ ĥn(x) ≤

x+ α+ 1

βn
, ∀x ∈ N.

Therefore, we deduce that ĥn(x) almost surely goes to 0 when βn → ∞. �

Remark 2 The choice of β depending on sample size n is important for the consis-
tency of the Poisson-weighted semiparametric binomial kernel estimator and for
its smoothing quality. Based on the proof of previous theorem, we can control
the rate of convergence of the bandwidth ĥn(x) as the sample size increases for
judicious choices of β = βn. We can refer to Zougab et al. (2012, Remark 3).

3 Semiparametric binomial kernel estimator of regression function

This section is concerned with the global Bayesian bandwidth selection procedure h
in a semiparametric count regression estimation using binomial kernel in equation
(1). The estimation of the unknown parameter σ2 of the variance Gaussian error is
also investigated. Note that the Bayesian bandwidth selection approach in kernel
regression estimation has been far less investigated in comparison with kernel
density estimation. To our knowledge, two works have proposed the Bayseian
bandwidth procedure in purely nonparametric kernel regression estimation using
the MCMC sampling algorithm; see Zhang et al. (2009) for continuous case using
the Gaussian kernel and Zougab et al. (2012) for discrete case using the binomial
kernel.
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3.1 Estimator and cross-validation method

Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a sequence of i.i.d. random variables defined
on T× R and such that

Yi = m(Xi) + ϵi, (7)

where m(·) := E(Y1|X1 = ·) is an unknown regression function of count data and
the ϵi’s are assumed to have zero mean and finite variance σ2 > 0. According to
Abdous et al. (2012), the semiparametric estimator of m is defined by:

m̂n,h(x) = r(x; θ̂)×
n∑

i=1

YiBx,h(Xi)

r(Xi; θ̂)
∑n

j=1 Bx,h(Xj)
, ∀x ∈ T = N, (8)

where r(· ; θ) is a parametric count function that depends on unknown parameter

θ = (θ1, . . . , θs)
⊤, θ̂ = (θ̂1, . . . , θ̂s)

⊤ is an estimate of θ constructed in the previ-
ous step (by generalized least squared method for example), Bx,h is the binomial
kernel in equation (1) with h = h(n) ∈ [0, 1] an arbitrary sequence of smoothing
parameters that fulfills lim

n→∞
h(n) = 0. In practice, when X is a binary variable

or observations of X are count data, generalized linear models (GLM) studied by
McCullagh and Nelder (1989) for these cases can serve as parametric start regres-
sion models r(·; θ). Then, the estimation accuracy of chosen parametric regression
model can be improved by the nonparametric correction term which is the second
factor in the right side of equality in equation (8). One can refer to Glad (1998)
and Fan et al. (2009) as both related references for continuous version of estimator
in equation (8).

Let us remark that if ratio r(x; θ̂)/r(Xi; θ̂) in equation (8) is equal to 1 for all
Xi and x ∈ N, m̂n,h is the nonparametric estimator of m with binomial kernel.
The cross-validation procedure for bandwidth selection is adapted to semipara-
metric count regression estimator by Cuny and Senga Kiessé (2014). Similar to
semiparametric estimation of pmf, it consists of finding an optimal value hcv by
minimizing the score function

CVm(h) =
1

n

n∑
i=1

{Yi − m̂n,h;−i(Xi)}2,

where m̂n,h;−i is computed as m̂n,h of (8) by excluding Xi.

3.2 Bayesian bandwidth estimation

3.2.1 Likelihood and posterior

Let (xi, yi), i = 1, 2, ..., n be i.i.d. bivariate observations and let ϵi be i.i.d. residuals
following the Gaussian distribution N (0, σ2) with mean zero and constant variance
σ2. Thus, the model in equation (7) can be expressed as

Yi −m(Xi) ∼ N (0, σ2).
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Then, treating h and σ2 as parameters, the likelihood cross-validation function
of the observed data is

LCV(y1, y2, . . . , yn|h, σ2) =
1

(2πσ2)n/2
exp

[
− 1

2σ2

n∑
i=1

{yi − m̂n,h;−i(xi)}2
]
,

with m̂n,h;−i(·) the leave-one-out binomial kernel estimator of m̂n,h(x) computed
by excluding Xi.

Concerning the prior distributions of σ2 and h, π(h) is already defined in equa-
tion (5) and π(σ2) is assumed to be an inverted Gamma with positive parameters
a and b denoted as IG(a, b) with its density function being

π(σ2) =
ba

Γ (a)

(
1

σ2

)a+1

exp

(
− 1

σ2

)
1[0,∞)(σ

2),

with

Γ (a) =

∫ ∞

0

ta−1 exp(−t)dt, a > 0.

Thus, the joint posterior density function of (h, σ2) given the data is

π(h, σ2|y1, y2, . . . , yn) ∝
π(h)π(σ2)

(2πσ2)n/2
exp

[
− 1

2σ2

n∑
i=1

{yi − m̂n,h;−i(xi)}2
]

∝ hα−1(1− h)β−1

(
1

σ2

)(n+2a)/2+1

exp

(
− 1

2σ2

[ n∑
i=1

{yi − m̂n,h;−i(xi)}2 + 2b

])
,

where ∝ denotes proportional. It ensues that the posterior density function of σ2

given h and data is

σ2|h, y1, y2, . . . , yn ∼ IG

(
n+ 2a

2
,
1

2

n∑
i=1

{yi − m̂n,h;−i(xi)}2 + b

)
.

Also, the posterior density function of h given data is derived from the expression
π(h, σ2|y1, y2, . . . , yn) by integrating out σ2 as follows:

π(h|y1, y2, . . . , yn) ∝ hα−1(1−h)β−1

[
1

2

n∑
i=1

{yi−m̂n,h;−i(xi)}2+b

]−(n+2a)/2

. (9)

Since the posterior distribution (9) cannot be simulated directly, the next sub-
section sets up the MCMC method and Gibbs sampling procedure to generate
samples from h and to simulate the Gaussian error σ2, respectievly. Thus, the
estimates of h and σ2 are provided by their ergodic averages.
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3.2.2 An MCMC algorithm

Following Zougab et al. (2014a) for purely nonparametric count regression, we pur-
sue in the same manner for the semiparametric count regression function m̂n,h;−i

in equation (9). Indeed, we use the MCMC sampling algorithm such as the random-
walk Metropolis algorithm and the Gibbs sampling procedure to generate draws
of h and σ2 using an arbitrary initial value h(0) in (0, 1). After a burn-in period N0

and a total number of iterations N sufficiently large, the Markov chain converges
to the interest density. The iterations N0 are not used in the computing of the
estimatros. Then, the estimators of the bandwidth h and the variance Gausian
error σ2 are given as follows:

ĥ =
1

N −N0

N∑
t=N0+1

h(t) and σ̂2 =
1

N −N0

N∑
t=N0+1

{σ2}(t).

The random-walk Metropolis-Hastings algorithm is based on a new proposing
point using candidate (or proposal) distribution q(h̃|h) = q(h̃ − h). In this work,
we propose again to use the symmetric candidate distribution such as

q(h̃− h) =
1

τ
√
2π

exp

{
(h̃− h)2

2τ2

}
.

The value of τ will be chosen for obtaining an acceptance rate which is close to
0.5 (Gelman et al., 1996). A sequence of draws from the random-walk Metropolis-
Hastings algorithm and Gibbs sampling procedure is obtained as follows:

Step 1. initialize h(0) ∈ (0, 1)
Step 2. for t ∈ {1, · · · , N}

(a) generate h̃ ∼ N (h(t), t2)
(b) h̃ = |h̃| and if h̃ > 1, return to (a)
(c) calculate the acceptance probability ρ = min{1, π(h̃|y1, y2, · · · , yn)/π(ht|y1, y2, · · · , yn)}

h(t+1) =

{
h̃, if u < ρ, u ∼ U[0,1]

h(t), otherwise

(d) generate {σ2}(t) from IG
(
(n+2a)/2, (1/2)

∑n
i=1{yi − m̂n,h;−i(xi)}2 + b

)
Step 3. t = t+ 1 and goes to 2.

In order to avoid numerical underflow in practice, we modified the acceptance
probability ρ as follows (see Brewer, 1998):

ρ̂ =

{
min{γ, 0} if π(h(t)|y1, y2, . . . , yn) > 0

0 if π(h(t)|y1, y2, . . . , yn) = 0,

with

γ = log{π(h̃|y1, y2, . . . , yn)} − log{π(h(t)|y1, y2, . . . , yn)}.
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4 Monte Carlo simulation studies

This section gives two parts of simulation studies of proposed bandwidth selections
in semiparametric estimations by using binomial kernel in equation (1). The first
part treats three models for the Poisson-weighted semiparametric estimation and
the second part presents one model for semiparametric count regression estima-
tion. For Bayesian approaches, we do not need any sensitivity analysis because we
will fix the beta prior parameters α = α0 and β =

√
n. The choice of β which

depends on the sample size n is important for the consistency of both semipara-
metric kernel estimations of pmf and regression function of count data. Further,
this choice enables the convergence of Bayesian bandwidth estimator to zero with
the same rate as that of the MISE optimal bandwidth (see Remark 2 of Section 2
and Zougab et al., 2012, 2014a).

4.1 Poisson-weighted semiparametric binomial estimation

In this subsection, we evaluate the performance of Bayes local approach and the
classical cross-validation technique for bandwidth choice in Poisson-weighted semi-
parametric binomial estimation. Simulated count data from Poisson models with
parameters µ = 2, µ = 5 and µ = 8 are used. The sample sizes n = 10, 25, 50,
100, 200 and 500 and the number of replications Nsim = 100 are considered for
this study. Thus, the performance of f̂n,h(x) is evaluated by using the Integrated
Squared Error (ISE):

ISE =
∑
x∈N

{
f̂n,h(x)− f(x)

}2
,

where f̂n,h is the global or the local semiparametric binomial kernel estimator.
Table 1 reports the average ISE denoted by ISE. Note that the results from

Bayesian local approach were obtained using the conjugate beta prior with param-
eters values α = 0.5 and β = βn =

√
n as discussed in Remark 2 of Section 2. The

execution times are also given in Table 2. From Tables 1 and 2, we can see that:

i) the values ISE decrease as sample size increases for the two methods;
ii) Bayesian local approach works better than the cross-validation method in term

of ISE; and,
iii) Bayesian local approach performs better than the cross-validation in the sense

of Central Processing Unit (CPU) times.

4.2 Semiparametric binomial kernel regression

Now we investigate the performance of the proposed Bayesian estimator to band-
width selection in semiparametric binomial kernel regression via a simulation
study. We consider bivariate observations (xi, yi)i=1,··· ,n such that

yi = m(xi) + ϵi, where m(x) =
2x

x!
, x ∈ N. (10)
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Table 1 Some expected values of ISE and their standard errors in parentheses based on 100
replications for the Poisson models with parameter µ = 2, 5 and 8.

f n ISEBayes ISEcv

10 0.0232(0.0173) 0.0410(0.0246)
25 0.0100(0.0063) 0.0178(0.0109)

Poisson(µ = 2) 50 0.0054(0.0043) 0.0090(0.0072)
100 0.0027(0.0018) 0.0044(0.0030)
200 0.0015(0.0011) 0.0022(0.0012)
500 0.0005(0.0004) 0.0009(0.0006)
10 0.0188(0.0149) 0.0297( 0.0175)
25 0.0097(0.0066) 0.0155(0.0088)

Poisson(µ = 5) 50 0.0045(0.0028) 0.0070(0.0037)
100 0.0027(0.0020) 0.0038(0.0021)
200 0.0011(0.0006) 0.0017(0.0009)
500 0.0005(0.0003) 0.0007( 0.0004)
10 0.0202(0.0113) 0.0344(0.0217)
25 0.0093(0.0113) 0.0143(0.0096)

Poisson(µ = 8) 50 0.0046(0.0029) 0.0063(0.0033)
100 0.0025(0.0029) 0.0039(0.0023)
200 0.0011(0.0007) 0.0018(0.0009)
500 0.0004(0.0002) 0.0007(0.0003)

Table 2 Comparison of execution times (in seconds) for one replication.

f n tBayes tcv
10 0.03 0.29
25 0.12 0.36

Poisson(µ = 8) 50 0.21 0.81
100 0.48 1.43
200 1.10 2.71
500 2.70 12.99

We simulate yi using the model in equation (10) and the Gaussian model error
with zero mean and fixed variance, i.e., ϵi ∼ N (0, σ2) with σ2 = 0.12. We also
consider the small and moderate sample sizes n ∈ {10, 25, 50, 100, 200}. Our aim
is to estimate m(·) using the semiparametric regression model given in equation
(8) and the variance of Gaussian model error σ2. Note that we used a GLM
(McCullagh and Nelder, 1989) as start function in equation (8) (Abdous et al.,
2012). The used GLM represents a normal model for the response variable yi with
a logarithmic link and it is given by

yi = θ1 + θ2xi + θ3 log xi + ei, xi ∈ N.

The estimators θ̂ = (θ̂1, θ̂2, θ̂3)
⊤ of θ = (θ1, θ2, θ3)

⊤ can be obtained by the gener-
alized least squared method. However, the performance of the discrete semipara-
metric estimator m̂n,h(·) depends crucially on the choice of bandwidth h.

Thus, we apply the MCMC and Gibbs sampler algorithm (given in Section 3)
based on 5,000 iterations of the burn-in period and 15,000 as the total number
of iterations for deriving global Bayesian bandwidth and estimating the variance
model error σ2. The performance of Bayesian bandwidth estimator depends on the
choice of parameters of beta prior (5) with mean α/(α + β). Hence, we propose
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α = 1.5 > 0 and β = βn =
√
n. Under this latter choice, we can observe that

the prior of bandwidth h is concentrated at 0 for large sample size n. This choice
of β which depends of the sample size n is necessary for the consistency of semi-
parametric binomial kernel regression estimator in equation (8). Furthermore, the
parameters for inverted Gamma prior of σ2 are fixed as a = 1 and b = 0.05. For
such choice, one can also refer to Kim et al. (1998) and Zhang et al. (2014).

4.2.1 MCMC convergence

The convergence of the MCMC method is examined by the Batch-Mean Standard
Error (BMSE) and the Simulation Inefficiency Factor (SIF). These indicators have
been intensively employed in the literature (see Zhang et al., 2009, 2014, Hu et al.,
2012, or Zougab et al., 2014a). To illustrate the mixing performance of Bayesian
MCMC technique, we present in Tables 3 and 4 the values of BMSE and SIF
indicators. The obtained results for each simulated parameter h and σ2 shown
that the sampler had achieved a reasonable mixing performance.

Table 3 Estimated parameter and associated statistics of global Bayesian bandwidth estima-
tor.

n Estimate Std BMSE SIF Acceptance rate
10 0.2187 0.1533 0.0023 2.32 0.5108
25 0.1610 0.1171 0.0017 2.17 0.4870
50 0.1010 0.0755 0.0018 5.76 0.5524

100 0.0586 0.0430 0.0010 5.77 0.4619
200 0.0284 0.0218 0.0004 3.47 0.4864

Table 4 Estimated parameter and associated statistics of variance model error σ2.

n Estimate Std BMSE SIF
10 0.46052 0.1081 0.0010 0.9270
25 0.31812 0.0303 0.0002 0.4954
50 0.18242 0.0068 6.9775e-05 1.0486

100 0.16972 0.0041 4.1472e-05 1.0137
200 0.12612 0.0015 2.0193e-05 1.5955

4.2.2 Bayesian approach versus cross-validation method

In this paragraph, we investigate the performance of proposed Bayesian approach
and cross-validation technique using the Average Squared Error (ASE) defined by

ASE =
1

n

n∑
i=1

{m̂n,h(xi)−m(xi)}2.
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For each dataset the number of replications is Nsim = 50. The presented results in
Table 5 shown that Bayesian approach performed better than the cross-validation
technique for small sample sizes (n = 10, 25 and 50). However, the performance
were quite similar for moderate sample sizes (n = 100 and 200). The mean and
the standard deviation of the global Bayseian bandwidth (hBayes) and the global
cross-validation bandwidth (hCV ) based on 50 replications were also reported in
Table 6. The hCV -values were very small in comparison with hBayes-values.

Table 5 Some expected values of ASE and their standard errors in parentheses based on 50
replications.

Model error n ASECV ASEBayes

10 0.0960(0.2882) 0.0842(0.0531)
25 0.0501(0.1062) 0.0377(0.0489)

N (0, 0.12) 50 0.0324(0.0869) 0.0208(0.0256)
100 0.0133(0.0144) 0.0133(0.0079)
200 0.0076(0.0048) 0.0077(0.0049)

Table 6 Mean and standard deviation (sd) in parentheses for global bandwidth (Bayes and
CV) based on 50 replications.

Model error n hCV hBayes

10 0.0539(0.0580) 0.2406(0.0513)
25 0.0404(0.0693) 0.1652(0.0315)

N (0, 0.12) 50 0.0035(0.0034) 0.0917(0.0254)
100 0.0031(0.0000) 0.0526(0.0140)
200 0.0031(0.0000) 0.0271(0.0050)

From this simulation study, Bayesian estimation of bandwidth in the semi-
parametric kernel estimations of pmf and crf provides better results than cross-
validation in the sense of chosen accuracy measure (ISE or ASE), for all sample
sizes considered.

5 Applications to real count datasets

In this section Bayesian approach is applied in comparison with cross-validation
procedure for semiparametric estimation and regression of count data using bino-
mial kernel. First we estimate the pmf of longevity of adult insects, and then we
estimate the semiparametric regression of average daily fat data.

5.1 Poisson-weighted semiparametric binomial estimation

We consider the count dataset related to the development of an insect parasite
called the spiraling whitefly and observed in Republic of Congo (Senga Kiessé and
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Mizère, 2012). This insect pest plant causes some damages as sucking the sap, de-
creasing photosynthesis activity and drying up the leaves. The congolese biologists
are searching for a suitable modeling by studying some count data characterizing
the growth of spiraling whitefly such as the longevity of the adult insect (Table 7).

Table 7 Data of longevity of adult insects observed in days (Senga Kiessé and Mizère, 2012)

Days 1 2 3 4 5 6 7 8 9
Observed frequencies 29 16 22 8 2 4 0 0 1

The performance of f̂n with respect to each method of bandwidth selection
was evaluated by

ISE0 =
∑
x∈N

{
f̂n,h(x)− f0(x)

}2
,

where f0(x) is the empirical frequency estimate of observations. We provide the
ISE0 values and the execution times for Bayesian and cross-validation approaches
in Table 8. The performance of Bayesian approach and cross-validation technique
were quite similar in the sense of ISE0 but Bayesian approach performed better
than the cross-validation method in term of execution times. Note that the result
with parametric model p(x; µ̂) are also given in the Table 8. The best results are
obtained with semiparametric approach for these count dataset.

Table 8 Comparison of ISE0 and execution times (in second) for cross-validation and Bayes
approaches for semiparametric estimation of data in Table 7

Method Semi-Parametric with CV Semi-Parametric with Bayes Parametric
Criterion ISE0 0.0308 0.0313 0.0385
Execution times 0.2500 0.1100

5.2 Semiparametric binomial kernel regression

The real count dataset concerns the study of average daily fat (kg/day) yields from
the milk of a single cow for each of the 35 first weeks denoted xi. The quantity
of fat in the milk increases during the first 14 weeks and decreases thereafter, see
Table 9. These data have been analyzed by Senga Kiessé and Rivoire (2011) using
the discrete semiparametric regression and, Kokonendji et al.(2009b) and Zougab
et al.(2014a) using the discrete nonparametric regression.

We applied the GLM and the semiparametric binomial kernel regression es-
timator to approximate m for the considered average daily fat data. The GLM
was employed as start parametric model for the discrete semiparametric binomial
kernel estimator. We set the parameters of the priors as (α, β) = (1.5,

√
n) and

(a, b) = (1, 0.05) and we used the MCMC method with Gibbs sampler based on
5,000 iterations of the burn-in period and 15,000 as the total number of iterations
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Table 9 Average daily fat data (Kokonendji et al., 2009b)

xi 1 2 3 4 5 6 7 8 9 10 11 12
yi 0.31 0.39 0.50 0.58 0.59 0.64 0.68 0.66 0.67 0.70 0.72 0.68
xi 13 14 15 16 17 18 19 20 21 22 23 24
yi 0.65 0.64 0.57 0.48 0.46 0.45 0.31 0.33 0.36 0.30 0.26 0.34
xi 25 26 27 28 29 30 31 32 33 34 35
yi 0.29 0.31 0.29 0.20 0.15 0.18 0.11 0.07 0.06 0.01 0.01

for estimating the global bandwidth h and the variance of model error σ2. The
MCMC convergence was examined using the BMSE and the SIF. The bandwidth
selection was also investigated by the cross-validation technique in comparison
with Bayesian approach. For evaluating the performance of the estimators, we
used the Root Mean Square Error (RMSE) defined as

RMSE =

√√√√ 1

n

n∑
i=1

{yi − m̂n,h(xi)}2,

where m̂n,h(xi) is the adjustment of the ith observation xi.
Table 10 presents the results corresponding to average daily fat data. For the

discrete semiparametric binomial kernel regression estimator, the obtained opti-
mal bandwidths were hcv = 0.0031 and hBayes = 0.1554. The cross-validation
method had smaller RMSE than Bayesian approach. However, the difference was
not significant since RMSEBayes − RMSECV = 0.0008. Note that Bayesian ap-
proach gave also the estimate of the variance of model error (σ̂2 = 0.06632) but
not the cross-validation technique.

Figure 1 shown that the discrete semiparametric binomial kernel regression
estimator with Bayesian bandwidth improved the GLM which tends to underesti-
mate or overestimate the y-values.

Table 10 Estimated parameters and their associated statistics of Bayesain bandwidth esti-
mation with Gaussian model error on data in Table 9. Comparison using RMSE

Method Parameter estimate Std BMSE SIF Acceptance RMSE
rate

GLM 0.0541
Semip-Bayes σ2 0.06632 0.0010 9.5211e-06 0.7616

h 0.1554 0.1093 0.0027 6.3513 0.5143 0.0228
Semip-CV h 0.0031 0.0220

6 Concluding remarks

In this work, Bayesian estimations of smoothing parameter in discrete nonpara-
metric kernel estimation has been extended to discrete semiparametric estima-
tion of pmf and crf by using binomial kernel in equation (1). Simulation studies
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Fig. 1 Semiparametric regression estimation for average daily fat data. The points in black
represent the observed data, the circles in grey represent the semiparametric binomial kernel
regression estimator with Bayesian bandwidth and the circles in black represent the GLM.

and applications to real count data shown that Bayesian approaches are interest-
ing and valuable alternatives to the classical cross-validation method. Indeed, the
posterior estimate of local bandwidth outperforms the bandwidth selected through
cross-validation for all small and moderate sample sizes considered. More precisely,
Bayesian approaches are better or quite similar to cross-validation method in terms
of smoothing quality and execution times, for semiparametric estimation of pmf
as well as for semiparametric estimation of crf. Furthermore, the cross-validation
method has the inconvenience that it is not always consistent depending on the dis-
crete kernel and data used. Finally, it would be interesting to investigate Bayesian
estimation of bandwidth by using other discrete kernels and adaptive approach
(Zougab et al., 2014b).
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