K. Y. Fung and H. B. Ju, Broadband time-domain impedance models, AIAA J, vol.39, issue.8, pp.1449-1454, 2001.

K. Fung and H. Ju, Time-domain impedance boundary conditions for computational acoustics and aeroacoustics, Int. J. Comput. Fluid Dyn, vol.18, issue.6, pp.503-511, 2004.

C. Scalo, J. Bodart, K. Sanjiva, and . Lele, Compressible turbulent channel flow with impedance boundary conditions, Phys. Fluids, vol.27, issue.3, p.35107, 2015.

J. Lin, C. Scalo, and L. Hesselink, High-fidelity simulation of a standing-wave thermoacoustic-piezoelectric engine, J. Fluid Mech, vol.808, pp.19-60, 2016.

T. Poinsot and S. Lele, Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys, vol.101, issue.1, pp.104-129, 1992.

W. Polifke and C. Wall, Parviz Moin, Partially reflecting and non-reflecting boundary conditions for simulation of compressible viscous flow, J. Comput. Phys, vol.213, issue.1, pp.437-449, 2006.

T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00270731

G. Lodato, P. Domingo, and L. Vervisch, Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flow, J. Comput. Phys, vol.227, issue.10, pp.5105-5143, 2008.

K. W. Christopher, L. Tam, and . Auriault, Time-domain impedance boundary conditions for computational aeroacoustics, AIAA J, vol.34, issue.5, pp.917-923, 1996.

Y. Özyörük and L. N. Long, A time-domain implementation of surface acoustic impedance condition with and without flow, J. Comput. Acoust, vol.5, issue.03, pp.277-296, 1997.

W. Sjoerd and . Rienstra, Impedance models in time domain including the extended Helmholtz resonator model, 2th AIAA/CEAS Aeroacoustics Conference, vol.2686, 2006.

B. Cotté, P. Blanc-benon, and C. Bogey, Franck Poisson, Time-domain impedance boundary conditions for simulations of outdoor sound propagation, AIAA J, vol.47, issue.10, pp.2391-2403, 2009.

S. Zhong, X. Zhang, and X. Huang, A controllable canonical form implementation of time domain impedance boundary conditions for broadband aeroacoustic computation, J. Comput. Phys, vol.313, 2016.

S. Jaensch, M. Merk, E. A. Gopalakrishnan, S. Bomberg, T. Emmert et al., Hybrid CFD/low-order modeling of nonlinear thermoacoustic oscillations, Proc. Combust. Inst, vol.36, issue.3, pp.3827-3834, 2017.

M. L. , Acoustics of Ducts and Mufflers, 1986.

N. Dunford, J. T. Schwartz, W. G. Bade, and R. G. Bartle, , 1971.

W. Rudin, Functional Analysis, International Series in Pure and Applied Mathematics, 1991.

M. B. Priestley, Spectral Analysis and Time Series, Vols. 1 and 2 , Probability and Mathematical Statistics, 1982.

G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review, 1968.

C. Nottin, Overview on Research Activities for Numerical Prediction and Control of Combustion Instabilities in Ramjet Powered Missiles, NATO Unclassified Report, 2012.

C. Nottin, Développement de méthodes de prévision des instabilités de combustion dans les foyers prémélangés, 2002.

R. Kaess, A. Huber, and W. Polifke, Time-domain impedance boundary condition for compressible turbulent flows, 14th AIAA/CEAS Aeroacoustics Conference, pp.5-9, 2008.

J. Bin, M. Y. Hussaini, and S. Lee, Broadband impedance boundary conditions for the simulation of sound propagation in the time domain, J. Acoust. Soc. Am, vol.125, issue.2, pp.664-675, 2009.

S. Jaensch, C. Sovardi, and W. Polifke, On the robust, flexible and consistent implementation of time domain impedance boundary conditions for compressible flow simulations, J. Comput. Phys, vol.314, pp.145-159, 2016.

F. Monteghetti, D. Matignon, E. Piot, and L. Pascal, Design of broadband time-domain impedance boundary conditions using the oscillatorydiffusive representation of acoustical models, J. Acoust. Soc. Am, vol.140, issue.3, pp.1663-1674, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01530759

J. Lourier, M. Stöhr, B. Noll, and S. Werner, Andreas Fiolitakis, Scale adaptive simulation of a thermoacoustic instability in a partially premixed lean swirl combustor, Combust. Flame, 2017.

Y. Özyörük, L. N. Long, and M. G. Jones, Time-domain numerical simulation of a flow-impedance tube, J. Comput. Phys, vol.146, issue.1, pp.29-57, 1998.

K. Y. Fung, H. Ju, and B. Tallapragada, Impedance and its time-domain extensions, AIAA J, vol.38, issue.1, pp.30-38, 2000.

Y. Ozyoruk and L. N. Long, Time-domain calculation of sound propagation in lined ducts with sheared flows, AIAA J, vol.38, issue.5, pp.768-773, 2000.

E. J. Brambley and G. Gabard, Time-domain implementation of an impedance boundary condition with boundary layer correction, J. Comput. Phys, vol.321, pp.755-775, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01877653

D. Dragna and P. Pineau, Philippe Blanc-Benon, A generalized recursive convolution method for time-domain propagation in porous media, J. Acoust. Soc. Am, vol.138, issue.2, pp.1030-1042, 2015.

R. Troian, D. Dragna, C. Bailly, and M. Galland, Broadband liner impedance eduction for multimodal acoustic propagation in the presence of a mean flow, J. Sound Vib, vol.392, pp.200-216, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01724956

B. Schuermans, H. Luebcke, D. Bajusz, and P. Flohr, Thermoacoustic analysis of gas turbine combustion systems using unsteady CFD, ASME Turbo Expo, pp.287-297, 2005.

M. L. Munjal and A. G. Doige, Theory of a two source-location method for direct experimental evaluation of the four pole parameters of an aeroacoustic element, J. Sound Vib, vol.141, issue.2, pp.323-333, 1990.

A. Papoulis, The Fourier Integral and Its Applications, 1962.

B. Gustavsen and A. Semlyen, Rational approximation of frequency domain responses by vector fitting, IEEE Trans. Power Deliv, vol.14, issue.3, pp.1052-1061, 1999.

B. Gustavsen, Improving the pole relocating properties of vector fitting, IEEE Trans. Power Deliv, vol.21, issue.3, pp.1587-1592, 2006.

Y. Reymen, M. Baelmans, and W. Desmet, Time-domain impedance formulation based on recursive convolution, p.2685, 2006.

Y. Reymen, M. Baelmans, and W. Desmet, Time-domain impedance formulation suited for broadband simulations, 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), p.3519, 2007.

X. Y. Li, X. D. Li, K. W. Christopher, and . Tam, Improved multipole broadband time-domain impedance boundary condition, AIAA J, vol.50, issue.4, pp.980-984, 2012.

L. Quartapelle and V. Selmin, High-order Taylor-Galerkin methods for nonlinear multidimensional problems, 8th International Conference, Finite Elements in Fluids: New Trends and Applications, 1993.

O. Colin and M. Rudgyard, Development of high-order Taylor-Galerkin schemes for LES, J. Comput. Phys, vol.162, issue.2, pp.338-371, 2000.

F. Nicoud, Defining wave amplitude in characteristic boundary conditions, J. Comput. Phys, vol.149, issue.2, pp.418-422, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00910348

L. Selle, F. Nicoud, and T. Poinsot, The actual impedance of non-reflecting boundary conditions: implications for the computation of resonators, AIAA J, vol.42, issue.5, pp.958-964, 2004.

L. Rayleigh, On the theory of resonance, Philos. Trans. R. Soc. Lond, vol.161, pp.77-118, 1870.

M. Miguel-brebion, D. Mejia, P. Xavier, F. Duchaine, B. Bedat et al., Joint experimental and numerical study of the influence of flame holder temperature on the stabilization of a laminar methane flame on a cylinder, Combust. Flame, vol.172, pp.153-161, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01557859

P. Xavier, A. Ghani, D. Mejia, M. Miguel-brebion, M. Bauerheim et al., Experimental and numerical investigation of flames stabilised behind rotating cylinders: interaction of flames with a moving wall, J. Fluid Mech, vol.813, pp.127-151, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01502574

M. Brebion, Joint Numerical and Experimental Study of Thermoacoustic Instabilities, 2017.

T. Lu and C. K. Law, A criterion based on computational singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with no chemistry, Combust. Flame, vol.154, issue.4, pp.761-774, 2008.