
HAL Id: hal-02057042
https://hal.science/hal-02057042

Submitted on 5 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How Deep Learning Can Drive Physical Synthesis
Towards More Predictable Legalization

Renan Netto, Sheiny Fabre, Tiago Fontana, Vinicius Livramento, Laércio
Lima Pilla, José Luís Güntzel

To cite this version:
Renan Netto, Sheiny Fabre, Tiago Fontana, Vinicius Livramento, Laércio Lima Pilla, et al.. How
Deep Learning Can Drive Physical Synthesis Towards More Predictable Legalization. International
Symposium on Physical Design, Apr 2019, San Francisco, United States. �10.1145/3299902.3309754�.
�hal-02057042�

https://hal.science/hal-02057042
https://hal.archives-ouvertes.fr

How Deep Learning Can Drive Physical Synthesis
Towards More Predictable Legalization

Renan Netto1, Sheiny Fabre1, Tiago Augusto Fontana1, Vinicius Livramento2, Laércio Pilla3,
José Luís Güntzel1

1Embedded Computing Lab, PPGCC, Federal University of Santa Catarina, Brazil
2ASML, Netherlands

3LRI, Univ. Paris-Sud — CNRS, France
{renan.netto,sheiny.fabre,tiago.fontana}@posgrad.ufsc.br

ABSTRACT
Machine learning has been used to improve the predictability of
different physical design problems, such as timing, clock tree syn-
thesis and routing, but not for legalization. Predicting the outcome
of legalization can be helpful to guide incremental placement and
circuit partitioning, speeding up those algorithms. In this work we
extract histograms of features and snapshots of the circuit from sev-
eral regions in a way that the model can be trained independently
from region size. Then, we evaluate how traditional and convo-
lutional deep learning models use this set of features to predict
the quality of a legalization algorithm without having to executing
it. When evaluating the models with holdout cross validation, the
best model achieves an accuracy of 80% and an F-score of at least
0.7. Finally, we used the best model to prune partitions with large
displacement in a circuit partitioning strategy. Experimental results
in circuits (with up to millions of cells) showed that the pruning
strategy improved the maximum displacement of the legalized so-
lution by 5% to 94%. In addition, using the machine learning model
avoided from 22% to 99% of the calls to the legalization algorithm,
which speeds up the pruning process by up to 3×.

KEYWORDS
Physical synthesis, placement, legalization, machine learning

1 INTRODUCTION
The high flexibility provided by machine learning (ML) models al-
lows their use to predict the outcome of physical design algorithms.
They have been employed so far to help choose between different
clock tree synthesis algorithms [11], to fix miscorrelations between
different timing engines [7], and to identify detailed routing vio-
lations during the placement stage [2, 17, 19]. The benefits of ML
models come from their ability to improve the quality of physical
design algorithms by predicting information that would otherwise
be too costly to evaluate during execution.

Machine learning techniques have yet to be employed to help pre-
dict the outcome of legalization algorithms. As technology nodes ad-
vance, new challenges affect modern legalization algorithms. Some
of these challenges include pin accessibility, usage of multi-row cell
libraries, complex design rules, physical floorplan complexity, as
well as tight performance and power constraints. In addition, mod-
ern legalization algorithms have to keep a low circuit displacement
to avoid degrading the solution of upstream steps.

The prediction of the outcome of legalization algorithms by ML
techniques has multiple applications: (1) choosing, among multi-
ple legalization algorithms, the one that will result in the lowest
displacement for a given legalization region, similar to what has
been done for clock tree synthesis [11]; (2) guiding an incremen-
tal placement technique. The ML models could predict which cell
movements result in the greatest improvement on different metrics,
without requiring the execution of the legalization algorithm itself;
(3) guiding a circuit partitioning strategy. Circuit partitioning can
be used to decompose the circuit in smaller disjoint parts, which
can reduce the execution time of legalization algorithms by more
than one order of magnitude. However, it can also degrade some
quality metrics since it reduces the solution space available to the
legalization algorithm.

In this work we explore mainly option (3) by integrating the pro-
posed machine learning model into a circuit partitioning strategy
to avoid partitions that result in large displacement. Furthermore,
we partially explore option (2), because the proposed model can be
used to predict when some optimizations will largely degrade the
solution obtained by upstream steps. We do so by training different
ML models to detect when the maximum displacement of a given
partition exceeds a specified threshold. Then, we select the model
with the best results to be integrated in the partitioning strategy,
acting as a pruning mechanism. The main contributions of this
paper are:

• We propose a feature extraction strategy for training ma-
chine learning models using the information of circuit par-
titions as input. This set of features is independent of the
partition size.
• To the best of our knowledge, this is the first work to use
machine learning models to help a legalization algorithm.
We evaluate different ML models in order to select the best
one for this problem (which achieved an accuracy of 80%
and an F-score ≥0.7).
• We employed the best ML model as a pruning mechanism
for a circuit partitioning strategy. Results using circuits from
both ICCAD 2017 and ICCAD 2015 CAD Contests show that
the pruning strategy reduced the maximum displacement of
those circuits by up to 94%, and the use of ML accelerated
the pruning by up to 3×.

The remaining sections are organized as follows. Section 2 dis-
plays the related work on ML models used for physical design,
and multi-row legalization. Sections 3 and 4 present the proposed
ML methodology and its integration into a legalization algorithm.

Finally, Section 5 shows the experimental results and Section 6
provides concluding remarks.

2 RELATEDWORK
Machine learning techniques have been used to solve different phys-
ical design problems. The work from [11] trains a regression model
to predict the outcome of different clock tree synthesis engines.
The authors extract features from architectural, floorplanning and
design parameters. In order to handle a large number of linearly
correlated parameters, they separate the features in two models,
which are trained separately and combined using linear regression.
Another application is predicting the outcome of golden signoff
timing engines [7], where the authors propose a regression model
to correct miscorrelations between two commercial signoff tools.
For that, they extract multiple features concerning capacitance,
resistance and delay of cells and wires.

Recently, machine learning techniques have been used to predict
the violation of routability constraints in a placed netlist. For exam-
ple, the work from [19] extracts features regarding pin distribution,
routing blockage, global routes and local nets in order to predict
the number of DRC violations in a placed area. The work from [2]
improves this idea by predicting the actual locations of the DRC
violations, using a different set of features. Finally, the work from
[17] focuses on predicting only the existence of detailed routing
short violations, so that this information can be used in a detailed
placement flow, for example. Although different works make use
of machine learning techniques, none of them aim to predict the
quality of legalization algorithms, which is the focus of this work.
Since legalization is performed not only after the global placement,
but also after other placement optimization techniques, improving
the legalization solution consequently improves the quality of those
optimizations.

Several recent works have been proposed to legalize circuits
from advanced technology nodes, which contain multi-row cells.
For example, the works from [4] and [18] propose algorithms that
legalize cells one at a time. Their algorithms enumerate a set of
valid insertion points for each cell and place each in the location
that minimizes circuit displacement. While the algorithm from [4]
uses a greedy heuristic, the algorithm from [18] adapts the Abacus
legalization algorithm [16] that uses dynamic programming.

Instead of handling each cell at a time, the works from [10] and
[3] propose algorithms that simultaneously legalize multiple cells.
The authors of [10] propose an Integer Linear Programming (ILP)
model to solve the multi-row legalization problem. Due to the
high complexity of the ILP model, they divide the circuit into bins,
solving the problem for multiple bins in parallel. Such strategy leads
to better results, but at the cost of longer run times. The authors of
[3], by their turn, relax some constraints of the problem in order to
model it as a Linear Complementarity Problem. This way, they can
still achieve better results than the previous works, but with a more
reasonable run time. Finally, the work of [15] improves over [4]
and considers additional metrics for legalization problem, such as
routability constraints.

A machine learning model that predicts the outcome of such
legalization algorithms can be used to guide incremental optimiza-
tion techniques or partitioning strategies. For example, the work of

[6] proposes a circuit partitioning strategy to speed up legalization
by executing the legalization algorithm in smaller regions of the
circuit. This way, the authors sped up the legalization, but at the
cost of maximum displacement degradation, since the partitioning
reduces the solution space of the legalization algorithm. Therefore,
in this work we also integrate the proposed machine learning model
to this partitioning strategy, so that the model guides this process
to avoid partitions with large displacement.

3 MACHINE LEARNING METHODOLOGY
We model the legalization outcome prediction as a binary classifica-
tion problem. Given a legalization algorithm L, a partition of cells
pi , and a displacement threshold ∆, the output of the ML model is a
binary variable y ∈ {0, 1}, indicating whether L legalizes the cells
of pi without any cell displacement exceeding ∆1.

In this work, instead of using L and ∆ as inputs of the ML
model, we train models for a specific combination of L and ∆. As
consequence, the model receives as input the rectangular region
(given by R(pi)) and cells of a partition (given by C(pi)), and must
predict if the legalization algorithmL used to train themodel is able
to legalize this partition under a maximum displacement threshold
of ∆. In order to do so, we must provide a large number of samples
to train the ML model, so that it can identify which patterns lead
to a partition with a large displacement.

3.1 Training data generation
Algorithm 1 shows how we generate the data for training and vali-
dation of theMLmodel. Given a set of cells C = {c1, c2, ..., cn−1, cn },
a legalization algorithm L and the rectangular area of the circuit
R = (Xlef t ,Xr iдht ,Ytop ,Ybottom), the algorithm aims to generate
data from partitions of different sizes. The first step consists in
defining the number of samples that will be generated for each
partition size (line 1). By generating the same number of samples
for each size (1024 in this work), we avoid having the ML model
become biased to a specific partition size. In addition, increasing
the number of samples acts as a data augmentation strategy, which
generates more samples from the same circuit and helps avoiding
overfitting.

In order to generate the circuit partitions, we used the strategy
from [6], which partitions the circuit using a k-d tree data structure,
where each leaf node represents a partition. The strategy receives
as input a desired height for the k-d tree and generates 2heiдht
partitions. Therefore, Algorithm 1 iterates over different values for
the tree height (line 3), and the necessary number of iterations to
generate the desired number of samples is calculated in line 4. We
limit the maximum height of the k-d tree to 9 because, as the height
increases, the partitions become smaller. A height higher than 9
would result in partitions with less than a few hundred of cells,
which would be too small.

For each iteration, a new circuit partitioning is generated (line
7). To ensure that the partitions are different from each other, we
apply a vector of random movements to the cells in C (line 6). The
MOVE_CELLS function in Algorithm 2 is responsible for applying

1The displacement of a cell ci is given by the Manhattan distance between its le-
galized location l (ci) = (x (ci), y(ci)) and its location before legalization l ′(ci) =
(x ′(ci), y′(ci)).

2

Algorithm 1: GENERATE_DATA(C, L, R)
1 n_samples ← 1024;
2 max_heiдht ← 9; F ← �;
3 for heiдht ← 1 tomax_heiдht do
4 n_iterations ← n_samples

2heiдht
;

5 for num_it ← 1 to n_iterations do
6 MOVE_CELLS(C, R);
7 P ← CIRCUIT_PARTITIONING(C, heiдht);
8 foreach pi ∈ P do
9 Λ, r esult ← L(C(pi), R(pi));

10 F ← F ∪ GET_FEATURES(C(pi), R(pi), Λ, r esult , ∆);
11 end
12 end
13 end
14 SAVE_DATA(F);

Algorithm 2:MOVE_CELLS(C, R)
1 foreach ci ∈ C do
2 rx ← RANDOM (−10000, 10000);
3 ry ← RANDOM (−10000, 10000);
4 x (ci) ← x ′(ci) + rx ;
5 y(ci) ← y′(ci) + ry ;
6 x (ci) ←min(Xr iдht −w (ci),max (Xle f t , x (ci)));
7 y(ci) ←min(Ytop − h(ci),max (Ybottom, y(ci)));
8 end

this movement. For each cell, two random variables rx , ry ∈ Z are
generated representing the cell movement on x and y coordinates,
respectively. We generate them using a uniform integer distribu-
tion in the range [-10000, 10000] to ensure that the movement is
large enough to generate significantly different placements2. Af-
ter moving the cells, we make sure that they lie within the circuit
boundaries R (lines 6–7). Observe that theMOVE_CELLS function
is called before partitioning the circuit, so the amount of movement
is not dependent of the partition size.

After generating the set of partitions P , Algorithm 1 legalizes
each partition (lines 8-11). Observe that it legalizes only the cells in
C(pi) inside the partition and the legalization area is limited to the
partition area R(pi). In addition, the legalization function from line
9 does not actually move the cells, it only finds legal locations for
the cells and returns those locations (denoted by Λ). It also returns a
boolean variable indicating if the legalization was successful or not
(denoted by result), as the legalization may fail for a given partition.
Observe that the proposed ML methodology is independent from
a specific legalization algorithm, as long as the algorithm may be
executed for a subset of the circuit cells and for a subregion of the
circuit area. For this reason, we do not present the pseudocode of
the legalization algorithm, but we used an adaptation of the Abacus
legalization algorithm from [16] to handle multi-row cells.

3.2 Feature selection
Given the legalization result and legal locations, the next step is
obtaining the features for this partition. In the end, when all features
are collected, the data is saved in an output file in line 14. In this
work we evaluate traditional and convolutional neural network
models, so we need features for both of them. For convolutional
models, the input is simply a snapshot image of the partition. We
used different colors to distinguish between movable and fixed cells.
2The smallest circuit used in the experiments has an area of 342000 × 342000, so this
movement corresponds to at most 3% of the circuit dimensions.

Movable cells are represented by shades of the same color. This
way, the model can identify overlaps since they are represented by
the combined colors of multiple cells. On the other hand, for the
traditional models we need to select an appropriate set of features.
Partitions become hard to legalize with low displacement when
they have a high density of cells, or when they have many cell
overlaps. Therefore, we selected the features presented in Table 1
for our ML methodology.

Table 1: Features used by the ML model.

Feature Meaning
D Density of the partition area
Ah Area occupied by cells of each height

Ha
Normalized histogram of area occupied
by cells on each partition subrow

Ho
Normalized histogram of area occupied
by overlaps on each partition subrow

Algorithm 3: GET_FEATURES(C(pi), R(pi), Λ, result , ∆)
1 Af ← 0; Am ← 0; Ar ← w (pi) × h(pi); Ah ← [];
2 δmax ← −∞;
3 foreach ci ∈ C(pi) do
4 if f ixed (ci) then
5 box ← intersect ion(ci , R(pi));
6 Af ← Af +w (box) × h(box);
7 else
8 Am ← Am +w (ci) × h(ci);

9 Ah [h(ci)] ← Ah [h(ci)] +
w (ci)×h(ci)

Ar ;
10 end
11 δ (ci) ← |l (ci) − λ(ci) |;
12 δmax ← max(δmax, δ (ci));
13 end

14 ∆← Am
Ar −Af

;

15 y ← δmax ≤ ∆;
16 A← [];O ← []; Σ← partition subrows;
17 foreach σi ∈ Σ do
18 C(σi) ← cells intersecting σi ;
19 a(σi) ← 0; o(σi) ← 0;
20 foreach ci ∈ C(σi) do
21 a(σi) ← a(σi) +w (ci);
22 end
23 C′ ← cells intersecting inC(σi);
24 foreach cj ∈ C′ do
25 o(σi) ← o(σi) +w (cj);
26 end

27 A[σi] ←
a(σi)
w (σi)

;O [σi] ←
o(σi)
w (σi)

;
28 end
29 Ha ← normalized histogram with values of A;
30 Ho ← normalized histogram with values ofO ;
31 return (y , ∆, Ah , Ha , Ho);

The first two features aim to represent global information of the
partition density. Since partitions with multi-row cells are harder to
legalize, we measure not only the cell density, but also the area oc-
cupied by cells of each height. However, just the global information
is not enough to identify partitions that are hard to legalize, since
some circuit rows may be more crowded than others. The third fea-
ture aims to represent this information by means of an histogram
of the area occupied by cells on each partition subrow. A subrow is
a row segment that does not overlap with any macroblocks and/or

3

1
2
3

5

0

4

0.2 0.4 0.6 0.8 10

2

4

6

8

0
0.2 0.4 0.6 0.8 10

0.1
0.2
0.3

0.5

0

0.4

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

0
0.2 0.4 0.6 0.8 10

(b) Histogram of area occupied by cells in each subrow.

(a) Partition with 20 movable cells and one fixed cell.

(d) Normalized area histogram (Ha).

(c) Histogram of area occupied by overlaps in each subrow.

(e) Normalized overlap histogram (Ho).

Figure 1: Circuit features extracted for a hypothetical partition.

fixed cells. Finally, a subrow may be overcrowded but with few
cell overlaps, which makes it easier to legalize. Therefore, the last
feature measures the area occupied by overlaps on each subrow, so
that the ML model can correlate this information to the result.

Figure 1 shows by means of an example how the histograms for
the last two features are generated for a given partition. Figure 1(a)
illustrates a partition with 20 movable cells (blue rectangles), one
fixed cell (gray rectangle) and 10 subrows (σ1 to σ10). Figures 1(b)
and (c) show the area and overlap histograms for this partition.
For illustration purposes, the histograms contain 5 bins, but we
actually used histograms with 20 bins for better precision. Each bin
indicates the number of rows whose area of cells (or overlap of cells)
is within a given range. We can see that the histogram in Figure 1(b)
concentrates on the middle region, with most subrows having from
40% to 60% of their area occupied by cells. On the other hand, the
histogram in Figure 1(c) concentrates on the 0% to 20% bin, with
only two subrows having more than 20% of their area occupied by
overlaps. However, using absolute values for the y axis of those
histograms may bias the ML model to large partitions, since they
would have a larger number of subrows. In order to avoid this issue,
we normalize the y axis with relation to the number of subrows in
the partition, resulting in the histograms Ha and Ho in Figures 1(d)
and (e). Observe that they have the same structure of the previous
histograms, with the only difference being the normalized vertical
axis.

Algorithm 3 shows the details of how these features are collected
from a given partition. The loop from lines 3–13 calculates the
values for the first two features (density and area occupied by cells
of each height), so it starts by initializing the necessary variables to
do so. Those variables are: the area occupied by fixed cells (Af), the
area occupied by movable cells (Am), the area of the partition itself
(Ar) and a list with the areas occupied by cells of each height (Ah).
Observe that the area occupied by fixed cells is not considered in
Ah , since those cells are not moved by the legalization algorithm.
However, their area is important to measure the partition density,
which is given by the area occupied by movable cells Am divided
by the free area in the partition (Ar - Af) in line 14. In addition, for
each height, Ah is normalized by the partition area. The first loop
also measures the maximum displacement of the legalized cells in
lines 11–12. This information is used to determine the class of this
partition in line 15.

The loop from lines 17–29, on the other hand, is responsible for
obtaining the data for the histograms Ha and Ho . This is done by
iterating through all subrows σi ∈ Σ of the partition and, for each
one, measuring the width occupied by the cells intersecting the
area of σi , storing this information in variable a(σi). In addition,
for the subset of cellsC ′ ∈ C(σi) that have some overlap with other
cells in said subrow, we compute how much overlap there is using
variable o(σi). Finally, both a(σi) and o(σi) are normalized by the
subrow widthw(σi) in line 27. This normalization ensures that the
ML model is not biased by large subrows that have larger absolute
values of a(σi) and o(σi). The last part of the algorithm creates the
normalized histograms Ha and Ho in lines 30–31.

4 PHYSICAL DESIGN INTEGRATION
After training and validating the ML model proposed in Section 3,
we integrated it in the circuit partitioning strategy of [6] as a use
case to evaluate the ML model. As mentioned in Section 3, their
work partitions the circuit using a k-d tree data structure, in a way
that the leaf nodes represent the partitions, which are legalized
separately. If a partition can not be legalized, it is merged with its
sibling node, and the legalization proceeds to their parent node.
In the end, the whole circuit legalization can be sped up, since
the partitioning strategy reduces the input size of the legalization
algorithm. However, doing so may degrade the solution quality,
especially maximum displacement. Therefore, we modified their
partitioning strategy to merge sibling nodes not only when the
legalization fails, but when it results in a large displacement as well.
This way, we can prune partitions that would otherwise degrade
the solution quality.

There are two ways of doing this pruning strategy: (1) running
the legalization algorithm and measuring the displacement of the
obtained solution; (2) using the ML model to predict the outcome
of the legalization without running the legalization algorithm. We
compare these two solutions in order to evaluate the efficiency and
impact of the ML model.

Algorithm 4 shows how we implemented the first pruning strat-
egy. The algorithm receives as input the partitions to be legalized
(P), the legalization algorithm (L) and the maximum displacement
threshold (∆). Then, it iterates through all partitions trying to legal-
ize them. For each partition pi , it runs the legalization algorithm
(line 4) and measures the obtained maximum displacement δmax
(lines 5–9). If δmax exceeds the threshold ∆ or if the legalization

4

Algorithm 4: PARTITIONED_LEGALIZATION (P, L, ∆)
1 foreach pi in P do
2 P ← P \ {pi };
3 if parent (pi) < P then
4 Λ, r esult ← L(C(pi), R(pi));
5 δmax ← −∞;
6 foreach ci ∈ C(pi) do
7 δ (ci) ← |l (ci) − λ(ci) |;
8 δmax ← max(δmax , δ (ci));
9 end

10 if δmax > ∆ ∨ ¬r esult then
11 P ← P ∪ {parent (pi)};
12 else
13 foreach ci ∈ C(pi) do
14 l (ci) ← λ(ci);
15 end
16 end
17 end
18 end

Algorithm 5:ML_PARTITIONED_LEGALIZATION (P, L, ∆,
M)
1 foreach pi in P do
2 P ← P \ {pi };
3 if parent (pi) < P then
4 if M(C(pi), R(pi)) then
5 P ← P ∪ {parent (pi)};
6 else
7 Λ, r esult ← L(C(pi), R(pi));
8 if ¬r esult then
9 P ← P ∪ {parent (pi)};

10 else
11 foreach ci ∈ C(pi) do
12 l (ci) ← λ(ci);
13 end
14 end
15 end
16 end
17 end

fails, the partition is ignored and its parent node is added to P to
be legalized instead (lines 10–11). Otherwise, its cells are placed
in their legal locations (lines 13–15). Observe that, by adding the
parent node of pi in P, it is possible to avoid the legalization of the
sibling of pi as well with the verification of line 3. If the parent of
pi is already in P, this means the sibling of pi resulted in a large
displacement or could not be legalized, so pi should be ignored as
well.

Running the legalization algorithm to prune partitions with large
displacement results in several unnecessary calls to the legalization
algorithm, which may take too much time. Therefore, the second
pruning strategy relies on the ML model to predict when a partition
should be ignored, as detailed in Algorithm 5. Observe that now
the algorithm receives as input the machine learning modelM as
well, which is used in line 4 to predict when the partition can be
pruned. Then, it runs the legalization algorithm L only if it was
not pruned (line 7), and checks only if the partition was legalized
(lines 8–10). If the partition was successfully legalized, it places the
cells in the legal locations. In the end, the whole circuit is legalized,
but requiring fewer calls to the legalization algorithm L than in
Algorithm 4.

5 EXPERIMENTAL RESULTS
5.1 Experimental setup
This work uses the benchmarks from ICCAD 2015 and ICCAD 2017
CAD Contest [5, 13]. Table 2 presents the names and number of
cells of each circuit. We divided the circuits in three groups: train-
ing, validation and test. The training and validation sets were
obtained by randomly separating the circuits from the ICCAD 2017
CAD Contest into those groups using the holdout method for cross
validation. They were used to evaluate different ML models and
to select the best model for the integration described in Section 4.
This way, the ML model is trained and validated using circuits with
multi-row cells, which are more challenging to legalize. On the
other hand, the test set is used along with the validation one for a
second experiment, which evaluates the quality of the selected ML
model when integrated in a circuit partitioning strategy. The test set
is composed by the ICCAD 2015 CAD Contest benchmarks, which
were not used when selecting the best ML model. Although those
circuits do not contain multi-row cells, they are much larger than
the others. Therefore, they provide a way to evaluate the speedup
achieved by the ML model on large designs.

We performed all experiments in a Linux workstation with an
Intel® Xeon® E5430 processor with 4 cores @ 2.66 GHz and 16GB
DDR2 667MHz RAM. In order to identify the best ML model for
our problem we evaluated three options: an artificial neural net-
work (ANN) with a single hidden layer with 10 neurons, a decision
tree (DT) and a deep convolutional neural network (CNN), us-
ing the resnet34 CNN architecture [8]. The first two models were
prototyped using the Knime platform [14], while the CNN was
prototyped using the fast.ai library [9]. After selecting the best
ML model, it was retrained with the same parameters using the

Table 2: Benchmarks used in the experiments.

Benchmark # Cells of different heights Benchmark
set Group

1 2 3 4
pci_bridge32_a_md1 26K 1.7K 597 448 ICCAD17 validation
pci_bridge32_a_md2 25K 2K 1.1K 994 ICCAD17 validation
pci_bridge32_b_md1 26K 1.7K 585 439 ICCAD17 validation
pci_bridge32_b_md2 28K 292 292 292 ICCAD17 validation
pci_bridge32_b_md3 27K 292 585 585 ICCAD17 training
fft_2_md2 28K 2.1K 705 529 ICCAD17 training
fft_a_md2 27K 2K 672 504 ICCAD17 training
fft_a_md3 28K 672 672 672 ICCAD17 training
des_perf_a_md1 103K 4.6K 0 0 ICCAD17 training
des_perf_a_md2 105K 1K 1086 1K ICCAD17 training
des_perf_1 112K 0 0 0 ICCAD17 training
des_perf_b_md1 106K 5.8K 0 0 ICCAD17 training
des_perf_b_md2 101K 6.7K 2.2K 1.6K ICCAD17 training
edit_dist_1_md1 118K 7.9K 2.6K 1.9K ICCAD17 training
edit_dist_a_md2 115K 7.7K 2.5K 1.9K ICCAD17 training
edit_dist_a_md3 119K 2.5K 2.5K 2.5K ICCAD17 training
superblue18 768M 0 0 0 ICCAD15 test
superblue4 795M 0 0 0 ICCAD15 test
superblue16 981M 0 0 0 ICCAD15 test
superblue5 1086M 0 0 0 ICCAD15 test
superblue1 1209M 0 0 0 ICCAD15 test
superblue3 1213M 0 0 0 ICCAD15 test
superblue10 1876M 0 0 0 ICCAD15 test
superblue7 1931M 0 0 0 ICCAD15 test

5

Table 3: Results of different ML models for different maximum displacement thresholds.

Max disp threshold of 5 rows Max disp threshold of 10 rows Max disp threshold of 15 rows
ML model accuracy precision recall F-score accuracy precision recall F-score accuracy precision recall F-score

ANN 81% 86% 72% 0.78 85% 78% 73% 0.75 84% 69% 72% 0.70
DT 76% 83% 63% 0.71 82% 76% 58% 0.66 83% 71% 63% 0.67
CNN 82% 84% 83% 0.83 82% 72% 83% 0.77 80% 70% 66% 0.68

Table 4: Results when integrating the ANN model to the partitioning strategy

Max disp threshold of 5 row Max disp threshold of 10 row Max disp threshold of 15 row
Design Avg disp Max disp HPWL Avg disp Max disp HPWL Avg disp Max disp HPWL

LEG ANN LEG ANN LEG ANN LEG ANN LEG ANN LEG ANN LEG ANN LEG ANN LEG ANN
pci_bridge32_a_md2 0.92 0.92 0.77 0.77 0.95 0.95 0.92 0.92 0.77 0.77 0.95 0.95 0.92 0.92 0.77 0.77 0.95 0.95
pci_bridge32_b_md1 0.69 0.69 0.30 0.30 0.99 0.96 0.69 0.69 0.30 0.30 0.99 0.96 0.69 1.01 0.30 0.91 0.99 1.00
pci_bridge32_b_md2 0.90 0.91 0.33 0.33 0.98 0.98 0.90 0.91 0.33 0.33 0.98 0.98 0.90 0.87 0.33 0.45 0.98 0.98
pci_bridge32_a_md1 0.89 0.89 0.95 0.95 0.98 0.98 0.89 0.89 0.95 0.95 0.98 0.98 0.89 0.89 0.95 0.95 0.98 0.98
superblue10 1.01 1.01 0.21 0.21 1.00 1.00 1.01 1.01 0.21 0.21 1.00 1.00 1.01 1.01 0.21 0.21 1.00 1.00
superblue18 0.96 0.96 0.11 0.11 1.00 1.00 0.96 0.92 0.11 0.11 1.00 1.00 0.96 0.92 0.11 0.24 1.00 1.00
superblue4 0.87 0.87 0.17 0.17 1.00 1.00 0.87 0.87 0.17 0.17 1.00 1.00 0.87 0.85 0.17 0.17 1.00 0.99
superblue7 1.04 1.04 0.13 0.13 1.00 1.00 1.04 1.04 0.13 0.13 1.00 1.00 1.04 1.04 0.13 0.13 1.00 1.00
superblue1 1.08 1.08 0.06 0.06 1.00 1.00 1.08 1.08 0.06 0.06 1.00 1.00 1.08 1.08 0.06 0.06 1.00 1.00
superblue16 1.06 1.06 0.52 0.52 1.00 1.00 1.06 1.06 0.52 0.52 1.00 1.00 1.06 1.06 0.52 0.52 1.00 1.00
superblue3 1.01 1.01 0.18 0.18 1.00 1.00 1.01 1.01 0.18 0.18 1.00 1.00 1.01 0.94 0.18 0.28 1.00 1.00
superblue5 1.05 1.05 0.12 0.12 1.00 1.00 1.05 1.05 0.12 0.12 1.00 1.00 1.05 0.96 0.12 0.34 1.00 1.00

Average 0.96 0.96 0.32 0.32 0.99 0.99 0.96 0.96 0.32 0.32 0.99 0.99 0.96 0.96 0.32 0.42 0.99 0.99
Median 0.98 0.98 0.19 0.19 1.00 1.00 0.98 0.96 0.19 0.19 1.00 1.00 0.98 0.95 0.19 0.31 1.00 1.00

Keras framework [12], so that we could integrate the model in the
C++ code of the circuit partitioning strategy. All experiments are
available under public domain, so that they can be reproduced [1].

5.2 Evaluation of machine learning models
Table 3 shows the results of the ML models on the validation set
for three different maximum displacement thresholds (∆): 5, 10,
and 15 rows. We evaluated the models by their accuracy, precision,
recall and F-score3. We selected the best results obtained for each
model. Since the number of samples of each class (true positive, false
positive, etc.) is not necessarily balanced, it is important to evaluate
not only the accuracy of the model, but also the precision and recall.
A low precision means a model assumes that some partitions would
result in a large displacement when that is not the case, resulting in
worse execution times as it takes longer to legalize the larger parent
partition. On the other hand, a low recall means that the model
will not prune some partitions that should have been pruned. This
will result in quality degradation, since Algorithm 5 will accept the
legalization even though it should not.

When the maximum displacement threshold is 5 rows, ANN and
CNN are very similar in accuracy, with CNN achieving a better F-
score. The DTmodel, on the other hand, seems to be the worst of the
three models, with lower accuracy, precision, and recall. When we
increased the maximum displacement threshold to 10 rows, there is
a slight increase on the accuracy of the DT and ANN models, and

3F-score is calculated by the harmonic mean of precision and recall.

no difference for the CNN model. However, there was a reduction
on the precision for all models, due to the more unbalanced data
for this displacement threshold. The recall was only affected on
DT, which again makes it the worst of the three models. Finally,
when the maximum displacement threshold is 15 rows, the data
is even more unbalanced, with less positive instances. In this case,
there was an F-score reduction on both ANN and CNN models. The
impact was greater on the CNN, whose F-score dropped from 0.83
(with threshold of 5 rows) to 0.68 (with threshold of 15 rows).

These results led us to the following conclusions: (1) DT has
a worse F-score for all maximum displacement thresholds, which
makes it a poor model for the analyzed problem; (2) increasing
the maximum displacement threshold degrades the quality of all
models, due to more unbalanced data. Thus, an evaluation with
even higher thresholds would require the generation of data with
more positive instances.

5.3 Integration with circuit partitioning
Based on the evaluation of the ML models, we selected the ANN
model to be integrated in the circuit partitioning strategy. Although
the CNN achieved a higher accuracy and F-score for the maximum
displacement threshold of 5 rows, we selected ANN over CNN
for the following reasons: (1) the ANN model achieved a higher
accuracy and F-score for the highest displacement threshold (15
rows), which suggests that this model is more robust to unbalanced
data; (2) the CNN model is more complex, and therefore it takes
longer to classify partitions using it. In order for this increased

6

run time to be compensated, the CNN model must have a much
higher accuracy than ANN, which is not the case for the evaluated
models; (3) further experiments showed that the CNN model has
lower accuracy on smaller partitions than on larger partitions. Since
smaller partitions are the majority in the partitioning strategy, it is
better to have a higher accuracy for them.

Table 4 shows the results of applying the pruning strategy pre-
sented in Section 4 on the validation and test circuits with relation to
average displacement, maximum displacement and half-perimeter
wirelength (HPWL)4. Observe that none of the circuits presented
in this table were used for the model training. For each metric we
present the ratio of the result when using the pruning strategy by
the original result from [6]. This way, a ratio lower than 1 for a
given metric means that its value was reduced (and improved) when
using the pruning strategy. For each metric, the table shows the
results of two versions of the pruning strategy: LEG (Algorithm 4),
and ANN (Algorithm 5 using the ANNmodel). In addition, the table
is divided in the same maximum displacement thresholds as Table 3
(5, 10 and 15 rows).

First of all, observe that for LEG, the results remain the same for
all metrics even when increasing the threshold from 5 to 15 rows.
The ratios were on average 0.96, 0.32 and 0.99 for average displace-
ment, maximum displacement and HPWL, respectively. This means
that increasing themaximumdisplacement threshold does notmake
a significant difference for those circuits. The improvement was
especially high for the maximum displacement, since this is the
metric being verified by the pruning strategy. In addition, there
was a significant reduction on the average displacement of circuits
pci_bridдe32_a_md2, pci_bridдe32_b_md1, pci_bridдe32_b_md2,
pci_bridдe32_a_md1, superblue18 and superblue4, which are the
smallest circuits used on this experiment. This happened because,
for larger circuits, legalizing the parent nodes in the partitioning
strategy may increase the average displacement, since they have
a larger area and, therefore, allow more cell movement. However,
the increase on average displacement is largely compensated by
the reduction on maximum displacement.

When using the ANN model with a maximum displacement
threshold of 5 or 10 rows, the results were the same as LEG for
almost all circuits, which means the accuracy of the ML model was
enough to avoid degrading the solution quality. However, when
increasing the maximum displacement threshold to 15 rows, the
lower precision of the ANNmodel results in degradation of the max
displacement metric, whose average ratio becomes 0.42. However,
this value is still much lower than the results from [6].

Besides analyzing the solution quality, it is important to also an-
alyze how many calls to the legalization algorithm were avoided by
using ANN, andwhat was the impact on the execution time. Figure 2
shows the ratio of the number of calls to the legalization algorithm
performed by ANN compared to LEG. For all cases, the ANN model
reduced the number of legalization calls, with a greater reduction in
the larger circuits. This happens because the larger number of cells
in these circuits increases the probability of a cell resulting in a large
displacement, requiring more partition merges. In addition, this
reduction is greater with a threshold of 5 rows because it requires
4Although circuit des_per f _b_md1 belongs to the validation set, it was not used in
this experiment because the legalization algorithm was not capable of legalizing this
circuit.

A
N

N
 /

 L
E
G

Figure 2: Comparison between the number of calls to the
legalization algorithm done by LEG and ANN.

Figure 3: Comparison between LEG and ANN’s execution
times (speedup = ratio LEG/ANN).

more merges, which increases the number of legalization calls for
LEG. However, even in the worst case, ANN required 22% less calls
to the legalization algorithm (pci_bridдe32_a_md1, 15 rows), but
up to 99% in the best case (superblue7, 5 rows). This reduction on
number of legalization calls resulted in the speedup presented in
Figure 3. This figure shows the speedup only for ICCAD 2015 CAD
Contest benchmarks, since the speedup is negligible for the other
circuits due to their small size. The speedup was calculated as the
ratio of the execution time of LEG by the execution time of ANN,
so a speedup greater than 1 means ANN is faster.

The results in Figure 3 show that ANN is faster for all cases,
except for superblue16 with the maximum displacement threshold
of 15 rows, achieving speedups from 0.86 to 3. In addition, for
most cases, the speedup is higher when the maximum displacement
threshold is lower because, as observed in Figure 2, in those cases
the reduction in the number of legalization calls is greater. However,
there are some exceptions, such as superblue18 for thresholds of 10
and 15 rows, as well as superblue3 and superblue5 for thresholds of
15 rows. These cases are also situations where the solution quality
has changed when increasing the maximum displacement threshold
(Table 4). In these cases, ANN failed to identify some partitions
with large displacement, which reduces the execution time but can
degrade the solution quality.

7

Figure 4: Comparison of the execution times between LEG
with threshold of 15 rows and ANNwith threshold of 5 rows
(speedup = ratio LEG/ANN).

Finally, although ANN degrades the quality of the pruning for
some circuits when using larger displacement thresholds, we ob-
served that the pruning quality is the same for all thresholds when
using LEG. Therefore, for the evaluated circuits, increasing the
maximum displacement threshold does not improve the solution
quality, but only reduces the execution time. Figure 4 shows the
speedup achieved by the ANN results for the threshold of 5 rows
(which achieved the best solution quality for ANN) compared to the
results of LEG for the threshold of 15 rows (which has the smallest
execution times for LEG). In this figure, it is possible to see that
the best ANN solution is still faster than the best LEG solution by
at least 1.14 and up to 2.3, which shows that ANN can effectively
speed up the pruning strategy without compromising the solution
quality. The speedup of at least 2 in some cases means that, for
some circuits, it is possible to evaluate two different maximum
displacement thresholds using ANN in the time that only one could
be evaluated with LEG.

6 CONCLUSIONS
In this work we evaluated how ML models can be used to improve
the predictability of legalization algorithms. We evaluated three
models, including one deep convolutional neural network. The best
model was integrated into a circuit partitioning strategy, to act
as a pruning mechanism to identify partitions that will result in
large displacement after legalization. This pruning strategy greatly
reduces the maximum displacement of the legalized solution, and
the ML model accelerates this process by avoiding up to 99% of the
calls to the legalization algorithm.

As future work, we intend to investigate the possibility of using
ML models not only to predict when a partition will violate a given
displacement threshold, but to estimate the resulting displacement
itself. This can be used to guide incremental placement algorithms,
by using the ML model to evaluate the quality of different optimiza-
tions (or different legalization algorithms), without requiring to call
the legalization algorithm.

7 ACKNOWLEDGMENTS
This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code
001 and by the Brazilian Council for Scientific and Technological

Development (CNPq) through Project Universal (457174/2014-5)
and PQ grants 310341/ 2015-9.

REFERENCES
[1] Ophidian: an open source library for physical design research and teaching.

https://gitlab.com/renan.o.netto/ophidian-research.
[2] W.-T. J. Chan, P.-H. Ho, A. B. Kahng, and P. Saxena. Routability optimization

for industrial designs at sub-14nm process nodes using machine learning. In
Proceedings of the 2017 ACM on International Symposium on Physical Design, pages
15–21. ACM, 2017.

[3] J. Chen, Z. Zhu, W. Zhu, and Y.-W. Chang. Toward optimal legalization for
mixed-cell-height circuit designs. In DAC, page 52. ACM, 2017.

[4] W.-K. Chow, C.-W. Pui, and E. F. Young. Legalization algorithm for multiple-row
height standard cell design. In DAC, pages 1–6. IEEE, 2016.

[5] N. K. Darav, I. Bustany, A. Kennings, and R. Mamidi. Iccad-2017 cad contest in
multi-deck standard cell legalization and benchmarks. In ICCAD, 2017.

[6] S. Fabre, J. L. Güntzel, L. L. Pilla, R. Netto, T. Fontana, and V. Livramento. En-
hancing multi-threaded legalization through kd tree circuit partitioning. In
Symposium on Integrated Circuits and Systems Design, 2018.

[7] S.-S. Han, A. B. Kahng, S. Nath, and A. S. Vydyanathan. A deep learning method-
ology to proliferate golden signoff timing. In Proceedings of the conference on
Design, Automation & Test in Europe, page 260. European Design and Automation
Association, 2014.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[9] J. Howard and R. Thomas. fast.ai - Making neural networks uncool again. http:
//www.fast.ai/, 2018. [Online; accessed 28-September-2018].

[10] C.-Y. Hung, P.-Y. Chou, andW.-K. Mak. Mixed-cell-height standard cell placement
legalization. In GLSVLSI, pages 149–154. ACM, 2017.

[11] A. B. Kahng, B. Lin, and S. Nath. High-dimensional metamodeling for prediction
of clock tree synthesis outcomes. In System Level Interconnect Prediction (SLIP),
2013 ACM/IEEE International Workshop on, pages 1–7. IEEE, 2013.

[12] Keras. Keras: The Python Deep Learning library. https://keras.io/, 2018. [Online;
accessed 28-September-2018].

[13] M. Kim, J. Hu, J. Li, and N. Viswanathan. ICCAD-2015 CAD contest in incremental
timing-driven placement and benchmark suite. 2015.

[14] Knime. Knime - open for innovation. https://www.knime.com/, 2018. [Online;
accessed 28-September-2018].

[15] H. Li, W.-K. Chow, G. Chen, E. F. Young, and B. Yu. Routability-driven and
fence-aware legalization for mixed-cell-height circuits. In Proceedings of the 55th
Annual Design Automation Conference, page 150. ACM, 2018.

[16] P. Spindler, U. Schlichtmann, and F. M. Johannes. Abacus: fast legalization of
standard cell circuits with minimal movement. In ISPD, pages 47–53. ACM, 2008.

[17] A. F. Tabrizi, L. Rakai, N. K. Darav, I. Bustany, L. Behjat, S. Xu, and A. Kennings.
A machine learning framework to identify detailed routing short violations from
a placed netlist. In 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2018.

[18] C.-H. Wang, Y.-Y. Wu, J. Chen, Y.-W. Chang, S.-Y. Kuo, W. Zhu, and G. Fan. An
effective legalization algorithm for mixed-cell-height standard cells. In ASP-DAC,
pages 450–455. IEEE, 2017.

[19] Q. Zhou, X. Wang, Z. Qi, Z. Chen, Q. Zhou, and Y. Cai. An accurate detailed
routing routability prediction model in placement. In Quality Electronic Design
(ASQED), 2015 6th Asia Symposium on, pages 119–122. IEEE, 2015.

8

https://gitlab.com/renan.o.netto/ophidian-research
http://www.fast.ai/
http://www.fast.ai/
https://keras.io/
https://www.knime.com/

	Abstract
	1 Introduction
	2 Related work
	3 Machine learning methodology
	3.1 Training data generation
	3.2 Feature selection

	4 Physical design integration
	5 Experimental results
	5.1 Experimental setup
	5.2 Evaluation of machine learning models
	5.3 Integration with circuit partitioning

	6 Conclusions
	7 ACKNOWLEDGMENTS
	References

