.. J. Biomech, , vol.18, pp.189-200

C. M. Court-brown and B. Caesar, Epidemiology of adult fractures: A review, Injury, vol.37, pp.691-697, 2006.

N. A. Danova, S. A. Colopy, C. L. Radtke, V. L. Kalscheur, M. D. Markel et al., Degradation of bone structural properties by accumulation and coalescence of microcracks, Bone, vol.33, pp.197-205, 2003.

T. Diab, K. W. Condon, D. B. Burr, and D. Vashishth, Age-related change in the damage morphology of human cortical bone and its role in bone fragility, Bone, vol.38, pp.427-431, 2006.

T. Diab and D. Vashishth, Effects of damage morphology on cortical bone fragility, Bone, vol.37, pp.96-102, 2005.

P. Dong, S. Haupert, B. Hesse, M. Langer, P. J. Gouttenoire et al., 3D osteocyte lacunar morphometric properties and distributions in human femoral cortical bone using synchrotron radiation micro-CT images, Bone, vol.60, pp.172-185, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00976965

Z. Foldhazy, Exercise-induced strain and strain rate in the distal radius, J. Bone Jt. Surg. -Br, vol.87, pp.261-266, 2005.

H. Follet, S. Viguet-carrin, B. Burt-pichat, B. Dépalle, Y. Bala et al., Effects of preexisting microdamage, collagen cross-links, degree of mineralization, age, and architecture on compressive mechanical properties of elderly human vertebral trabecular bone, J. Orthop. Res, vol.29, pp.481-488, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00557212

R. Gauthier, H. Follet, M. Langer, E. Gineyts, F. Rongiéras et al., Relationships between human cortical bone toughness and collagen cross-links on paired anatomical locations, Bone, vol.112, pp.202-211, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01807344

R. Gauthier, H. Follet, M. Langer, S. Meille, J. Chevalier et al., Strain rate influence on human cortical bone toughness: A comparative study of four paired anatomical sites, J. Mech. Behav. Biomed. Mater, vol.71, pp.223-230, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01668114

R. Gauthier, M. Langer, H. Follet, C. Olivier, P. Gouttenoire et al., 3D micro structural analysis of human cortical bone in paired femoral diaphysis, femoral neck and radial diaphysis, J. Struct. Biol, vol.204, pp.182-190, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01858412

J. M. Graham, B. P. Ayati, S. A. Holstein, and J. A. Martin, The Role of Osteocytes in Targeted Bone Remodeling: A Mathematical Model, PLoS One, vol.8, pp.10-14, 2013.

M. Granke, A. J. Makowski, S. Uppuganti, and J. S. Nyman, Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone, J. Biomech, vol.49, pp.2748-2755, 2016.

. Griffith, The Phenomena of Rupture and Flow in Solids, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci, vol.221, pp.163-198, 1921.

H. S. Gupta, S. Krauss, M. Kerschnitzki, A. Karunaratne, J. W. Dunlop et al., Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone, J. Mech. Behav. Biomed. Mater, vol.28, pp.366-382, 2013.

S. Haupert, S. Guérard, D. Mitton, F. Peyrin, and P. Laugier, Quantification of nonlinear elasticity for the evaluation of submillimeter crack length in cortical bone, J. Mech. Behav. Biomed. Mater, vol.48, pp.210-219, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01213909

C. J. Hernandez and M. C. Van-der-meulen, Understanding Bone Strength Is Not Enough, J. Bone Miner. Res, vol.32, pp.1157-1162, 2017.
DOI : 10.1002/jbmr.3078

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/jbmr.3078

O. L. Katsamenis, T. Jenkins, F. Quinci, S. Michopoulou, I. Sinclair et al., A Novel Videography Method for Generating Crack-Extension Resistance Curves in Small Bone Samples, PLoS One, vol.8, 2013.
DOI : 10.1371/journal.pone.0055641

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0055641&type=printable

K. J. Koester, J. W. Ager, and R. O. Ritchie, The true toughness of human cortical bone measured with realistically short cracks, Nat. Mater, vol.7, pp.672-677, 2008.

R. M. Kulin, F. Jiang, and K. S. Vecchio, Effects of age and loading rate on equine cortical bone failure, J. Mech. Behav. Biomed. Mater, vol.4, pp.57-75, 2011.

A. Larrue, A. Rattner, Z. A. Peter, C. Olivier, N. Laroche et al., Synchrotron radiation micro-CT at the Micrometer scale for the analysis of the three-dimensional morphology of microcracks in human trabecular bone, PLoS One, vol.6, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02000412

G. Marotti, Osteocyte orientation in human lamellar bone and its relevance to the morphometry of periosteocytic lacunae, Metab. Bone Dis. Relat. Res, vol.1, pp.90027-90031, 1979.

E. Martín-badosa, A. Elmoutaouakkil, S. Nuzzo, D. Amblard, L. Vico et al., A method for the automatic characterization of bone architecture in 3D mice microtomographic images, Comput. Med. Imaging Graph, vol.27, pp.447-458, 2003.

S. Mischinski and A. Ural, Interaction of microstructure and microcrack growth in cortical bone: a finite element study, Comput. Methods Biomech. Biomed. Engin. 1-14, 2011.

S. Mohsin, F. J. O'brien, and T. C. Lee, Microcracks in compact bone: A three-dimensional view, J. Anat, vol.209, pp.119-124, 2006.
DOI : 10.1111/j.1469-7580.2006.00554.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-7580.2006.00554.x

R. K. Nalla, J. J. Kruzic, and R. O. Ritchie, On the origin of the toughness of mineralized tissue: Microcracking or crack bridging, Bone, vol.34, pp.790-798, 2004.

T. L. Norman and Z. Wang, Microdamage of human cortical bone: Incidence and morphology in long bones, Bone, vol.20, pp.375-379, 1997.

F. J. O'brien, D. Taylor, G. R. Dickson, and T. C. Lee, Visualisation of three-dimensional microcracks in compact bone, J. Anat. 197 Pt, vol.3, pp.413-420, 2000.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object, J. Microsc, vol.206, pp.33-40, 2002.

L. Ponson, A. Srivastava, S. Osovski, E. Bouchaud, V. Tvergaard et al., Correlating toughness and roughness in ductile fracture, pp.1-5, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00845351

A. Poundarik, T. Diab, G. E. Sroga, A. Ural, L. Boskey et al., Dilatational band formation in bone, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.19178-83, 2012.

A. A. Poundarik and D. Vashishth, Multiscale imaging of bone microdamage, Connect. Tissue Res, vol.56, pp.87-98, 2015.

R. O. Ritchie, Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids, Int. J. Fract, vol.100, pp.55-83, 1999.

R. O. Ritchie, Mechanisms of fatigue crack propagation in metals, ceramics and composites: Role of crack tip shielding, Mater. Sci. Eng. A, vol.103, pp.15-28, 1988.

M. B. Schaffler, K. Choi, and C. Milgrom, Aging and matrix microdamage accumulation in human compact bone, Bone, vol.17, pp.521-525, 1995.
DOI : 10.1016/8756-3282(95)00370-3

K. Schladitz, J. Ohser, and W. Nagel, Measuring Intrinsic Volumes in Digital 3d Images, Discret. Geom. Comput. Imag, vol.4245, pp.247-258, 2006.

E. Seeman and P. D. Delmas, Bone quality--the material and structural basis of bone strength and fragility, N. Engl. J. Med, vol.354, pp.2250-2261, 2006.

L. Shannahan, T. Weerasooriya, A. Gunnarsson, B. Sanborn, L. Lamberson et al., Rate-dependent fracture modes in human femoral cortical bone, Int. J. Fract, vol.194, pp.81-92, 2015.
DOI : 10.1007/s10704-015-0035-0

J. A. Steiner, S. J. Ferguson, and G. H. Van-lenthe, Screw insertion in trabecular bone causes periimplant bone damage, Med. Eng. Phys, vol.38, pp.417-422, 2016.

S. Y. Tang and D. Vashishth, Non-enzymatic glycation alters microdamage formation in human cancellous bone, Bone, vol.46, pp.148-154, 2010.

S. Y. Tang and D. Vashishth, A non-invasive in vitro technique for the three-dimensional quantification of microdamage in trabecular bone, Bone, vol.40, pp.1259-1264, 2007.

S. Y. Tang, U. Zeenath, and D. Vashishth, Effects of non-enzymatic glycation on cancellous bone fragility, Bone, vol.40, pp.1144-1151, 2007.

, E 1820-01: Standard Test Method for Measurement of Fracture Toughness, The American Society of Mechanical Engineers (ASME), vol.46, 2006.

T. L. Turnbull, A. P. Baumann, and R. K. Roeder, Fatigue microcracks that initiate fracture are located near elevated intracortical porosity but not elevated mineralization, J. Biomech, vol.47, pp.3135-3142, 2014.
DOI : 10.1016/j.jbiomech.2014.06.022

C. H. Turner and D. B. Burr, Basic biomechanical measurements of bone: a tutorial, Bone, vol.14, issue.93, p.90081, 1993.

A. Ural, P. Zioupos, D. Buchanan, and D. Vashishth, The effect of strain rate on fracture toughness of human cortical bone: A finite element study, J. Mech. Behav. Biomed. Mater, vol.4, pp.1021-1032, 2011.

D. Vashishth, The role of the collagen matrix in skeletal fragility, Curr. Osteoporos. Rep, vol.5, pp.62-66, 2007.

D. Vashishth, J. C. Behiri, and W. Bonfield, Crack growth resistance in cortical bone: Concept of microcrack toughening, J. Biomech, vol.30, pp.763-769, 1997.

D. Vashishth, J. Koontz, S. J. Qiu, D. Lundin-cannon, Y. N. Yeni et al., In vivo diffuse damage in human vertebral trabecular bone, Bone, vol.26, pp.147-152, 2000.

R. Voide, P. Schneider, M. Stauber, P. Wyss, M. Stampanoni et al., Time-lapsed assessment of microcrack initiation and propagation in murine cortical bone at submicrometer resolution, Bone, vol.45, pp.164-173, 2009.

X. Wang, D. B. Masse, H. Leng, K. P. Hess, R. D. Ross et al., Detection of trabecular bone microdamage by micro-computed tomography, J. Biomech, vol.40, pp.3397-3403, 2007.

U. Wolfram, J. J. Schwiedrzik, M. J. Mirzaali, A. Bürki, P. Varga et al., Characterizing microcrack orientation distribution functions in osteonal bone samples, J. Microsc, vol.00, pp.1-14, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01376589

K. Zarrinkalam, J. Kuliwaba, R. Martin, M. Wallwork, and N. Fazzalari, New insights into the propagation of fatigue damage in cortical bone using confocal microscopy and chelating fluorochromes, Eur. J. Morphol, vol.42, pp.81-90, 2005.

E. A. Zimmermann, B. Gludovatz, E. Schaible, B. Busse, and R. O. Ritchie, Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates, Biomaterials, vol.35, pp.5472-5481, 2014.

E. A. Zimmermann and R. O. Ritchie, Bone as a Structural Material, Adv. Healthc. Mater, vol.4, pp.1287-1304, 2015.

P. Zioupos and J. D. Currey, Changes in the stiffness, strength, and toughness of human cortical bone with age, Bone, vol.22, pp.57-66, 1998.

P. Zioupos, U. Hansen, and J. D. Currey, Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure, J. Biomech, vol.41, pp.2932-2939, 2008.