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1 Introduction

Inequalities for the logarithmic function are useful in all the areas of mathe-
matics. The most famous logarithmic inequality is without doubt the scholar

one:
log(14+2z) <z, x2>0.

It has a place of choice in terms of simplicity and enormous amount of ap-
plications. More complex but sharpest logarithmic inequalities are available
in the literature. Those list below are often considered in various situations:
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and

(x4 2)[(z+1)*—1]

log(1+2) < 3z+ D[z +1)2+1]

x = 0. (1.4)

Details can be found in [3] for (1.1), (1.2) and (1.3). See [1, page 1, only for
x > 1] for (1.4). Other sharp upper bounds defined as ratio of two polynomial
terms are presented in [3, Table 1]. Further developments can also be found
in [2].

In this paper, we present new sharp bounds for log(1 + ). We prove
that our upper bound is sharper than all the upper bounds presented above.
Moreover, it has the surprising feature to involve the arctan function, with
a relatively tractable expression. A graphical study supports the theoretical
findings. A lower bound is also proved for = € (—1,0), with discussion.

The rest of the paper is as follows. Section 2 is devoted to the main
results of the paper, the proofs are postponed in Section 3.

2 Results

The result below presents the new upper bound for log(1 + z) for x > 0.

Proposition 1. For any x > 0, we have
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log(l +2z) <
9 ) r+1

, (2.1)

where
flz) =7+ %(4 +m)x — 2(x + 2) arctan (\/a: 1) : (2.2)

The proof of Proposition 1 is based on an analytical study of the function
g(x) = f(x) — Vo + 1llog(x + 1), with the use of sharp lower bound of
log(z + 1) i. e. log(1 4+ x) > 2x/(2 + ) for z > 0.

Now we claim that the obtained upper bound f(z)/+/x + 1 is shaper to
those in (1.1), (1.2), (1.3) and (1.4). For a first approach, we illustrate this
claim graphically in Figure 1, where log(1 4+ =) and all the presented upper
bounds are depicted. At least for x large, we clearly see that the new upper
bound is the closest to log(1 4 x).

We now prove analytically that f(z)/+/x + 1 is the best in Lemmas 1, 2,
3 and 4 below. To facilitate the comparison in the proofs, we only use the
numerator f(x) of the bound.
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Figure 1: Graphs of the functions of the upper bounds (2.1), (1.1), (1.2) and
(1.3) for z € (0,13).

Lemma 1. Let f(x) be the function given by (2.2). Then, for any x > 0,
we have
flz) <.

It follows from Lemma 1 that f(z)/v/x + 1 is shaper than the one in
(1.2).

Lemma 2. Let f(x) be the function given by (2.2). Then, for any x > 0,

we have
(2 4 7)
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An immediate consequence of Lemma 2 is that f(z)/v/z + 1 is sharper
than the one in (1.1).
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Lemma 3. Let f(x) be the function given by (2.2). Then, for any x > 0,

we have
(6 +2)Vr+1
234 2x)

f(z) <

Thus, Lemma 3 shows that f(x)/v/x + 1 is better in comparison to (1.3).

Lemma 4. Let f(z) be the function given by (2.2). Then, for any z > 0,
we have

(@ +2)[(x +1)? — 1]
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Lemma 3 shows that f(x)/+/x + 1 is shaper than the one in (1.3).

Let us now present results on lower bounds for log(1+z). We first present
a reverse version of the inequality (2.1) for x € (—1,0).

Proposition 2. For any x € (—1,0), we have

log(1+x) >

where f(x) is defined by (2.2).

The proof of Proposition 2 is an adaptation of the proof of Proposition 1.

Again, we claim that the obtained lower bound is sharp. The following
result shows that the obtained lower bound, i.e. f(z)/+/x + 1, is shaper than
those in the following inequality (see, for instance, [3, Equation (4)]): for any

z € (—1,0), 2+)

=z —.
log(1+x) > 21+ 2)

Lemma 5. Let f(x) be the function given by (2.2). Then, for any x €
(—1,0), we have
(2 + x)

01+ z

The proof of Lemma 5 is an adaptation of the proof of Lemma 2.
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3 Proofs

Proof of Proposition 1. For z > 0, we consider the function g(z) given
by

g(z) = f(x) — Vo + 1llog(z + 1)
=7+ %(4 + m)x — 2(x + 2) arctan (\/x + 1) — vz + llog(x +1).

Then, by differentiation, we have

2 log(z + 1) T
"(x) = — — —2arct(m(\/as+1>—|—2+—
s W 2

and

(x 4+ 2)log(z + 1) — 2z
4(z 4+ 1)32(x + 2)

g"(x) =
Using the (nontrivial sharp) inequality log(1 + x) > 2x/(2 + z) for z > 0
(see [3, Equation (3)]), we arrive at ¢”(z) > 0. So ¢'(z) is increasing for
x 2 0 and ¢'(z) > ¢’(0) = 0. Therefore g(z) is increasing for x > 0 and
g(x) > g(0) = 0, ending the proof of Proposition 1. [J

Proof of Lemma 1. For z > 0, let us denote by h(x) the function given
by

hiz)=f(z)—z =7+ %(4—1— m)x — 2(x + 2) arctan (\/l’—l— 1) — .

Then, by differentiation, we have

1
h'(z) = V- 2arctan (\/x + 1) +1+ g

and, by another differentiation, we get

T
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Thus A"(z) < 0 for > 0. So K(x) is decreasing for x > 0 and h/(z) <
R'(0) = 0. Therefore h(zx) is decreasing for z > 0 and h(z) < h(0) = 0. The
proof of Lemma 1 is completed. [J



Proof of Lemma 2. For z > 0, let us consider the function k(z) given

by
_ r(2+2)
=r+ %(4 + m)x — 2(x + 2) arctan (\/1‘ 1) — ;1(\31—%92

Then, by differentiation, we have

K (x)=— (x;:;l(?)lx);/—;i) — 2arctan (\/ac + 1) + g +2

and, by another differentiation, we get

z(x +4)(3z +4)
8(x +1)%2(z +2)

E'(x) = —
Thus £"(z) < 0 for > 0. So k'(x) is decreasing for x > 0 and k'(z) <
k'(0) = 0. Therefore k(x) is decreasing for x > 0 and k(z) < k(0) = 0. This
ends the proof of Lemma 2. [J

Proof of Lemma 3. For x > 0, let us consider the function ¢(z) given

by
(6 +z)ve +1
te) = ()~ 2D
2(3+ 2x)
1 6 Vi 1
= 7+ S (44 )z - 2(e + 2) arctan (\/x 1) _ ;(L;l 2i)+ .
Then, by differentiation, we have
623 + 4722 + 1142 + 72 T
Oa) = — —2arctan (Vi 1) + 2 +2
(@) 4T + 123 + 3)2 e Ve 2
and
() = _x2(12x3 + 10822 + 239z + 144)

8(z + 1)32(z + 2)(2z + 3)°

Thus ¢"(z) < 0 for x > 0. So ¢'(z) is decreasing for x > 0 and ¢'(z) < ¢'(0) =
0. Therefore ¢(z) is decreasing for x > 0 and ¢(z) < ¢(0) = 0. This ends the
proof of Lemma 3. [J



Proof of Lemma 4. For x > 0, let us consider the function m(z) given

(z+2)[(x+1)* —1]

3vr + 1(z+1)2 +1]
=7+ %(4 + m)x — 2(x + 2) arctan (\/x + 1) —

m(x) = f(x) -

(z+2)[(z+1)3—1]
3Wr+1[(z+1)2+1]

Then, by differentiation, we have
3208 + 252° + 87z + 178x3 + 22222 + 1561 + 48
6(x + 1)3/2(22 + 2z + 2)?

— 2arctan (\/ac+ 1) + g + 2

and, by another differentiation, we get

23(32°% + 352° + 1712* + 4602° + 7002 + 564z + 188)

12(z + 1)%2(x + 2)(22 + 22 + 2)3
Thus m”(x) < 0 for x > 0. So m/(x) is decreasing for z > 0 and m/(z) <
m’(0) = 0. Therefore m(x) is decreasing for > 0 and m(z) < m(0) = 0
This ends the proof of Lemma 4. [J

m'(z) = —

m"(z) = —

Proof of Proposition 2. The first part of the proof is identical to
the one of Proposition 1. For z € (—1,0), we consider again the function
g(x) = f(x) — Va + Llog(x 4+ 1). Then recall that

2 log(z + 1) T
(z) = — - — 2aret (\/ +1)+2+—
g(@) V+1l  2yr+1 e Ve 2

and
vy (@+2)log(x +1) -2z
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Using the upper bound log(1+z) < 2x/(2+z) for x € (—1,0) (see [3, Equa-
tion (4)]), we arrive at ¢”(x) < 0. So ¢'(z) is decreasing for = € (—1,0)
and ¢'(x) > ¢'(0) = 0. Therefore g(x) is increasing for x € (—1,0) and
g(x) < g(0) = 0. The proof of Proposition 2 is completed. [

Proof of Lemma 5. The proof follows the lines of Lemma 2. For x > 0,
let us consider the function k(z) = f(x) — x(2 + x)/(2v/1 + x). Then recall
that

K(x)=— (x4—tx2?|-<31x)3—/1—24) — 2arctan (\/:c + 1) + g +2



and

z(x +4)(3z +4)
8(x +1)%2(z +2)

k”(ﬂi) —

Thus £"(x) > 0 for x € (—1,0). So k'(x) is increasing for x € (—1,0)
and k'(z) < k'(0) = 0. Therefore k(z) is decreasing for z € (—1,0) and
k(x) = k(0) = 0. This ends the proof of Lemma 5. [J

Concluding Remarks: In this paper, we proposed the function f(z)/vx + 1
as upper and lower bound for log(1 + x) according as > 0 and = € (—1,0).
We proved analytically that it is better to some existing sharp bounds in the
literature. A graphical study of the upper bound supports the theory.
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