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Abstract: A sensor’s spatial resolution has traditionally been a difficult concept to define, but 
all would agree that it is inextricably linked to the Ground Sampling Distance (GSD) and 
Instantaneous Field of View (IFOV) of an imaging sensor system. As a measure of the 
geospatial quality of imagery, the Modulation Transfer Function (MTF) of the system is often 
used along with the signal-to-noise ratio (SNR). However, their calculation is not fully 
standardized. Further, consistent measurements and comparisons are often hard to obtain. 
Therefore, in the Infrared and Visible Optical Sensors (IVOS) subgroup of the Working 
Group on Calibration Validation (WGCV) of the Committee for Earth Observation Satellites 
(CEOS), a team from various countries and professional entities who are involved in MTF 
measurement was established to address the issue of on-orbit MTF measurements and 
comparisons. As a first step, a blind comparison of MTF measurements based on the slanted 
edge approach has been undertaken. A set of both artificial and actual satellite edge images 
was developed and a first comparison of processing results was generated. In all, seven 
organizations contributed to the experiment and several significant results were generated in 
2016. No single participant produced the best results for all test images as measured by either 
the closest to the mean result, or closest to the truth for the synthetic test images. In addition, 
close estimates of the MTF value at Nyquist did not ensure the accuracy of other MTF values 
at other spatial frequencies. Some algorithm results showed that the accuracy of their 
estimates depended upon the type of MTF curve that was being analyzed. After the initial 
analysis, participants were allowed to modify their methodology and reprocess the test images 
since, in several cases, the results contained errors. Results from the second iteration, in 2017, 
verified that the anomalies in the experiment’s first iteration were due to errors in either 
coding or methodology, or both. One organization implemented a third trial to fix software 
errors. This emphasizes the importance of fully understanding both methodology and 
implementation, in order to ensure accurate and repeatable results. To extend this comparison 
study, a reference data set, which is composed of edge images and corresponding MTF 
curves, will be built. A broader audience will be able to access the edge images through the 
CEOS CalVal Portal (http://calvalportal.ceos.org/. This paper, which is associated with the 
reference data set, can serve as a new tool to either implement or check, or both, the MTF 
measurement that relies on the slanted edge method. 

©2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

The geo-spatial quality of a sensor and its imagery often revolves, at least in part, around the 
concept of the spatial resolution of a sensor which is often reduced to the Ground Sampling 
Distance (GSD) associated with the Instantaneous Field Of View (IFOV) defined by the pixel 
size. However, spatial resolution, and hence geo-spatial quality, is more complex than this. 
Most agree that the effective spatial resolution is due to three (or four) features of the sensor: 
the IFOV (and the GSD if different), the Modulation Transfer Function (MTF) and the signal 
to noise ratio (SNR). The MTF is often used as a measure of image sharpness [1,2]. This 
important parameter for image quality has to be checked on orbit in order to be sure that 
launch vibrations, transition from air to vacuum, or thermal state have not degraded the 
sharpness of the images. In some cases, it can lead to a refocusing decision. 

This paper deals with one of the methods used for on-orbit MTF assessment, called the 
edge method, the knife-edge method, or the slanted-edge method. This method is widely used 
for laboratory measurements and may be implemented in various manners. For on-orbit MTF 
assessment, it requires a slanted edge as explained in section 2. It has been used for numerous 
space sensors such as Landsat TM [3], MOS-1 MESSR [4], IKONOS [5], SPOT5 [6], and 
more recently Sentinel2 MSI [7]. 

In the framework of the Infrared and Visible Optical Sensors (IVOS) subgroup of the 
Working Group on Calibration Validation (WGCV) of the Committee for Earth Observation 
Satellites (CEOS), a team of people from various countries and professional entities, who are 
involved in MTF measurement, has been created to address a variety of issues regarding the 
geo-spatial quality of optical satellite imagery. One of the first efforts of this group has been 
to compare processing methodologies for the edge method of MTF estimation. For this 
comparison experiment, the team was composed of Frans van den Bergh from CSIR, Renaud 
Fraisse from Airbus DS, Dennis Helder from SDSU, Dong Han Lee from KARI, Amy 
Newbury and Robert Kudola from Digital Globe, Sébastien Saunier from Telespazio and 
Françoise Viallefont-Robinet from ONERA 

This paper presents the method and its various implementations followed by the 
comparison experiment. The first results, obtained with a blind test approach, were analyzed. 
This exercise was an opportunity to correct or improve the software of each participant. Thus, 
a second run was performed by most of the participants in order to improve the results, 
leading to a second comparison. For two test cases, a third and final run was performed by 
one of the outliers. All comparisons are presented and commented on. 

2. Edge method 

2.1 Theory 

Considering the sensor as a linear system without spatial variation of its response (shift 
invariant), the relation between the radiances (or top of atmosphere reflectances) of the 
landscape and the image is simply: 

 ( , ) ( , ) ( , )i x y l x y h x y= ⊗  (1) 

where i(x,y) stands for the image, 
l(x,y) stands for the landscape, 
h(x,y) is the Point Spread Function of the sensor, 
⊗ is the convolution integral. 
For sensors using a CCD in the image plane, the system is no longer strictly shift 

invariant; but it can nevertheless be described using the usual theory for regions of the 
imaging array without loss of generality. The sampling done by the CCD can be written as a 
multiplication by a Dirac comb. 

Completing Eq. (1), it becomes: 



 [ ]( , ) ( , ) ( , ) ( / , / )x yi x y l x y h x y comb x p y p= ⊗ ⋅  (2) 

where px is the size of the IFOV and py the GSD in the case of a pushbroom imaging system. 
A classical way to deal with a convolution product is to apply a Fourier Transform, which 

leads to: 

 ( , ) ( , ) ( , ) ( / , / )x y x y x y x sx y syI f f L f f H f f comb f f f f = ⋅ ⊗   (3) 

where I(fx,fy) stands for the Fourier Transform of the image, 
L(fx,fy) stands for the Fourier Transform of the landscape, 
H(fx,fy) is the Transfer Function of the sensor, 
fsx = 1/px is the sampling frequency for the fx axis, 
fsy = 1/py is the sampling frequency for the fy axis. 
The sensor behavior is known to be similar to a low-pass filter without phase shift [8]. 

This is why the Optical Transfer Function is usually reduced to the Modulation Transfer 
Function defined as the modulus of the Optical Transfer Function normalized by the zero 
frequency component. 

For the edge method, the landscape is close to a Heaviside function: 

 ( , ) ( ) ( ) ( ) ( )l x y a hea x unit y b unit x unit y= ⋅ ⋅ + ⋅ ⋅  (4) 

hea(x) being the Heaviside function centered on x = 0, 
unit(x) = 1 for all values of x. 
In this case, Eq. (2) becomes: 

 [ ]( , ) ( ) ( ) ( , ) ( ) ( ) ( / , / )x yi x y a hea x unit y h x y b unit x unit y comb x p y p= ⋅ ⋅ ⊗ + ⋅ ⋅ ⋅  (5) 

As ( ) ( ) ( , ) ( ) ( )b unit x unit y h x y b b unit x unit y⋅ ⋅ ⊗ = = ⋅ ⋅  

Equation (5) can be rewritten as follows: 

 [ ]( , ) ( ) ( ) ( ) ( ) ( / )xi x y i x a hea x LSF x b unit x comb x p= = ⋅ ⊗ + ⋅ ⋅  (6) 

The convolution by the comb produces aliasing. One way to overcome this problem is to use 
an edge with a slight inclination relative to the row or column direction [9]. This is used to 
build an oversampled 1-D edge image as illustrated in Fig. 1. 

So, the 1-D edge corresponds to: 

 ( ) ( ) ( ) ( )i z a hea z LSF z b unit z= ⋅ ⊗ + ⋅  (7) 

where z is measured in the direction perpendicular to the edge, which nearly coincides with 
the x axis when the edge is vertically oriented as modelled here. 
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sampled ESF. The implementation of each of these steps can vary significantly, as discussed 
in greater detail below. Some common traits of the participant implementations will be 
discussed in this section. 

Without loss of generality it will be assumed that the Region Of Interest (ROI) containing 
the edge transition will be processed on a row-by-row basis with the slanted edge oriented 
nearly vertically. Let R denote the ROI such that i(x, y) represents the intensity of the image 
at coordinates (x, y) for all (x, y) ∊ R. 

2.2.1 Edge modeling 

The construction of an oversampled ESF, as illustrated in Fig. 1, requires that the location of 
the edge in each image row is known with sub-pixel accuracy. This can be as simple as 
calculating the centroid of the discrete derivative of the intensity of each row, as suggested in 
the ISO 12233 standard [10, Appendix D], but such a method will be sensitive to image noise 
and target non-uniformity. A more robust method is to fit a parametric- or spline function to 
each row, using the inflection point of the fitted function as the sub-pixel edge location 
estimate. 

Once the location of the edge has been estimated in each row, a linear function is typically 
fitted across all the per-row results to obtain a more accurate model describing the sub-pixel 
location of the edge, as illustrated in section 3.1 in Fig. 3. If the physical target edge is curved, 
the linear edge model can be replaced with a low-order polynomial to accommodate the 
curvature [11]. 

2.2.2 ESF construction 

A simplified example of the construction of an ESF is illustrated in Fig. 1, where the 
oversampled ESF is obtained by interleaving the intensity values of each row of the ROI. 
Constructing the ESF involves projecting the 2-D image intensity values i(x,y) onto a 1-D 
representation i(z). The magnitude of z represents the shortest distance from a pixel at 
coordinates (x,y) to the slanted edge. The oversampled ESF can be constructed using an 
extension of the method described in the ISO 12233 standard [10, Appendix D], or using the 
alternative method described by Kohm [12]. 

In the ISO 12233-based approach the ROI is a rectangle aligned with the rows and 
columns of the image, as shown in Fig. 1. For each pixel the value z is calculated as: 

 [ ]( ) cos( )z x e y θ= − ⋅  (8) 

where e(y) denotes the location of the edge in row y, as predicted by the edge model, and θ 
denotes the relative edge angle. The cosine factor transforms a distance measured along a row 
into a distance measured perpendicularly to the edge. 

With Kohm’s method, the ROI is a rectangle that is aligned with the edge itself, as shown 

in Fig. 2. A unit vector perpendicular to the edge, n


, is used to calculate z such that: 

 
0 0, ,n ( )x y x yz p p= ⋅ −

  
 (9) 

where (x0,y0) are the coordinates of an arbitrary point on the edge. 
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3. Implementations of the edge method 

3.1 ONERA 

The ONERA implementation follows the spectral approach [9], which is less widely known 
than the derivative method [4,5,14]. 

In this case, the finite number of samples has to be taken into account. This can be done as 
follows: 

 [ ]( ) ( ) ( ) ( ) ( )i z a hea z LSF z b unit z w z= ⋅ ⊗ + ⋅ ⋅  (10) 

noting w(z) as the window corresponding to the finite interval. 
In the Fourier domain, the relation becomes: 

 [ ]( ) ( ) ( ,0) ( ) ( )z z z z zI f a Hea f H f b f W fδ= ⋅ ⋅ + ⋅ ⊗  (11) 

The window has to be chosen so that Hea(fz)⊗W (fz) ≠ 0 for all frequencies and not far from 
Hea(fz). 

After removal of the background b, the following ratio gives the transfer function: 

 [ ]( ) / ( ) ( ) ( ,0)z z z zI f a Hea f W f H f⋅ ⊗ ≈  (12) 

ONERA tool follows the 3 steps general implementation. 
For edge modeling, or in other words the 2-D to 1-D transformation, each row is 

interpolated using a spline function and the inflection point is computed. A straight line is 
fitted on the set of inflection points and may be used (depending on the user choice) to replace 
the positions found as shown in Fig. 3. The inverse of the slope of the straight line provides 
the oversampling rate for building the ESF. At this stage, the 2-D edge image is split into a 
list of rows where each ESF location is indicated by the position of the edge e(y). 

The second step aims at mixing the rows to construct the oversampled ESF. For the 
inclination, in the ideal case of Fig. 1, the sequence spans a whole number (4 in this case) of 
rows. However, it is not possible to have a whole number of rows corresponding to the 
sequence for any edge. Thus, the user chooses the oversampling rate Nr, not too far from Ns 
(Ns being the whole number closest to the actual number of rows of the sequence) and then 
each row of the sequence is properly phased in the Nr grid. Some cases of Nr ≠ Ns, may lead 
to incomplete sampling. 

A user can choose between linear interpolation or model fitting options to construct an 
ESF with regular sampling. In the model fitting case, all the edge samples are replaced by the 
samples deduced from a parametric transfer function model as explained in [15]. The model 
fitting implementation eliminates noise due to non-uniformity of the dark or light areas of the 
ROI, which is an added advantage even when the sampling is regular. 

Once the regularly sampled ESF is built, the parameters a and b, as well as the position z 
= z0 of the Heaviside function, are assessed. Several approaches are available to the user for 
selection of a, b, and z0: 

• the first value of the edge for a and the last value for b, 

• the values at a distance of -d (relative to z0) for a and + d for b, 

• the value corresponding to (a + b)/2 for z0, 

• the value corresponding to the inflection point for z0 
Once the parameters a, b and z0 are found, the distribution a.Hea(z) + b is built and drawn 

over the ESF. The background b is then removed. 
ESF may be artificially extended, as shown Fig. 4 in order to reach the desired sampling 

rate for the MTF curve and to limit windowing effects. 



A Hann window is applied to the ESF and to the distribution. An FFT is applied to the 
windowed ESF and to the windowed distribution. The ratio of the modulus of each spectrum 
is computed and normalized to obtain the MTF according to Eq. (12). The fz frequencies are 
converted to fx frequencies. Once the MTF is computed, there is a possibility to fit the model 
described in [15] to the values obtained and to resample the MTF in order to obtain the 
desired frequency step. 

 

Fig. 3. Location of the edge and angle assessment. 

 

Fig. 4. Measured edge after truncation and extension and corresponding MTF curve. 

3.2 SDSU 

Based on the theory presented in Section 2, the South Dakota State University 
implementation follows a series of steps designed to be largely target and model independent 
so the algorithm will work with a variety of edge target types. The steps are described as 
follows. 

First, it is important that, to the degree possible, an edge target is used that has a proper 
orientation with respect to the sampling grid of the satellite sensor. Some combinations of 
edge angles and sampling grid orientation will result in data that are not reasonably uniformly 
distributed as shown in Fig. 1. When this happens, the result is that the steep part of the edge 



is represented by data points that are clustered together. This leads to very poor LSF/MTF 
estimates. Extensive modeling has indicated that relative angles of 6-8 degrees are optimal. 
This has the added advantage of orienting the edge nearly orthogonal to the sampling grid, 
and minimizes the correction necessary to obtain LSF/MTF estimates in the typical along-
track and cross-track directions in which sensor specifications are often given. 

A second critical aspect of target development is that the length of the edge should span a 
sufficient number of rows (or columns) in the image so that the oversampling process 
produces enough samples for edge reconstruction to be accurate. Empirical analysis has 
indicated that a minimum of 20 cross sections of the edge should be obtained for accurate 
results. 

Signal-to-noise ratio (SNR) has a significant bearing on PSF/MTF estimation accuracy. 
For purposes of LSF/MTF estimation, SNR can be defined as the ratio of the edge height to 
the average of the standard deviations of the region on either side of the edge. Modeling has 
indicated that SNR > 50 produces accurate and consistent results. 

The first step to developing an oversampled ESF is to estimate the edge location from 
each slice of data across the edge. A simple, but accurate, approach is to fit a Fermi function 
to the data of the form of Eq. (13): 

 
( ( ))

( )
1 s x e y

b d
f x d

e− −

−= +
+

 (13) 

where x represents the pixel locations for row y, d is the bias level, b is the magnitude of the 
bright side of the edge, e(y) is the edge location and s represents the steepness of the edge. 
This approach does not model ESF which have ringing in them, but will still fit the steep part 
of the ESF well and give good estimates of the precise edge location which is the goal of this 
step. To determine the parameter values, a common optimization algorithm, such as the 
Levenberg-Marquardt algorithm, is employed. The output of this step is the parameter, e(y), 
which provides, for each row, subpixel estimate of the true edge location using the integer-
based grid of the edge image input data. 

An oversampled but irregularly spaced ESF is constructed using Eq. (8). Only the data 
within a distance of five pixels from the edge are retained, based on typical LSF width of two 
pixels. 

The truncated, oversampled ESF is simultaneously filtered (to reduce high frequency 
noise) and resampled (to obtain uniformly spaced samples) using a non-linear modified 
Savitzky-Golay filter. In this approach, a window of data is selected (typically set to two 
pixels in length) and a low-order polynomial is fitted to the data using a linear least squares 
approach. Through extensive modeling, it was determined that a fourth order polynomial is 
optimal. The output of the filter is the value of the polynomial at the center of the window. 
The window is then shifted by the amount of the desired output sampling interval, and the 
process is repeated. It is recommended to oversample by a factor of 10 or more. This step 
produces as an output a uniformly oversampled ESF that has been smoothed for high 
frequency noise but, at the same time, has not been modified significantly at frequencies 
below the Nyquist frequency. 

Because smoothing has already been done to the ESF, a simple first order differencing 
approach is employed to obtain the LSF. The final step is to obtain the MTF by applying the 
Fourier transform (via the Fast Fourier Transform) to the LSF and normalizing by the zeroth 
value. 

The various steps in the SDSU MTF estimation process are illustrated Fig. 5. In the upper 
left corner is an actual satellite image of a slant edge that was obtained from deployed tarps. 
The upper right chart shows the oversampled ESF that has been produced after application of 
the modified Savitzky-Golay filter. Note the uniform spacing of the data, even in the steep 
region of the edge response. At this point an estimation of the SNR for this edge response can 
be calculated. The lower left plot shows the line spread function after simple first order 
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and edge normal vector is obtained, the image gradient magnitude values are projected onto 
the normal and grouped into coarse bins by their signed distance from the edge. Outliers 
within each bin are flagged using a variant of Tukey’s quartile test. The PCA and outlier 
rejection steps are iterated until the outliers stabilize. In this context, the PCA provides a total-
least-squares estimate of the edge parameters. 

For the ESF/LSF construction step, following the method of Kohm outlined in section 2.2, 
the coordinates of the samples within the ROI are projected onto the edge normal to yield the 
set{[z, i(x, y)]} using Eq. (9). Outliers identified in the edge parameter estimation stage are 
excluded. An ESF with a regular sample spacing of 1/8th pixel is constructed by weighted 
binning of the set {[z, i(x, y)]}. To avoid poor sampling caused by certain edge slopes (e.g., 
1/2 or 1/4), the value of each ESF bin k is calculated according to Eq. (14): 
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 (14) 

where mk denotes the midpoint value (distance from edge) of bin k, and f(d) a low-pass kernel 
function. In practice, the function f(z) = exp(−13|z|) works well. The effect of this low-pass 
filter must be removed from the final MTF by dividing the measured MTF by the Fourier 
transform of f(z), i.e., 132/(132 + fz

2) in its normalized form. The proposed kernel f(z) is wide 
enough so that even if the edge angle is 26.565 degrees (a slope of 1/2), none of the ESF bins 
will have a zero denominator. 

The notion of filtering the ESF during construction is taken one step further by switching 
to a different low-pass kernel for the tails of the ESF, similar to the method proposed by 
Williams and Burns [14]. In particular, using f(z) = rect(k·z) with k decreasing with distance 
from the edge reduces the impact of noise on the eventual MTF measurement. The starting 
locations of the ESF tails are defined relative to the 10% and 90% quantiles of a heavily 
smoothed temporary ESF. No correction of the MTF is applied for these ESF-tail low-pass 
kernels. 

The LSF is constructed by a finite-difference approximation of the ESF derivative. The 
ESF-tail smoothing described previously obviates the need for windowing of the LSF before 
applying the FFT, since the LSF tails naturally taper to zero with sufficient smoothing. 

For the final MTF calculation step, the FFT of the LSF is computed, followed by 
normalization. The appropriate sinc(c·fz) correction is applied to the final MTF to compensate 
for the finite-difference approximation. To reduce the variance of the MTF estimates further, 
a variable-width Savitzky-Golay filter is applied. The width of the filter increases gradually at 
higher normalized frequency values. 

3.6 KARI 

The KARI slanted-edge implementation has been developed to measure the spatial quality of 
the KOMPSAT image data starting from the SDSU algorithm [5]. The same implementation 
was also used for ground testing before launch. 

The selection of the inputs for the current KARI algorithm are the ones leading to is the 
largest values of Relative Edge Response (RER), Function Width at half maximum (FWHM) 
for LSF and MTF. 

The edge modeling involves fitting an edge model, starting with an initial estimate of the 
edge location within each row of the ROI that is obtained by finding the pair of adjacent 
pixels with the largest difference. This estimate is refined by computing the inflection point of 
a cubic polynomial fitted through the four values surrounding the initial estimate. The overall 
edge model is obtained by fitting a linear function across all the rows through the refined edge 
locations. 
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• the curves of the difference relative to the mean MTF or to the known MTF, 

• a table with the mean, the standard deviation and the largest difference (max-min) at 
Nyquist frequency. 

In all graphs and in all tables of this section, ACT stands for across track direction or axis, 
and ALT stands for along track direction or axis. In 2016, the mean is computed using all the 
results. In 2017, the mean is computed without the outliers. 

The MTF curves will be limited to the across track direction as they provide enough 
illustration of the discrepancies that were observed. 

5.1 Results for StdSystem_1 edges 

The 2016 and first 2017 (2017a) MTF curves and the discrepancy for the StdSystem_1 edge 
are presented in Fig. 13. Another graph, Fig. 14, provides the same curves but related to last 
2017 (2017b) results. Table 2 gives the 2016 and the last 2017 (2017b) MTF values obtained 
at Nyquist frequency. 

 

Fig. 13. Results for the StdSystem_1 edge: (a) MTF curves from 2016 runs, (b) MTF curves 
from first 2017 runs, (c) deviation to the model from 2016 runs, (d) deviation to the model 
from first 2017 runs. 

 

Fig. 14. Last 2017 results for the StdSystem_1 edge: (a) MTF, (b) deviation to the model. 
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Table 2. Results at Nyquist frequency for StdSystem_1 edges. 

 ACT 2016 ALT 2016 ACT 2017b ALT 2017b 

Mean 0.29 0.29 0.29 0.30 
Standard deviation 0.03 0.02 0.02 0.02 
Max-min 0.08 0.07 0.04 0.04 

For this first case, the 2017b results are in quite good agreement. The discrepancy 
between the participants increases with the frequency but remains small up to the Nyquist 
frequency. This illustrates the value of the comparison for purposes of improving algorithms 
and removing errors in algorithms. 

5.2 Results for StdSystem_30 edges 

The 2016 and first 2017 (2017a) MTF curves and the discrepancy for the StdSystem_30 edge 
are presented in Fig. 15. Another graph Fig. 16 provides the same curves but corresponding to 
last 2017 (2017b) results. Table 3 shows the 2016 and last 2017 (2017b) MTF values at 
Nyquist frequency. 

 

Fig. 15. Results for the StdSystem_30 edge: (a) MTF curves from 2016 runs, (b) MTF curves 
from first 2017 (2017a) runs, (c) deviation to the model from 2016 runs, (d) deviation to the 
model from first 2017 (2017a) runs. 

 

Fig. 16. Last 2017 (2017b) results for the StdSystem_30 edge: (a) MTF, (b) deviation to the 
model. 
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Table 3. Results at Nyquist frequency for StdSystem_30 edges (without D for 2017) 

 ACT 2016 ALT 2016 ACT 2017b ALT 2017b 

Mean 0.08 0.09 0.10 0.09 
Standard deviation 0.04 0.04 0.01 0.01 
Max-min 0.11 0.13 0.04 0.02 

Initially, for this second case, there were two singular results. The successive reprocessing 
for case A clearly improved the result. Except for very low frequencies, the discrepancy 
between the participants is small. 

5.3 Results for apnn edge 

The 2016 and 2017 MTF curves and the discrepancy for the apnn edge are shown in Fig. 17. 
Table 4 gives the 2016 and 2017 MTF values at Nyquist frequency. 

 

Fig. 17. Results for the apnn edge: (a) MTF curves from 2016 runs, (b) MTF curves from 2017 
runs, (c) deviation to the model from 2016 runs, (d) deviation to the model from 2017 runs. 

Table 4. Results at Nyquist frequency for apnn edge (without D for 2017). 

 ACT 2016 ALT 2016 ACT 2017 ACT 2017 

Mean 0.20 - 0.21 - 
Standard deviation 0.03 - 0.01 - 
Max-min 0.07 - 0.02 - 

For this case, the curves are in agreement except for D. It appears that this approach has 
difficulties when processing this type of edge (compare to cgpnn below) which was not 
solved with reprocessing in 2017. 

5.4 Results for cgpnn edge 

The 2016 and 2017 MTF curves and the discrepancy for the cgpnn edge are presented in Fig. 
18. Table 5 shows the corresponding MTF values at Nyquist frequency. 
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Fig. 18. Results for the cgpnn edge: (a) MTF curves from 2016 runs, (b) MTF curves from 
2017 runs, (c) deviation to the model from 2016 runs, (d) deviation to the model from 2017 
runs. 

Table 5. Results at Nyquist frequency for cgpnn edge 

 ACT 2016 ALT 2016 ACT 2017 ACT 2017 

Mean 0.13 - 0.14 - 
Standard deviation 0.01 - 0.01 - 
Max-min 0.03 - 0.01 - 

For this case, there is a very good agreement among all results. The only significant 
deviation comes from C above the normalized frequency 0.8. 

5.5 Results for 14oct_P3 edges 

The 2016 and 2017 MTF curves and the discrepancy for the 14oct_P3 edge are presented in 
Fig. 1920. Table 6 gives the 2016 and 2017 MTF values at Nyquist frequency. 
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Fig. 19. Results for the 14oct_P3 edge: (a) MTF curves from 2016 runs, (b) MTF curves from 
2017 runs, (c) deviation to the mean from 2016 runs, (d) deviation to the mean from 2017 runs. 

Table 6. Results at Nyquist frequency for 14oct_P3 edges (without D for 2017) 

 ACT 2016 ALT 2016 ACT 2017 ALT 2017 

Mean 0.12 0.14 0.12 0.13 
Standard deviation 0.02 0.03 0.01 0.02 
Max-min 0.05 0.07 0.04 0.04 

For this first case with actual satellite image data, there is good agreement between the 
results except for D at low frequencies. Once again, it looks like a problem related to the type 
of edge and resulting MTF shape. 

5.6 Results for 15aug_P3 edges 

The 2016 and 2017 MTF curves and the discrepancy for the 15aug_P3 edge are shown in Fig. 
20. Table 7 gives the corresponding MTF values at Nyquist frequency. 
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Fig. 20. Results for the 15aug_P3 edge: (a) MTF curves from 2016 runs, (b) MTF curves from 
2017 runs, (c) deviation to the mean from 2016 runs, (d) deviation to the mean from 2017 runs. 

Table 7. Results at Nyquist frequency for 15aug_P3 edges (without D for 2017). 

 ACT 2016 ALT 2016 ACT 2017 ACT 2017 

Mean 0.12 0.13 0.12 0.13 
Standard deviation 0.02 0.02 0.01 0.02 
Max-min 0.05 0.06 0.02 0.04 

For this actual case, there is a good agreement between the results except for D at low 
frequencies, between 0.1 and 0.2. 

9. Conclusion 

A test of several algorithms derived from the widely used edge method has been performed. 
For the test, a set of images of edges was created, mixing both simulations and actual images, 
and was made available to the participants without any information about the edges, PSF, or 
MTF. Each participant processed the edge data set to estimate the MTF curve for each edge. 
Thus, the first comparison of the MTF corresponds to blind test results. A second one 
occurred one year later which allowed possible improvements to the processes or the inputs. 

For either the first or for the second comparison, none of the participants was able to 
always produce the best estimate (the closest to the expected one for simulation or the closest 
to the mean of the measurements for the actual cases). This experiment showed that, in some 
cases, the error or inaccuracy may be MTF shape dependent. Thus, a validation should 
include several MTF shapes. It also stressed that the results may seem to be consistent when 
looking at MTF value, at Nyquist frequency, but are not always consistent for the whole 
curve. Indeed, for some participants, the quality of the assessment depends strongly on the 
shape of the MTF curve. All participants presented their methods and no theoretical problems 
were found. The explanation of some unexpected results could possibly be a bug in the 
software or some inadequate inputs. This emphasizes that a full understanding of the method 
is required to obtain reliable results. 

To extend this comparison study, a reference data set composed of edge image and 
corresponding MTF curves will be built. It is planned to give access to edge images through 
the CEOS CalVal Portal (http://calvalportal.ceos.org/) and make them available to a broader 
audience. In order to promote blind testing as well as to enhance and enlarge this reference 
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data set, it is planned to deliver the reference MTF curves upon receipt of MTF curves from 
user. Moreover, users are invited to propose new images to enlarge the data set. This paper 
associated with the reference data set can be seen as a new tool to implement and/or check 
MTF measurement relying on the slanted edge method. 
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