, particular interest, published within the period of review, have been highlighted as: of special interest of outstanding interest

B. J. Hunnicutt, B. C. Jongbloets, W. T. Birdsong, K. J. Gertz, H. Zhong et al., A comprehensive excitatory input map of the striatum reveals novel functional organization, p.5, 2016.

A. M. Graybiel and S. T. Grafton, The striatum: where skills and habits meet, Cold Spring Harb Perspect Biol, vol.7, 2015.
DOI : 10.1101/cshperspect.a021691

URL : http://cshperspectives.cshlp.org/content/7/8/a021691.full.pdf

H. H. Yin, S. P. Mulcare, M. Hilá-rio, E. Clouse, T. Holloway et al., Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill, Nat Neurosci, vol.12, pp.333-341, 2009.

, In this seminal article, the authors provide the first evidence that synaptic plasticity (via AMPA/NMDAR ratio analysis and saturation plasticity experiments) can be detected in DLS following procedural learning

D. Filippo, M. Picconi, B. Tantucci, M. Ghiglieri, V. Bagetta et al., Short-term and longterm plasticity at corticostriatal synapses: implications for learning and memory, Behav Brain Res, vol.199, pp.108-118, 2009.

D. J. Surmeier, J. Plotkin, and W. Shen, Synaptic plasticity in dorsal striatal circuits controlling ynaptic action selection, Curr Opin Neurobiol, vol.19, p.621, 2009.
DOI : 10.1016/j.conb.2009.10.003

URL : http://europepmc.org/articles/pmc2818437?pdf=render

D. M. Lovinger, Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum, Neuropharmacology, vol.58, pp.951-961, 2010.

T. N. Lerner and A. C. Kreitzer, Neuromodulatory control of striatal plasticity and behavior, Curr Opin Neurobiol, vol.21, pp.322-327, 2011.
DOI : 10.1016/j.conb.2011.01.005

URL : http://europepmc.org/articles/pmc3092792?pdf=render

M. Cerovic, R. Isa, R. Tonini, and R. Brambilla, Molecular and cellular mechanisms of dopamine-mediated behavioral plasticity in the striatum, Neurobiol Learn Mem, vol.105, pp.63-80, 2013.

A. C. Koralek, R. M. Costa, and J. M. Carmena, Temporally precise cellspecific coherence develops in corticostriatal networks during learning, Neuron, vol.79, pp.865-872, 2013.
DOI : 10.1016/j.neuron.2013.06.047

URL : https://doi.org/10.1016/j.neuron.2013.06.047

P. Calabresi, B. Picconi, A. Tozzi, V. Ghiglieri, and M. D. Filippo, Direct and indirect pathways of basal ganglia: a critical reappraisal, Nat Neurosci, vol.17, pp.1022-1030, 2014.

G. Cui, S. B. Jun, J. X. Pham, M. D. Vogel, S. S. Lovinger et al., Concurrent activation of striatal direct and indirect pathways during action initiation, Nature, vol.494, pp.238-242, 2013.
DOI : 10.1038/nature11846

URL : http://europepmc.org/articles/pmc4039389?pdf=render

F. Tecuapetla, J. X. Lima, S. Q. Costa, and R. M. , Complementary contributions of striatal projection pathways to action initiation and execution, Cell, vol.166, pp.703-715, 2016.

O. Hare, J. K. Ade, K. K. Sukharnikova, T. , V. Hooser et al., Calakos N: Pathway-specific striatal substrates for habitual behavior, Neuron, vol.89, pp.472-479, 2016.

J. B. Smith, J. R. Klug, D. L. Ross, C. D. Howard, N. G. Hollon et al., Genetic-based dissection unveils the inputs and outputs of striatal patch and matrix compartments, Neuron, vol.91, pp.1069-1084, 2016.

K. R. Brimblecombe and S. J. Cragg, Substance P weights striatal dopamine transmission differently within the striosomematrix axis, J Neurosci, vol.35, pp.9017-9023, 2015.
DOI : 10.1523/jneurosci.0870-15.2015

URL : http://www.jneurosci.org/content/35/24/9017.full.pdf

P. E. Rothwell, S. J. Hayton, G. L. Sun, M. V. Fuccillo, B. K. Lim et al., Input-and output-specific regulation of serial order performance by corticostriatal circuits, Neuron, vol.88, pp.345-356, 2015.

Q. Shan, M. J. Christie, and B. W. Balleine, Plasticity in striatopallidal projection neurons mediates the acquisition of habitual actions, Eur J Neurosci, vol.42, pp.2097-2104, 2015.

S. L. Hawes, R. C. Evans, B. A. Unruh, E. E. Benkert, F. Gillani et al., Multimodal plasticity in dorsal striatum while learning a lateralized navigation task, J Neurosci, vol.35, pp.10535-10549, 2015.

, The authors explore the engagement of synaptic, intrinsic and structural plasticity in DLS and DMS during learning in a T-maze task. This very impressive body of work shows region(DLS versus DMS)-and hemisphere(ipsi versus contralateral)-specific-synaptic modifications correlated with the learned turning direction and the learning stages (from na?¨vena?¨ve to overtrained rats). Importantly, the authors do not only show the engagement of LTP but also that of LTD

N. Giordano, A. Iemolo, M. Mancini, F. Cacace, M. De-risi et al., Motor learning and metaplasticity in striatal neurons: relevance for Parkinson's disease, Brain J Neurol, vol.141, pp.505-520, 2018.
DOI : 10.1093/brain/awx351

T. Ma, Y. Cheng, E. R. Hellard, X. Wang, J. Lu et al., Bidirectional and long-lasting control of alcohol-seeking behavior by corticostriatal LTP and LTD, Nat Neurosci, vol.21, pp.373-383, 2018.

, This work constitutes the first causal demonstration of striatal synaptic plasticity (in d-SPNs in DMS) in an operant task. The authors appliedin vivo Hebbian bidirectional plasticity and show that LTP and LTD have an opposing effect on alcohol-seeking behavior. Moreover, they show ex vivo that the same stimulation (presynaptic HFS) induces either endocannabinoid-LTD or NMDAR-LTP depending on the non-Hebbian or Hebbian mode

P. Calabresi, A. Pisani, N. B. Mercuri, and G. Bernardi, The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia, Trends Neurosci, vol.19, pp.19-24, 1996.

D. M. Lovinger, J. G. Partridge, and K. Tang, Plastic control of striatal glutamatergic transmission by ensemble actions of several neurotransmitters and targets for drugs of abuse, Ann N Y Acad Sci, vol.1003, pp.226-240, 2003.

S. Mahon, J. Deniau, and S. Charpier, Corticostriatal plasticity: life after the depression, Trends Neurosci, vol.27, pp.460-467, 2004.

E. Fino and L. Venance, Spike-timing dependent plasticity in the striatum. Front Synaptic Neurosci, vol.2, 2010.

D. E. Feldman, The spike timing dependence of plasticity, Neuron, vol.75, pp.556-571, 2012.

E. Fino, J. Glowinski, and L. Venance, Bidirectional activity-dependent plasticity at corticostriatal synapses, J Neurosci, vol.25, pp.11279-11287, 2005.

W. Shen, M. Flajolet, P. Greengard, and D. J. Surmeier, Dichotomous dopaminergic control of striatal synaptic plasticity, Science, vol.321, pp.848-851, 2008.

V. Pawlak and J. Kerr, Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity, J Neurosci Off J Soc Neurosci, vol.28, pp.2435-2446, 2008.

E. Fino, V. Paille, Y. Cui, T. Morera-herreras, J. Deniau et al., Distinct coincidence detectors govern the corticostriatal spike timing-dependent plasticity, J Physiol, vol.588, pp.3045-3062, 2010.

J. M. Schulz, P. Redgrave, and J. Reynolds, Cortico-striatal spiketiming dependent plasticity after activation of subcortical pathways. Front Synaptic Neurosci, vol.2, 2010.

V. Paille, E. Fino, K. Du, T. Morera-herreras, S. Perez et al., GABAergic circuits control spike-timingdependent plasticity, J Neurosci, vol.33, pp.9353-9363, 2013.

Y. Cui, V. Paillé, H. Xu, S. Genet, B. Delord et al., Endocannabinoids mediate bidirectional striatal spike-timingdependent plasticity, J Physiol, vol.593, pp.2833-2849, 2015.

Y. Cui, I. Prokin, H. Xu, B. Delord, S. Genet et al., the authors report that a low number of paired corticostriatal stimulations induced a new form of synaptic plasticity at d-SPNs and i-SPNs in DLS, that is an endocannabinoid-LTP. This LTP is controlled by dopamine and is dependent on the presynaptic PKA, LTP may be involved in quick synaptic adaptations during rapid learning, 2018.

S. Valtcheva and L. Venance, Astrocytes gate Hebbian synaptic plasticity in the striatum, Nat Commun, vol.7, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01429821

S. D. Fisher, P. B. Robertson, M. J. Black, P. Redgrave, M. A. Sagar et al., Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo, Nat Commun, vol.8, 2017.

S. Valtcheva, V. Paillé, Y. Dembitskaya, S. Perez, G. Gangarossa et al., Developmental control of spike-timingdependent plasticity by tonic GABAergic signaling in striatum, Neuropharmacology, vol.121, pp.261-277, 2017.

Y. Cui, I. Prokin, A. Mendes, H. Berry, and L. Venance, Robustness of STDP to spike timing jitter, Sci Rep, vol.8, p.8139, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01788826

T. Shindou, M. Ochi-shindou, and J. R. Wickens, A Ca2+ threshold for induction of spike-timing-dependent depression in the mouse striatum, J Neurosci, vol.31, pp.13015-13022, 2011.

S. L. Hawes, F. Gillani, R. C. Evans, E. A. Benkert, and K. T. Blackwell, Sensitivity to theta-burst timing permits LTP in dorsal striatal adult brain slice, J Neurophysiol, vol.110, pp.2027-2036, 2013.

H. Xu, S. Perez, A. Cornil, Y. Cui, H. Berry et al., Endocannabinoid-dopamine interactions mediate spiketiming dependent potentiation in the striatum, Nat Commun, vol.9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01865929

A. Foncelle, A. Mendes, J. Je-?-drzejewska-szmek, S. Valtcheva, H. Berry et al., Modulation of spike-timing dependent plasticity: towards the inclusion of a third factor in computational models, Front Comput Neurosci, p.12, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01809075

W. Schultz, Neuronal reward and decision signals: from theories to data, Physiol Rev, vol.95, pp.853-951, 2015.

A. C. Kreitzer and R. C. Malenka, Dopamine modulation of statedependent endocannabinoid release and long-term depression in the striatum, J Neurosci, vol.25, pp.10537-10545, 2005.

S. Yagishita, A. Hayashi-takagi, G. Ellis-davies, H. Urakubo, S. Ishii et al., A critical time window for dopamine actions on the structural plasticity of dendritic spines, Science, vol.345, pp.1616-1620, 2014.

. Yagishita, experimentally elucidate the temporal credit-assignment problem by showing that dopamine (reward) released up to 2 s after glutamatergic input (the action to be rewarded) allows the expression of structural plasticity (spine enlargement)

T. Shindou, M. Shindou, S. Watanabe, and J. Wickens, A silent eligibility trace enables dopamine-dependent synaptic plasticity for reinforcement learning in the mouse striatum, Eur J Neurosci, 2018.

, Using STDP paradigm in brain slices, the authors show that cageddopamine delivered 2-4 seconds after glutamatergic inputs allows the conversion of LTD into LTP at corticostriatal synapses onto d-SPNs

, Importantly, there was no shift of the polarity of plasticity when dopamine was released before or concomitantly with glutamate

H. Park, A. Popescu, and M. Poo, Essential role of presynaptic NMDA receptors in activity-dependent BDNF secretion and corticostriatal LTP, Neuron, vol.84, pp.1009-1022, 2014.

E. M. Izhikevich, Solving the distal reward problem through linkage of STDP and dopamine signaling, Cereb Cortex, vol.17, pp.2443-2452, 2007.

W. Gerstner, M. Lehmann, V. Liakoni, D. Corneil, and J. Brea, Eligibility traces and plasticity on behavioral time scales: experimental support of neoHebbian three-factor learning rules, Front. Neural Circuits, p.12, 2018.

R. S. Sutton, A. Barto, and . Book, Reinforcement Learning: An Introduction, 2018.

B. Bloem, R. Huda, M. Sur, and A. M. Graybiel, Two-photon imaging in mice shows striosomes and matrix have overlapping but differential reinforcement-related responses, p.6, 2017.

M. I. Davis, J. R. Crittenden, A. Y. Feng, D. A. Kupferschmidt, A. Naydenov et al., The cannabinoid-1 receptor is abundantly expressed in striatal striosomes and striosome-dendron bouquets of the substantia nigra, PLoS One, p.13, 2018.

E. Fino and L. Venance, Spike-timing dependent plasticity in striatal interneurons, Neuropharmacology, vol.60, pp.780-788, 2011.

G. Silberberg and J. P. Bolam, Local and afferent synaptic pathways in the striatal microcircuitry, Curr Opin Neurobiol, vol.33, pp.182-187, 2015.

D. A. Burke, H. G. Rotstein, and V. A. Alvarez, Striatal local circuitry: a new framework for lateral inhibition, Neuron, vol.96, pp.267-284, 2017.

B. N. Mathur, C. Tanahira, N. Tamamaki, and D. M. Lovinger, Voltage drives diverse endocannabinoid signals to mediate striatal microcircuit-specific plasticity, Nat Neurosci, vol.16, pp.1275-1283, 2013.

S. Melzer, M. Gil, D. E. Koser, M. Michael, K. W. Huang et al., Distinct corticostriatal gabaergic neurons modulate striatal output neurons and motor activity, Cell Rep, vol.19, pp.1045-1055, 2017.
DOI : 10.1016/j.celrep.2017.04.024

URL : https://doi.org/10.1016/j.celrep.2017.04.024

J. Lisman and N. Spruston, Questions about STDP as a general model of synaptic plasticity. Front Synaptic Neurosci, vol.2, 2010.

W. H. Mehaffey and A. J. Doupe, Naturalistic stimulation drives opposing heterosynaptic plasticity at two inputs to songbird cortex, Nat Neurosci, vol.18, pp.1272-1280, 2015.
DOI : 10.1038/nn.4078

URL : http://europepmc.org/articles/pmc5726397?pdf=render

O. Hare, J. K. Li, H. Kim, N. Gaidis, E. Ade et al., Striatal fast-spiking interneurons selectively modulate circuit output and are required for habitual behavior, p.6, 2017.

S. F. Owen, J. D. Berke, and A. C. Kreitzer, Fast-spiking interneurons supply feedforward control of bursting, calcium, and plasticity for efficient learning, Cell, vol.172, pp.683-695, 2018.

C. M. Gremel, J. Chancey, B. Atwood, G. Luo, R. Neve et al., Endocannabinoid modulation of orbitostriatal circuits gates habit formation, Neuron, vol.90, pp.1312-1324, 2016.
DOI : 10.1016/j.neuron.2016.04.043

URL : https://doi.org/10.1016/j.neuron.2016.04.043

K. N. Gurney, M. D. Humphries, and P. Redgrave, A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface, PLoS Biol, vol.13, p.1002034, 2015.

L. Lalla, R. Orozco, P. E. , J. Brovelli, A. Robbe et al., Local or not local: investigating the nature of striatal theta oscillations in behaving rats, p.4, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01787122

D. A. Kupferschmidt, K. Juczewski, G. Cui, and K. A. Johnson, Lovinger DM: Parallel, but dissociable, processing in discrete corticostriatal inputs encodes skill learning, Neuron, vol.96, pp.476-489, 2017.
DOI : 10.1016/j.neuron.2017.09.040

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663197

C. Petersen, Whole-cell recording of neuronal membrane potential during behavior, Neuron, vol.95, pp.1266-1281, 2017.

T. Sippy, D. Lapray, S. Crochet, and C. Petersen, Cell-type-specific sensorimotor processing in striatal projection neurons during goal-directed behavior, Neuron, vol.88, pp.298-305, 2015.

Y. Smith, A. Galvan, T. J. Ellender, N. Doig, R. M. Villalba et al., The thalamostriatal system in normal and diseased states, Front Syst Neurosci, vol.8, 2014.
DOI : 10.3389/fnsys.2014.00005

URL : https://www.frontiersin.org/articles/10.3389/fnsys.2014.00005/pdf

J. Ding, J. D. Peterson, and D. J. Surmeier, Corticostriatal and thalamostriatal synapses have distinctive properties, J Neurosci Off J Soc Neurosci, vol.28, pp.6483-6492, 2008.
DOI : 10.1523/jneurosci.0435-08.2008

URL : http://www.jneurosci.org/content/28/25/6483.full.pdf

T. J. Ellender, J. Harwood, P. Kosillo, M. Capogna, and J. P. Bolam, Heterogeneous properties of central lateral and parafascicular thalamic synapses in the striatum, J Physiol, vol.591, pp.257-272, 2013.

Y. Wu, J. Kim, V. L. Tawfik, R. R. Lalchandani, G. Scherrer et al., Input-and cell type-specific endocannabinoid-dependent LTD in the striatum, Cell Rep, vol.10, pp.75-87, 2015.

A. Cavaccini, M. Gritti, A. Giorgi, A. Locarno, N. Heck et al., Serotonergic signaling controls input-specific synaptic plasticity at striatal circuits, Neuron, vol.98, pp.801-816, 2018.
DOI : 10.1016/j.neuron.2018.04.008

URL : https://iris.unica.it/bitstream/11584/253103/1/Serotonergic%20Signaling%20Controls%20Input-Specific%20Synaptic%20Plasticity%20at%20Striatal%20Circuits%20-%20mmc2.pdf

R. M. Smeal, R. C. Gaspar, K. A. Keefe, and K. S. Wilcox, A rat brain slice preparation for characterizing both thalamostriatal and corticostriatal afferents, J Neurosci Methods, vol.159, pp.224-235, 2007.
DOI : 10.1016/j.jneumeth.2006.07.007

N. M. Doig, J. Moss, and J. P. Bolam, Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum, J Neurosci, vol.30, pp.14610-14618, 2010.

W. Lei, Y. Deng, B. Liu, S. Mu, N. M. Guley et al., Confocal laser scanning microscopy and ultrastructural study of VGLUT2 thalamic input to striatal projection neurons in rats, J Comp Neurol, vol.521, pp.1354-1377, 2013.