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Abstract

We analyze a product pricing problem with single-minded customers, each interested in buying a
bundle of products. The objective is to maximize the total revenue and we assume that supply is
unlimited for all products. We contribute to a missing piece of literature by giving some mathematical
formulations for this single-minded bundle pricing problem. We first present a mixed-integer nonlinear
program with bilinear terms in the objective function and the constraints. By applying classical
linearization techniques, we obtain two different mixed-integer linear programs. We then study the
polyhedral structure of the linear formulations and obtain valid inequalities based on an RLT-like
framework. We develop a Benders decomposition to project strong cuts from the tightest model onto
the lighter models. We conclude this work with extensive numerical experiments to assess the quality
of the mixed-integer linear formulations, as well as the performance of the cutting plane algorithms
and the impact of the preprocessing on computation times.

Keywords: Pricing Problems, Integer Programming Formulations, Benders Decomposition

1 Introduction.

In this article we analyze a problem in product pricing under a model of single-minded customer behavior,
determined by a bundle and a budget. A bundle is a subset of products, that a given customer wants to
purchase, and he is willing to pay at most his budget. The single-mindedness of the client translates into
him purchasing his bundle if and only if the corresponding total price does not exceeds his budget. The
objective is to maximize the total revenue, assuming unlimited supply. This problem is known under
Single-Minded Bundle Pricing Problem (SMBPP).

The SMBPP is a particular problem from the field of product pricing. We consider a reservation price
customer behavior given by the budget, as opposed to a multinomial-logit approach that is often found in
the revenue management literature [1, 9, 15]. However, there is a link between both models exhibited
in [13]. Furthermore, [18] gives an overview of different client behavior models.

Under the model of reservation price, clients behavior is determined by the optimization of a certain
utility function. In [17], maximum and minimum utility functions, as well as a maximum rank utility
function, are introduced. In the SMBPP, clients can be seen to maximize their utility defined by the
difference of their budget minus their bundle price.

When supplies are limited, the notion of envy-free assignment is discussed in [8]. Since we assume
unlimited supply, every assignment is automatically envy-free. In the PhD thesis of [12] several other
aspects of product pricing problems are discussed.

The SMBPP is the problem of pricing individual products statically when customers have a budget
and request a single subset of products. A similar problem is considered in [6], where prices are fixed for



subsets of products, instead of individual products. They show that under the assumptions of unlimited
supply, this problem can be solved in polynomial time. On the other hand, [7] show that the SMBPP is
NP-hard, even when bundles have size 2. The authors devise a PTAS from their analysis for some special
cases. It is also shown that the SMBPP is APX-hard in [8] and a 4-approximation algorithm is given
in [2]. Further research was done on the hardness of approximation in [10] improving the best-known
approximation bounds. To the best of our knowledge, most of the literature on the SMBPP is concerned
with complexity and approximation results, see also for instance [4, 12]. This justifies our choice of
contributing to a missing piece of literature by formulating the problem as a mixed-integer linear program
(MILP).

Other problems that have attracted great interest in the literature and that share a similar combinatorial
structure with the SMBPP are combinatorial auctions. Consider [11] and the references therein. Bidders
request a bundle of products and their bids are the maximum price they are willing to pay. The goal of
the auctioneer is however not to price his goods, but rather to determine an envy-free assignment of a
limited supply to bidders in order to maximize his revenue.

The contributions of this work include the introduction of mathematical models for the SMBPP.
In particular, we propose mixed-integer nonlinear and linear formulations. In order to get stronger
formulations, valid inequalities and a polyhedral study are presented. Also, a Benders reformulation is
presented in order to increase the scalability of our formulations.

The structure of the paper is as follows. The problem statement and notation is introduced in
Section 2. In Section 3, we introduce basic notations and give new mixed-integer nonlinear programming
(MINLP) and MILP formulations for the SMBPP. In Section 4, we discuss polyhedral properties of the
MILP formulations. Furthermore, based on an RLT-like approach, we obtain valid inequalities that lead
to a new tighter MILP formulation. Section 5 presents a Benders reformulation of the tightest MILP
formulation. We then discuss stabilization methods in order to accelerate the cutting plane generation
procedure. In Section 6, we present preprocessing methods to decrease the size of the problem. Section 7
summarizes the main computational results obtained. Finally, we present our conclusions and discuss
future work in Section 8.

2 Problem statement.

Let N ={1,...,n} be a set of products with unlimited supply and let M = {1,...,m} be a set of clients.

We consider a reservation price model with single-minded customers, i.e., each client j € M is entirely
represented by a bundle S7 C N and a budget b/ > 0. The problem information can thus be encoded in a
0-1-matrix S = [Sg]iEN,jEJW where

g 1, if product i € S7,
! 0, otherwise,

and a vector of positive budgets b. A single-minded client purchases his bundle whenever its total price is
inferior to his budget. The total price of a bundle is given by the sum of the prices for the products that
constitute it.

The single-minded bundle pricing problem (SMBPP) consists of determining prices p; > 0 for each
product ¢ € N, in order to maximize the total revenue obtained by selling bundles to clients. The total

bundle price is denoted by
p(S7) =" pi-

€57
A client purchases his bundle if and only if the total price for the bundle is less than his budget, so when
p(S7) < b7. The SBMPP which maximizes the total revenue is

r;lzaa( Z Revenue;(p)
JjEM
where Revenue;(p), is the revenue obtained from client j € M, which takes value p(S7) if p(S7) < b/ and
0 otherwise.



Figure 1: Illustration of bundles.

Example 1. Take for instance the following input data

SZE : ﬂ b=(2 3 4)

We then need to solve the SMBPP with two products N = {1,2} and three clients M = {1, 2, 3}.
Furthermore, the bundles can be represented as in Figure 1. A first client desires to purchase both
products and is willing to pay at most 2 price units in total. A second client seeks to purchase product 1
for at most 3 price units, whereas the third client requests product 2 at a budget of 4. For instance, the
single-mindedness of the first client implies that he decides to purchase his bundle, when its total price
p(S1) = p; + po is at most 2. If however, the price of his bundle exceeds his budget, he does not purchase
it.

The optimal solution is obtained by setting p; = 3 and py = 4. Then, client 1 does not purchase, and
clients 2 and 3 purchase, resulting in a total profit of 7.

3 Formulations.

In this section, we first derive a mixed-integer nonlinear program (MINLP) formulation for the SMBPP
involving products of price variables and buying decision variables. Next, we show how price variables
can be bounded and how to linearize the nonlinear terms. We then give two differ- ent mixed-integer
linear program (MILP) formulations obtained by applying linearization in two different ways.

3.1 MINLP formulation.

We start by giving a MINLP formulation that is directly derived from the problem description. We
introduce binary variables z; € {0,1} for every client’s purchase decision, i.e. z; = 1 if and only if
customer j € M purchases his bundle S7.

max Z p(S7)z; (1a)

PiyTj ;
jeEM
s.t. z;(p(S7) —b7) <0, JjEeM, 1b
(1—=;)(p(57) =) > 0, jEM, lc

)
)
Di 2 07 { S Na )
z; €{0,1}, je M. )
Constraints (1b) ensure that if the total bundle price is greater than the budget, p(S’j) > b7, then
client j € M cannot purchase, z; = 0. Conversely, Constraints (1c) ensure that z; = 1 if the price is
lower than the budget. Finally, we maximize the total profit given by .., p(57)z;.
We would like to conclude this subsection by some remarks:
First, by optimality, Constraints (1c) are always satisfied, because as soon as p(S%) < b7, it is profitable
toset z; = 1. Our goal is to solve the SMBPP to optimality, we will thus often use the following formulation



(NLM) max Z p(S7)x; (2a)

o
o JEM

st. (1b),(1d), (Le).

In a feasible solution of this formulation, a client is not forced to purchase his bundle when p (Sj) < bl
Nonetheless, an optimal solution of the relaxed formulation has the same value as an optimal solution of
the complete formulation.

Second, again by optimality, variables z; always take a binary value even when (NLM) is solved
over [0, 1].

Third, the objective function and constraints of (NLM) are bilinear non-convex. Finally, the problem
is always bounded since the maximum revenue cannot be larger than > jeM b. Furthermore, the revenue

corresponding to an optimal solution is at least max;ecas b,

3.2 Implicit upper bound on prices.

To linearize terms that are product of continuous variables p; and binary variables z;, we first need an
upper bound on the price variables.

Let us denote by U(p;) the upper bound on variable p; for ¢ € N. Even though, prices p; are not
bounded a priori, it is not hard to observe that we can set

i) = ) i,
Ulp:) i= max{b/ s € 57)

If we fix p; > U(p;), any client 5 € M with bundle S7 > i cannot purchase. Hence, product i is never
bought. This implies that p; < U(p;) in any optimal solution. We give an example to convince the reader
that these bounds are tight in general.

Example 2. Consider the instance of 1 product and 2 clients given by the following input:
S:[l 1] b:(l 10)

Both clients want to purchase the same product but with different budgets. It is straightforward to see
that an optimal solution yields a revenue of 10 and is obtained by setting p = 10 = U(p), so that z; =0
and zo = 1.

For a subset of products S C N, denote by U(S) the upper bound on the total price p(S):=> ;¢ pi
of the subset S. As a natural extension, we define U(S) := > ;g U(ps)-

3.3 Aggregated and disaggregated MILP formulations.

In a first attempt, we linearize the objective function and the constraints of (NLM) by replacing the
products of total bundle price and buying decision using the classical techniques of [14]. To that end,
we introduce new variables r; := p(S7)z; for all j € M and obtain a first MILP formulation direct from
(NLM),

(LM max > 7 (3a)
jeEM
s.t. (1d), (1e),
r; <blaj, jEM, (3b)
r; < p($7), jeM, (3c)
r; > p(S9) —U(S)(1 —x;), jeM, (3d)
r; >0, jeM. (3e)

Constraints (3b) are the linear version of Constraints (1b). We can omit the additional McCormick
inequalities r; < U(S?)z;, which are dominated by (3b).



After this linearization step, the new variables r; :=p (Sj ) x;j can be interpreted as Revenue;(p), for
client j € M. Furthermore, r; represents an aggregate of products p;x; for all 7 € S/, hence the name of
aggregated model.

In a second attempt, we can be more precise in our linearization of (NLM) and replace the products
pix; for any i € S and j € M. Therefore, we introduce variables

Sij = Di%j jEM,iGSj. (4)

We obtain a disaggregated formulation as opposed to aggregated formulation (LMjy).

(LM3)  max Z Z 5ij (5a)

DisTj,Sij

JEM i€Si
s.t. (1d), (Le),
> sij < by, jeM, (5b)
€57
sij < Di, i€SijeM, (5¢)
si; >pi —Ulp)(1—x;), i€8,j€M, (5d)
sij 2 0, i€Si jeM. (5e)

We only point out that for j € M and i € S7, Constraints (5b) imply that s;; < b/z; and hence,
si; < U(p;)z; are redundant by definition of U (p;).

4 Polyhedral properties and a new formulation.

In this section, we study the polyhedral properties of (LM;) and (LMs). We then discuss families of valid
inequalities and finally present a stronger formulation for the SBMPP.

4.1 Polyhedral study.

Let us first introduce some notation. Denote by v(-) the optimal value of a given problem. We also
denote (LM;) the linear relaxation of model (LM;), ¢ = 1,2. We first establish how formulations (LM;)
and (LMs) are related through the following proposition:

Proposition 3. The following inequality holds:
’U(LMl) S ’U(LMl)

Proof. Proof:
Let (p,z,s) be a feasible solution to LMy. Then define r; satisfying

T = Zsi]‘ jEM. (6)

€87

It is easy to verify that (p,x,r) is feasible for LM; with the same objective value. (]

We give an example to show that we can find v(LM3) < v(LM;):

Example 4. Consider an instance of 2 products and 2 clients given by

S:E (1)] b= (10 20).

The optimal solution of (LM;) is obtained by setting z = (3,1) and p = (20,0) yielding a revenue of
v(LM;) = 25. The optimal value of (LMy) is v(LM;) = 20. The optimal prices are the same, but the
fractional optimal solution of (LM;j) is cut off by constraints s11 > p1 —20(1 — 1), s1,1 + s1,2 < 1021
and the fact that s 2 > 0.



We are also interested in the structure of the convex hull of mixed-integer feasible solutions. We denote
it by PI(LM;) (respectively P!(LM;)) the convex hull of mixed integer solutions to LM; (respectively
LMs). A detailed polyhedral study is given in [16]. The author has shown the following proposition:

Proposition 5. P/(LM;) and P!(LMy) are full dimension in their relative space. Further, Constraints
(5b), (5¢), (5d), and (5e) induce facets of P{(LMy).

4.2 Valid inequalities and a new formulation.

The different formulations we have obtained so far are all based on linearizations of our first MINLP
model (NLM). The definition of U(p;) implies that the relaxations become weaker when products appear
in more bundles. Furthermore, the structure of (NLM) does not link the binary buying decisions of clients
j,k € M explicitly, but there is an implicit link through the prices p; for i € S7 N S*. We intend to create
an explicit link using RLT-like valid inequalities:

(p(S*) —b*) (2 + 2, —1) <0 jokeM, j#k (7)
(p(S*) = b") (@ —2;) <0 jokeM, j#k (8)

Proposition 6. Expressions (7) and (8) are valid inequalities.

Proof. Proof: Consider two clients j, k € M, with j £ k. For client k, we multiply the corresponding
Constraint (1b) by —z; < 0 and Constraint (1c) by 1 —z; > 0.

(p(S*) = b*) (2 — wpaj) <0
—(p(S*) = ") (xj — mp;) <O
Summing up the resulting valid inequalities, we obtain Constraint (8) corresponding to clients j and k.

Constraint (8) is obtained similarly, by multiplying Constraint (1b) by —(1 —z;) < 0 and Constraint (1c)
by z; > 0. O O

To take advantage of this explicit link, let us extend the definition (4) of variables s;; toalli € N, j € M.
With these additional variables s;x, i ¢ S*, we can then linearize Constraints (7) and (8). This leads to
the following formulation:

(LM3) max Z Z Sij (9a)

PisTj,S8ij

JEM ieSi
s.t. (1d), (1e), (5b),
sij < pi, 1e€N,jeM, (9b)
si; < U(pi)zj, i€ N,jeM, (9¢)
sij = pi —U(pi)(1 —zj), 1€N,j€M, (9d)
> (sik+sig—pi) <V (ap+a;—1), G keMj#k, (9e)
ieSk
D (sin = 5i5) < V(g — ), gk €M,j#Fk, (9f)
€Sk
si; >0, 1e€N,jeM. (9g)

This model is clearly an extension of (LMy). The following proposition states that Constraints (9c)
can be omitted, even for i ¢ S7.

Proposition 7. Constraints (9¢) are redundant in (LM3s).

Proof. Proof: In Section 3, we already observed that s;; < U(p;)x; is redundant for i € SJ. Further, for
every optimal solution of (LM3) with s;; > U(p;)x;, for i ¢ S7, we can build a new feasible solution with
the same objective function value by setting s;; = U(p;)x; for those variables.



For a client jo and a product ip such that ig ¢ S%, if s;,;, > U(pi,)zj,, we build a new solution
with 8, = U(pi,)xj,. We show that this new solution is feasible. First, given that this new solution
decreases the LHS of (9b) and (9¢), they are satisfied. Given that §;,;, = U(pi,) > pi, when z;, =1 and
Sivjo = 0 > piy — U(pi,) when zj, = 0, Constraints (9d) are also satisfied. For a fixed client k € M, if
io & S*, Constraint (9f) is trivially satisfied. Otherwise, 3;,;, satisfies

~ k k k
Sigjo = b xjy = b @, — E Sik — b @p | — E Sijo »
i€Sk i€Sk\{io}

where the first inequality comes from the fact that b* < U(p;,) when ig € S* and the second inequality is
derived by (5b) and s;; > 0. Then, Constraint (9f) is also satisfied. Finally, since ig ¢ S7°, the objective
function does not change and the result follows. [J O

The new variables s;; for i ¢ S allow to create a relation to a client k for whom i € S* by means
of Constraints (9¢) and (9f). We have therefore managed to model an explicit link between clients and
the intersection of their bundle. However, (LM3) contains O(NM) variables and O(M?) constraints, as
opposed to the O(N + M) variables and O(M) constraints of (LM ).

5 Benders decomposition.

In this section, we first present a Benders reformulation for (LMjz). We then give a cutting plane algorithm
and discuss stabilization methods to accelerate its performance.

5.1 Reformulating (LMj;).

As a first step, we rewrite (LM3) by introducing variables r; := ), _g; si; for all j € M. The objective
function of (LM3) can then be rewritten as max ) ..,,r;. For fixed x,p and r, it remains to solve a
feasibility problem given by Constraints (6), (9b), (9d), (9¢) and (9f) in the variables s;;, which can be
decomposed by clients j € M. We name this problem (SP;).

The dual of this sub-problem for client j, which determines the most violated cut, is given by

(DSP;)  min ajr; + Z o pi — Z af;lpi — U(pi) (1 — ;)]

iEN iEN
— Z a?k [Tk - bk(xk — :cj)]
kEM: k#j
+ Z a?k (g +a; — 1) + Zpi—rk (10)
keM: k#j icSk
st.af+afj—al;— Y ali+ Y af;>0 ies (11)
keEM: k#j keEM: k#j
ieS* ics*
a}j — a?j — Z ozij + Z ozéj >0 i¢ S (12)
kEM: k#j kEM: k#j
ies*k iesk
a? € R, a},a?,a;’,a‘l >0, (13)

where a9, o, a?,a% and of are the dual variables associated with Constraints (6), (9b), (9d), (9e) and
(9f), respectively.

The master problem of the Benders reformulation is



(MP) max Z Tj

jeM
Ty < ij?j .7 eM
ajry + Z aypi — Z alpi — U(pi) (1 — z)] (14)
i€N ieN
— > bl — ek — )]
keM: k#j
+ Z ozﬁj V(g + 2y — 1) + Z pi—rKE| >0 a; extreme ray of QP (15)
keEM: k#j €Sk
piZO,TjZO,ij{O,l} 1€EN,jeM

Constraints (15) can be generated using the classical Benders approach. We denote (RMP) to the
relaxed master problem which includes only some of Constraints (15). In a regular iteration, the algorithm
solves the master problem with some feasibility cuts retrieving optimal values z, p, and r. The optimal
value v(RMP) of the problem at every iteration is an upper bound for the original problem. The optimal
solution is introduced in each (DSP;). Each of these problems are upper bounded by 0 (o = 0 is always a
feasible solution). In consequence, for each problem (DSP;) there is either an optimal solution with value
0 or it admits an extreme ray which makes the problem unbounded.

As a consequence, there are no optimality cuts. The procedure will stop if at any iteration, all the
problems (DSP;) have optimal value 0. In that case, the last values of x,p and r are optimal. This
procedure is summarized in Algorithm 1.

Algorithm 1 Benders decomposition algorithm for (LM3)
Require: N, M,S,b
UB :=+x
Set convergence = False
while not convergence do
Solve (RMP) retrieving x, p and r.
Update upper bound with v(RMP).
Set convergence = True
for j € M do
Solve (DSP;)
if (DSP;) is unbounded then
Add feasibility cut to (RMP)
Set convergence = False
end if
end for
end while
return z,p,v(RMP)

We use this general scheme to solve the (LM3) to optimality or solving just its LP relaxation, at
the root node of the Branch-and-Bound algorithm. Furthermore, we use this algorithm to improve
weaker formulations. In particular, given that (LM;) is the fastest formulation, with weak LP bound—see
computational results in Section 7.2—we can use the cuts generated by applying the Benders decomposition
to the strongest formulation (LM3) and strengthen the LP bound of (LM;).

5.2 Stabilization methods.

In general, cutting plane algorithms can perform very poorly, mainly, due to two reasons. First, the upper
bound, i.e., the optimal value of the current relaxation, can decrease very slowly. Second, even when the
optimal value is reached the algorithm may continue generating cuts to obtain an optimality certificate.



Benders decomposition is not an exception to these problems. In this section, we compare and analyze
two methods: the first one, In-Out stabilization, was proposed by [3]; the second one, equivalent to a
facet separation, was proposed by [5], we name it (CW). In both methods, the separation point used to
generate a new cut lies in the segment linking a point in the relative interior of the feasible domain of
(MP) and the optimal point of the current relaxation. The main goal is to decrease the number of cuts
generated, by obtaining fewer but tighter cuts.

The interior point, denoted by (z", p'™, "), can be computed as an interior point of the feasible
region of (LM3) and projected into (MP). In algorithm In-Out, the point used in each cut generation
LP is a convex combination of the interior point (2", p"™, r") and the optimal solution of the relaxed
master problem, denoted by (x°%t, p°¥t rout). Let Az = x°%* — 2" and define Ap and Ar, analogously.
For fixed A € (0, 1], the separation point used in each sub-problem is then given by (z°¢P, p¢P rseP) =
(™, pi™ i) + XAz, Ap, Ar).

There are two possible outcomes. Either the separation point is feasible, in that case the interior point
is updated, or it is infeasible and a new cut is generated. The method is outlined in Algorithm 2.

Algorithm 2 In-Out stabilization for Benders decomposition
Require: N, M, S,b and ) € (0,1].
UB :=+x
Compute an interior point (2, p™™, ri").
Set convergence = False
while not convergence do
Solve (RMP) retrieving x4, pout, rout,
Update upper bound with v(RM P).
Compute (:Csep7psep7 ,r,sep) — (I,in’pin7 Tz’n) + 5\[(:Cout7pout7 ,r.out) _ (min7pin, rln)]
for j € M do
Solve (DSP;) using (7, p**P,r**P) as a separation point.
if (DSP;) is unbounded. then
Add feasibility cut to (RMP)
end if
end for
if There is no cuts to add then
Update the interior point (zi", pi" ri*) = (5P pseP rsep)
Optional: Check feasibility of (x°ut, pout, rout)
end if
i Y a7 = e T <€) ep Ty then
convergence = True
end if
end while
return (2, p™, r™") and v(RMP)

In the methodology proposed by [5], the algorithm determines the largest value of A such that
(w5eP pseP pSeP) = (' p™ ri") + X\(Az, Ap, Ar) is feasible for (SP;). With probability 1, this cut defines
a facet of the convex hull of feasible solutions for LM3. The sub-problem for a client j € M is stated as
follows:



(SP-CW;) max A

Z Sij fr "+ AAT;

i€8i

sij < pi" 4+ Mp;

sij > pi" — U(pi)(1 — &) + A(Ap; — U(pi)Ax;)

Z si; > it — b (xim — x;") + AArg — b (Azy — Axy)]

€Sk
Zsijgbk(xé»”—&—x}; - 1)+ Zp + AF(Azy, + Az))
€Sk ieSk
+ > Ap; — Ary]
€Sk
0<A<1
Sij 2 0

Its dual is:

(DSP-CW,) mln aorm + Z al in Z ozf [pi” —U(p)(1— a:é")]

i€EN iEN

— Z ay [rk’ — bk (zim — xé“)]

keM: k#j

D DA LG e VRN B e

keEM: k#j €Sk

st. a® +al —af - Z oy + Z ap >0

kEM: k#j keM: k#j
ieSk ieS*

al —a? - Z g+ Z ap >0

keM: k#j keM: k#j
iesk iesk

—a®Ar; =Y ol Api+ Y a?[Ap; + U(pi) Azl +
1€EN 1EN
> ai[Ar — V(A — Axj)]
k#j
= albt(Azp + b Az + Y Apy— Arg]+ 8> 1
k#j ieSk
a’ e R,at,a?, 0,0, 8> 0,

Given that (SP-CWj) is always feasible (A = 0 is feasible) and its optimal value bounded by 1, both
Q; and (DSP-CW) has always finite optimal solutions. If A = 1, then (z°“!, p°“* r°ut) is feasible. Cuts
are added whenever the optimal value of (DSP-CW)) is strictly smaller than 1. The new cut has the
same form as in (15).

5.3 Preliminary comparison of In-Out and CW.

10

1€N
1€N
ke M, k#j

ke M, k#j

1€N

ie S’

ig¢ S

We tested the behavior in solving the LP relaxation of (LM3) on a small instance with n = 20 and
m = 40. We compare the traditional Benders decomposition, the In-Out stabilization with parameter
A € {0.25, 0.5, 0.75} and the CW procedure. We fix a limit of 100 iterations, that is, the relaxed master
problem is solved at most 100 times. To obtain a point in the relative interior, we use the barrier algorithm



implemented in CPLEX 12.8 without crossover applied to LMj3 and project the point into (MP) by setting
Tj =Y ;cgs Sij for every client j € M.

Given that this problem only has feasibility cuts, only the upper bound is updated. Figure 2 shows
the behavior of the upper bound through the iterations. CW is the procedure that takes fewer iterations
to obtain the optimal solution. The main drawback of the In-Out stabilization is that it takes a lot of
time to certify the optimality. To improve on this aspect, we add a step to check if the outer point is
feasible (step 3 of Algorithm 2).

Objective Function through the iterations
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Figure 2: Upper bound through the iterations.

Table 5.3 shows the number of cuts added, the iteration number and the solution time. Clearly, the
CW procedure outperforms all other methods.

Traditional In Out 0.25 In Out 0.5 In Out 0.75 CW

Cuts added 1691 2049 1176 969 526
Iterations 53 90 54 51 30

Solution Time [ 136.00 225.20 109.83 103.58 54.27

Table 1: Some statistics of the example.

A more complete comparison of In-Out and CW is presented in Section 7.3.

6 Preprocessing.

In this section, we describe some methods that exploit the combinatorial structure of the SMBPP in
order to decrease the problem size.

6.1 Connected components and merging.

We build an undirected graph G where the set of nodes are the clients and there exists an edge between
clients j and k if their bundles have products in common, i.e., S N S*¥ # (). This graph can be built
in O(NM?) operations. If the graph has more than one connected component, we can decompose the
problem. It is not hard to observe that prices and buying decisions corresponding to products and clients
in different connected components are independent. Connected components can be computed in linear
time in a straightforward way using either breadth-first search or depth-first search.
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This decomposition also induces a partition in the products as is shown in the following example:

el

S:

OO =
= = O

0 1
0 0] b=(10 50 20 15).
10

The induced graph is shown in Figure 3. The SMBPP for this instance can be solved by splitting
the problem into two sub-problems: The first considering clients 1 and 4 and product 1, and the second
considering clients 2 and 3, and products 2 and 3.

1 4
@ 1esS' NS @

2,3¢€8%2n53
©, ©

Figure 3: Induced graph in the example.

Also, the set of products can be reduced in the following way. Suppose that a subset of products
N C N appear only together in client bundles. Then those products can be considered as a single product,
with pg := > ;.5 pi- For example, in the following instance, matrix S indicates that products 2 and
3 appear together in bundles of clients 1 and 2, then they can be treated as one single product. The
resulting matrix S’ has one row less.

O R = O
O~ ~ O
= O O =
_ o o
S o o=

6.2 Fixing rich clients buying decisions.

Suppose there is one client with a large budget. Then it is reasonable to think that he will be able to buy
his bundle in any optimal solution. The following proposition states one condition on the budgets to
know a priori if a client with high budget is going to buy his bundle.

Proposition 8. If client j € M satisfies ZkeM\{j}:San#@ bk < b7, then z; = 1 in any optimal solution.

Proof. Proof: Suppose there exists an optimal solution x with z; = 0. If for all £ such that SkNSI £
x), = 0 then by setting z; = 1 and p; = b’ a higher value solution is reached and z is not optimal. Let K
be the set of clients k such that S* N S7 # () and xj, = 1. That means that b* > 3. . p; for all k € K.
Analogously, define K as the set of clients k such that S¥ N S7 # () and x5, = 0. Note that Ky # () under
the assumption z; = 0. Then,

j k
DD DI I DI =D DI
keK1 keK, ieSk 1€Ukek, Sk i1€Uke K, SFNSI

Then by setting z; = 1, p; = 0 for products i ¢ Uker, S¥ NS/ and keeping the other prices the
solution obtained is feasible and has a higher revenue, the result follows. O O

We call clients satisfying this condition relatively rich clients. As a consequence, when considering
Constraints (1c) for relatively rich clients, we observe that z; = 1 is an implicit equality.

12



Now for each relatively rich client, we can replace the binary variables representing its purchase
decision by constraints that only enforce prices to satisfy their budgets. Let M be the set of relatively
rich clients. For those clients, r; = ), g, p; and s;; = p;, then we can rewrite (LM;):

(LM, — M) maXer-i-Z Zpi

J¢EM jEM €SI
s.t. rjgbjxj 3¢M
Z pi <V jeM
€59
rp <Y pi j¢M
1€S59
rp> > pi—U(S)(1 - ) j¢M
i€87
rj >0 Vi ¢ M
p; >0 Vie N
z; €{0,1} jéM

We can also reformulate (LM3) but for the sake of shortness we describe this reformulation in
Appendix A.

7 Computational Results.

In this section, we report the computational results of the models and algorithms proposed in this paper.
All experiments have been carried out using CPLEX 12.8 and Python 3.5, in a single thread on a server
with a 3.40Ghz Intel i7 processor and 64 GB of memory.

7.1 Instances.

A SMBPP instance consists of the number n of products and m clients. Each client is encoded by a
positive real representing his budget and a subset of products representing his bundle. One aspect that
seems to play an important role in solution times is the density of the matrix S. This density is defined by

Dien EjeM S?

nm

d= (16)

The size of LMs, in terms of the number of constraints and variables, depends on the size of this
parameter. On the other hand, the size of LM; and LM3 do not depend on d. The sizes of the different
formulations are summarized in Table 2.

Formulation Variables Constraints
LM, n 4+ 2m 3m
LM, n+m+ dnm m + 2dnm
LMj; n+m+nm | m+3nm+ 2m(m — 1)

Table 2: Number of variables and constraints for each formulation.

In order to test the methods described in this paper, we generate three types of instances.

e Small instances: We generate instances for n € {10,25,50} number of products, m €
{10, 25, 50,100, 150} number of clients, and d € {0.2,0.5,0.8} density of matrix S. For every
size and density, we generate 10 instances. Each instance was generated using Algorithm 3. We
denote this family by Small(n,m,d). These instances are used to test the performance of (LMy),
(LMQ) and (LM3)

13



e Big instances: Instances generated for n € {100,500} products, and m € {150, 200,300} clients. For
every size, we generate 10 instances. We denote this family by Big(n, m). These instances are used
to test the performance of the Branch-and-Cut and Cut-and-Branch algorithms. Instances were
generated again by Algorithm 3 using d = 0.5.

e Rich-poor instances: Instances generated with a fixed number m; € {25,50} of relatively rich clients
and mg € {25,50} other clients. The set of products was fixed to be of size n = 200. We denote
these instances by RP(n,mi,ms). For every size, we generate 10 instances. The procedure to
generate these instances is stated in Algorithm 4 in Appendix B.

Algorithm 3 Generate instances by density
Require: m,n € Z,,d € (0,1)
Step 1: Create set of clients M = {1,...,m} and products N = {1,...,n}.
Step 2: Create Budgets. For j € {1,...,m} b; = U(1,1000) .
Step 3: For each i € N and j € M set Sf = 1 with probability d.
Step 4: For each client with empty bundle, or each product not appearing in any bundle, sample 1
product and client respectively and set S7 = 1.
return N, M,S,;b with S with density approximately d.

7.2 Performance of (LM,;), (LM,) and (LMj;).

For instances in Small(n, m,d), we compute the optimal solutions, the solution time, the LP gap if
optimality is reached, and the number of nodes explored in the Branch-and-Bound algorithm. We set the
time limit to 1 hour.

Amongst the 450 instances in Small(n,m,d), (LM;) can solve 85.33% of the instances, while (LMs)
and (LM3) solve only 74.67% and 74.44% respectively, within the time limit. In Figure 4, we present the
performance profiles for these instances.
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Figure 4: Performance profile for (LM;), (LMz) and (LMj) for instances Small(n, m) within a time limit

of one hour.
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Model (LMy) is the most efficient formulation in terms of solution time despite the fact that (LM, ) has
the weakest linear relaxation. One interesting result is despite the theoretical result in Proposition 3, the
improvement in terms of LP gap of (LMs) is insignificant. However, the bound of (LM3) is significantly
tighter. The efficiency of (LM;) came from the small amount of time required to solve its linear relaxation,
which counteracts its weak linear relaxation and the large amount of nodes to explore to get an optimal
solution.

Table 3 shows the percentage of instances solved by each model. Our results show that the most
difficult instances are the ones with medium density d = 0.5. They also show that LM; and LMj3 perform
very well for instances with high density, and LMy performs better for instances with the matrix S with
low density.

% solved
Model / d | 0.2 0.5 0.8 | Aggregated
LM; 82.00 80.67 93.33 85.33
LM, 78.00 70.67 75.33 74.67
LM3 74.00 70.00 79.33 74.44

Table 3: Instances solved for LMy, LMy and LM3 within a time limit of 1 hour.

Table 4 shows the same information disaggregated by instance size. LM is the only formulation that
can solve instances with 150 clients and 10 products to optimality within the time limit. LMy and LMj3
are not able to solve any instance with 150 clients. All instances with n < 50 and m < 50 can be solved
by the three formulations. We show the LP gap and solution time for those instances in Tables 5 and 6.
The three formulations have a bigger LP gap as d increases. However, it does not have a proportional
impact on solution times. It seems that the hardest instances are the ones that have medium density
d = 0.5,

d=0.2 d=0.5 d=0.38

n m LMl LM2 LM3 LM1 LM2 LM3 LM1 LM2 LM3
10 10 10 10 10 10 10 10 10 10
25 10 10 10 10 10 10 10 10 10
10 | 50 10 10 10 10 10 10 10 10 10
100 | 10 10 10 10 10 10 10 10 10
150 | 10 10 10 10 6 ) 10 8 10
10 10 10 10 10 10 10 10 10 10
25 10 10 10 10 10 10 10 10 10
25 | 50 10 10 10 10 10 10 10 10 10
100 | 10 7 1 10 0 0 10 5 9
150 0 0 0 0 0 0 10 0 0
10 10 10 10 10 10 10 10 10 10
25 10 10 10 10 10 10 10 10 10
o0 | 50 10 10 10 10 10 10 10 10 10
100 3 0 0 1 0 0 10 0 0
150 0 0 0 0 0 0 0 0 0

Table 4: Number of instances over 10 solved with LM, LMy and LMj3 within a time limit of 1 hour
dissagregated.

7.3 Benders Decomposition Performance.

We run a second set of experiments to analyze the behavior of the stabilization methods for the Benders
decomposition. For each instance in Small(n,m, d), we solve the linear relaxation of (LM3). Figure 5
shows performance profiles in terms of solution time, number of cuts added and number of iterations
required to get the optimal solution. The results show that the procedure (CW) is the most efficient for
all three indicators. We also observe that the performance of the In-Out stabilization is very sensitive
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d=0.2 d=0.5 d=0.8
n m LMl LMQ LM3 LMl LM2 LM3 LM1 LMQ LM3
10 | 8.595 4.154 0.453 | 15.172 11.116 1.054 | 27.523 26.137  2.508
10 | 25 | 18.959 16.127 2.727 | 35.401 33.095 8.289 | 38.784 37.068 3.012
50 | 31.16 29.397 6.02 | 45.636 43.65 13.229 | 55.161 53.301  5.664
10 | 1.059 0.384 0.054 5.436 5.089 2.717 | 15.696 15.137  4.283
25 | 25 | 13.969 10.573 4.057 | 18.084 17.144 9.246 | 29.891 29.197 9.291
50 | 27.201 23.579 13.186 | 34.495 33.206 21.051 | 43.912 43.192 17.125
10 | 0.06 0.05 0.02 0.853 0.791  0.506 | 6.509  6.305  2.879
50 | 25 3.63 3.144 1.872 9.723 9.375 6.765 | 23.898 23.575 14.362
50 | 16.164 15.12 11.711 | 24.388 23.935 18.845 | 36.587 36.23  23.578
Table 5: LP gap (%) for small instances.
d=0.2 d=0.5 d=0.8
n [ m | IM; LM, ©LMs; | LM, LM, LMs | LM; LM, LM,
10 | 0.016 0.016 0.037 | 0.017 0.025 0.057 | 0.019 0.045 0.063
10 | 25 | 0.028 0.036 0.221 0.046 0.114 0.464 0.05 0.122 0.366
50 | 0.108 0.149 2306 | 0.269 0.761 6.576 | 0.237 0.826 3.749
10 | 0.01 0.015 0.063 0.018 0.045 0.144 | 0.021 0.092 0.138
25 | 25 | 0.052 0.078 0.945 0.08 0.234 2.097 | 0.079 0.437 1.408
50 | 0.503 1.392 34.345 | 1.692 11.188  79.31 | 0.681 11.988  41.958
10 | 0.01 0.022 0.116 0.015  0.055 0.215 0.017 0.118 0.24
50 | 25 | 0.044 0.122 3.235 0.093 0.615 6.797 | 0.108 1.47 6.972
50 | 1.848 8.43 328971 | 3.21 52.053 452.955 | 1.272 62.464 205.513

Table 6: Solution time for small instances in seconds.

to the parameter A selected. Furthermore, there is no clear dominance in efficiency between the In-out
stabilization and the traditional Benders implementation.

In order to improve the performance and scalability of (LM;), we can generate valid cuts obtained by
the Benders Decomposition of (LM3). The above results suggest that we can improve the gap of (LM;)
by using very few cuts generated by (CW).

7.4 Branch and cut, beating (LM;).

In order to scale-up our models, we implement a cut generation algorithm with cuts coming from the
Benders decomposition of (LM3). These cuts are added to (LM;). We tested two implementations. First,
we only generate cuts in the root node of the Branch-and-Bound tree. This implementation is named Cut
& Branch. A second implementation consider adding cuts in the whole tree, each a fixed number of nodes
explored. This implementation is named Branch & Cut. Since only few cuts are necessary to improve the
LP gap, we limit the number of cuts added. In this experiment, we set the maximum number of cuts to
nm. In the Branch-and-Cut scheme we add cuts each 1000 nodes of the Branch-and-Bound tree.

For each instance in Big(n,m), we solve the Cut & Branch, Branch & Cut and (LM;) and compare
the solution times, limited to 3 hours, and the MIPGAP returned by CPLEX. Figure 6 shows the results
separated by cases when n = 100 and n = 500.
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Figure 6: Gap after 3 hours in LMy, and the different Branch and Cut implementations.

The Branch & Cut implementation is the one with the worst performance. On the other hand, the
Cut & Branch implementation can decrease the MIPGAP in the biggest instances. In instances with
n = 500 and m = 300 this implementation reduces by 4% the MIPGAP. One possible improvement is to
test using an small limit in the amount of cuts added in our branch-and-cut implementations.

7.5 Impact of preprocessing.

Our fourth set of experiments consists in measuring the improvement due to preprocessing for each
instance in RP(N, My, Ms). To do so, we measure the solution time with and without preprocessing for
(LM3), and the Cut-and-Branch and Branch-and-Cut algorithms. In order to compute the improvement
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we use the Improvement factor

Solution Time without Preprocessing

Solution Time with Preprocessing

Figure 7 shows the impact of preprocessing for each size of instances. Branch-and-Cut and Cut-and-
Branch algorithms were the ones with higher impact in terms of solution time. This impact increases as
the instance size increases. For (LMj) this preprocessing is negligible in small instances. This is due to
the fact that the time spent in preprocessing is similar to the time spent in solving the whole problem.

Impact of Preprocessing in Solution Times
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Figure 7: Improvement in solution times for (LM;), Branch-and-Cut and Cut-and-Branch.

8 Concluding Remarks

In this paper, we have presented three novel MILP formulations for the single-minded bundle pricing
problem. After obtaining an mixed-integer non-linear model we derive models (LM;) and (LMs) by
different linearizations. A stronger model, (LM3), is obtained by adding RLT-like valid inequalities, that
significantly strengthen the gap of the LP relaxation. Some polyhedral results are shown and supported
by computational results.

The main bottleneck, at this time, is solving the tighter but significantly heavier LP relaxation in
large instances. Here we have studied a Benders Decomposition approach to scale-up our models with
different stabilization methods in Branch-and-Cut and Cut-and-Branch schemes. The latter approach
generates an improvement of 4% in cases tested in this paper. We believe an improvement can still be
obtained by tuning the number of cuts generated.

Finally, we think that, given the combinatorial structure of this problem, some heuristics can be used
to improve the optimality gap.
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A (LMj;) reformulation for Rich - Poor instances

(LM3—]\ZI) maxz Zsij—i—z Zpi

JEM €SI jeM €SI
s.t. r; = Z Sij j¢ M
i€Si

€SI
> pi <V jeM
i€S7I
Sij < pi ieN,j¢M
sij > pi — U(pi)(1 —x5) i€eN,j¢ M
> sij = e — b (an — ) G k¢ M, j#k
€Sk
Dosig <Wmta =)+ Y pi-m Gk g M, j#k
€Sk ieSk
Sij >0 teEN,jeM
p; >0 i€N
z; € {0,1} jeM

B Generating Rich - Poor instances

Given positive integers n,mi,ms, such that n > mq, the algorithm returns a set of clients, bundles,
budgets and n products such that there exist m; relative rich clients and ms other clients.

Algorithm 4 Generate relative rich - poor instances

Require: my,mo,n
Step 1: Create set of clients M = {1,...,my,m; +1,...,m1 + mo} and products N = {1,...,n}
Step 2: Create Budgets. For j € {1,...,m1} b; = U(1000,5000) . For j € {mq +1,...,m; + ma}
generate b; = U(10,1000).
Step 3: Partition the set of products in m; components. Each disjoint subset is allocated to one of the
my first clients.
Step 4: Generate random bundles for the rest of the clients.
Step 5: For each of the first m; clients check if the condition is satisfied. If it is not the case, randomly
either reduce the bundles of clients that intersect their bundles, or decrease their budget.
return N, M, S, b with exactly m, relative rich clients.
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