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FORWARD AND BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH
NORMAL CONSTRAINTS IN LAW

PHILIPPE BRIAND, PIERRE CARDALIAGUET, PAUL-ERIC CHAUDRU DE RAYNAL, AND YING HU

ABSTRACT. In this paper we investigate the well-posedness of backward or forward stochastic differential
equations whose law is constrained to live in an a priori given (smooth enough) set and which is reflected
along the corresponding “normal” vector. We also study the associated interacting particle system
reflected in mean field and asymptotically described by such equations. The case of particles submitted
to a common noise as well as the asymptotic system is studied in the forward case. Eventually, we
connect the forward and backward stochastic differential equations with normal constraints in law with
partial differential equations stated on the Wasserstein space and involving a Neumann condition in the
forward case and an obstacle in the backward one.

1. Introduction.

In this paper, we are concerned with reflected (forward or backward) Stochastic Differential Equations
(SDE) in the case where the constraint is on the law of the solution rather than on its paths. This kind of
equations have been introduced in their backward form in [4] in the scalar case and when the constraint
is of the form [ hdp > 0 for some map h : R — R satisfying suitable assumptions and where z denotes
the law of the considering process. Such a system being reflected according to the mean of (a functional
of) the process, the authors called it a Mean Reflected Backward Stochastic Differential Equation (MR
BSDE). In [3], the authors studied the forward version (hence called MR SDE) in the same setting as
well as its approximation by an appropriate interacting particle system and numerical schemes. In [20],
weak solution to related forward equations with constraint! are built. In the same framework, let us also
mention the work [6] where the approximation of MR BSDE by an interacting particle system is studied,
[19] where MR BSDE with quadratic generator are investigated and [5] where MR SDE with jumps are
considered.

The aim of this work consists in enlarging the results of [3, 4, 6] to the multi-dimensional case and for
rather general constraint sets on the law in the backward and forward cases. Mean-field interacting
particles counterpart of such systems are also investigated as well as the so called common noise setting.
Eventually, we also aim at introducing the deterministic counterpart of such reflected stochastic system
through Partial Differential Equation (PDE) stated on Wasserstein space of Neumann (in the forward
case) or obstacle (in the backward case) type.

1.1. Outline of the paper.

On SDE with normal constraint in law. Given coefficients? (b, o) : Ry x R® — R™ x R"*¢ a MR
SDE is an equation of the following form

t t
Xt:XoJr/ b(s,Xs)der/ o(s,Xs)dBs+ Ky, t>0,
0 0
¢ (1)
BA(X)) 20, [ BB(X)dK, =0, t0,
0

The second and fourth authors have been partially supported by the ANR project ANR-16-CE40-0015-01. For the third
Author, this work has been partially supported by the ANR project ANR-15-IDEX-02 .

1Therein, the author consider SDE with constraint in law but without the Skorokhod condition.

2which could be assumed to be random, see the results below.
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where B is a Brownian motion, A is a function from R™ to R, the law of the initial condition X is such
that E[h(Xo)] > 0 and where, for the time being, n = d = 1.

When focusing on this forward system, there are several ways to understand the mean reflected SDE.
One striking example lies into the equation satisfied by the law of the solution X, which turns out to be a
reflected Fokker-Planck equation. In other words, solving the above system translates into searching for
solution to the Skorohod problem stated on Partial Differential Equation of Fokker-Planck type. Indeed,
let (X, K) be a solution of the above system (which, according to [3], under suitable assumptions, exists,
is unique and where the process K is supposed to be a deterministic increasing process starting from 0).
By Itd’s formula, the law p; = [X¢] of X; satisfies, in the sense of distributions,

dipu () = {Dz(,ut(ac)b(t, ) + %Di(ut(ﬂ?)a(ﬁ w))}dt + Dy (pe(x)) dE,

/hdutzo /Ot(/hdus)szzo, t>0,

where a = o2. Note that, as this system is deterministic, the deterministic assumption assumed on the
reflexion term K really makes sense.

From this perspective it is natural to look for a solution to the more general problem (allowing d and n
to be greater than 1):

() = {div(ua()b(t.2)) + 5 7 D2, (e 1.2yt + v (e (@)D, H () ) s
t v (2)
H(u) >0 /H(us)dKS:O, t>0,
0

where H is a map from P?(R") to R (where we denote by P?(R™) the set of Borel probability measures
on R™ with finite second order moment) and D, H denotes the Lions’ derivative (cf. [12, 24] and the
discussion at the end of the Introduction). Of course, when H(u1) = [, h(z) pu(dzx), D, H(p)(x) = Vh(z).
The map D, H()(-) can be viewed as a gradient of H in the space P(R"™) (see [12, 24] and the discussion
below), so that the “outward normal” to the set O := {u, H(u) > 0} at a point p € 9O is, at least
formally, D, H (1)(-). For this reason (2) can be understood as the Fokker-Planck equation with a normal
reflexion. The probabilistic counterpart of (2) then writes as the following reflected SDE:

Xt:XO—i—/O b(st,Xs)ds—i—/O a(s,Xs)st—i—/O D, H([X.))(X,) dK,, ¢ >0, .
H(X) 20, [ H(X)dK =0, t=0
0

Indeed, if one denotes by (X, K) a solution of the above system, by It&’s formula, the law p; = [X3] of
X, satisfies system (2) in the sense of distributions. The above problem is actually no longer a “mean
reflected” SDE but a SDE with normal constraint in law since the constraint can now be written in a
general form.

In comparison with [3], we are led to deal with general constraints and possibly multi-dimensional valued
processes. Considering this more general setting explains why we now specify the direction of the reflec-
tion (which is done along the “outward normal”) while in [3] the reflection is oblique along the unitary
vector. Indeed, when working in this framework, the explicit formula obtained in the aforementioned
work for the process K is not valid anymore, so that we cannot “just add it” to ensure that the constraint
is satisfied.

In (2) the Fokker-Planck equation is deterministic, which explains why the reflection term K is naturally
deterministic. A further generalization of (2) consists in considering instead a stochastic Fokker-Planck
equation reflected on the set O = {u, H(u) > 0}. Given the coefficients (b,00,01) : Ry x R* —
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R x R"*4 x R"*4 and a d—dimensional Brownian motion W, one may look for a solution to the system

() = 3 div(ua()olt, 2)) + 5 3 D2, (u(w)ass (¢, )

v (1 (@) (b, 2)AW3) + div (ue(@)Dy H () () diy, Y

t
H(u) >0 /H(us)dKS:O, t>0,
0

where a = (ogoy + o107) and (K) is a continuous nondecreasing process adapted to the filtration F"
associated with W. The way we added the stochastic perturbation in the above reflected stochastic
Fokker-Planck equation relies on the probabilistic interpretation of this problem. Indeed, given a Brow-
nian motion B (supposed to be independent of W), the above system precisely gives the dynamic of the
conditional law (conditioned by FW') u; = [X;|W] of the solution of the system

XtX0+/O b(s,XS)der/O Uo(S,XS)dBS+/O 171(,9,)(5)dI/V5+/O D, H([X:|W])(Xs) dK, .
H(X,|W)) > 0, / H(X,|W))dKs =0, t>0.
0

This is a reflected SDE with normal constraint on its conditional law. For reasons that will be clear in
few lines (and relies on the mean field interacting particles counterpart of such a system), we call this
case the normal reflexion in law with a common noise.

Let us now discuss the interpretation of (5) (or (3)) at the particles level. Consider the system (X}) of
N particles, where, fori=1,..., N,

t t t t
Xj = Xj+ / b(s, XT) ds + / oo(s, X7) dBi + / o1(s, X)W, + / DL H (u) (X3 dKY,
0 0 0 0
1 N t (6)
i =5 Yo HE) =0 [ R =0 t=0,
i=1

Here the B and W are independent Brownian motions. The initial conditions of the particles X} are i.i.d.
random variable with law o and are independent of the B? and W. Eventually, K is a continuous,
nondecreasing process adapted to the filtration FV generated by the B, X} and W. Assuming that
H (o) > 0, this system is, conditionally to Qx = {H (ud’) > 0}, a classical reflected SDE in (R")V with
normal reflexion on the boundary of the constraint

Oy = {(Jcl,...,xN) S (RH)N, H (%Zézl> >0}.

Following [24], we understand W as a common noise, since it affects all the players. Note that we have
chosen to describe the mean field limit in the common noise case, but it reduces to the case without
common noise if we let o7 = 0. It turns out that the limit system of (6) is nothing but our SDE with
normal reflexion in its condition law (5): as the number of players tends to infinity, the reflection term K%
in (6) no longer depends on the position of the other particles, but only on their statistical distribution
conditioned by the common noise.

Let us just emphasize that, above, the law of the initial condition is assumed to satisfy the constraint
in order to work conditionally to the event Q. This assumption relies on the fact that H(po) > 0 is
not a sufficient condition to ensure that H(u)") > 0. In order to remove such a strict inequality, one
may either work conditionally to the event Qn, = {H(u’) > —nn} which, provided that (ny)n>o is
chosen appropriately, becomes of full measure as N tends to the infinity (so that the particle system
solves the “original” Skorohod problem asymptotically) or either construct suitable initial conditions Xé
whose empirical measure fi{) satisfies (under suitable assumptions) H (') > 0 and which is such that
Ay — pas N — oco. In this last case, for any N > 1, system (6) with Xé instead of X{ is a solution of
the Skorohod problem in mean field on Oy. We refer to Sections 3.2 and 4.2 respectively for more details.
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We eventually conclude this outline on SDE with normal constraint in law by giving another interpretation
of (6) (or of (3) when o7 = 0) through the dynamic of the family of mapping (U;);>0 from P?(R™) — R
defined by Vtg > 0, U, (p0) = G([X2#0|W]), for some given G : P2(R") — R. Enlarging naively the
definition of viscosity solution on finite dimensional space, one can show that the dynamic of U is given
(in the viscosity sense) by the the following (backward) Neumann problem in the set O = {u, H(u) > 0}:

() = 0Uw) ~ 5 [ Tr((a(t.9)0,D.U ) W) uldy)

N /R DLU(t, 1) (y) - b(t, y)p(dy)

B %/Rann Tr (D}, U(t, ) (z, y)o1 (t, z)o] (t,y)) p( dz)p( dy) = 0 (7)

in (0,7) x O,
(i) [ DLV )(0) - D () ildy) =0 (0.7) x 2O,
(113) U(T', ) = G(p) in O,

where a = 0o} + o107. Condition (ii) is exactly the Neumann boundary condition associated with the
set 0. Conversely, any smooth solution to (7) can be written as E [G([X;HW])]

BSDE with normal constraint in law. The above discussion leads to investigate whenever the original
constrained in law problem stated on BSDE from [4] can be generalized. We here aim at showing that
the generalization done in the case of forward SDE remains valid, up to the common noise setting (and
under a slightly different set of assumptions, see the discussion in the next paragraph). Concerning this
last framework, it seems that the results remain valid, provided additional assumptions (insuring suitable
boundedness conditions on Z) are satisfied. Nevertheless we do not explore it in order to short the current
paper.

As underlined in the previous paragraph, we aim at extending the results of [4] in a multi-dimensional
setting. Following (3), we are lead to investigate the problem

T T
Y; =&+ st;,Z)ds—/ Z dBs +/ D, H([Ys))(Ys)dKs, 0<t<T,
(8)
H([Yt])ZO, 0<t<T, /H =0,

where & € Lo(Fr), where the processes Y, Z are respectively of n and n x d dimension and where
fi QxR xR® x R4 — R"™. Here again, H is a map from P?(R") to R and D, H denotes the Lions’
derivative so that the “outward normal” to the set O := {u, H(u) > 0} at a point u € 0O is again, at
least formally, D, H (u)(-). For this reason (8) is now called a BSDE with normal constraint in law.
Also we aim at investigating the mean field counterpart of such a system, extending to the current
framework the results obtained in [6]. Namely, we consider the interacting particle system

T T
=¢ +/ f(s, Y, Z5%) ds—/ ZZWdBJ / Dy H () (V)KL
¢ t

(9)
T
e 0,1 u Zéw Hu) 20, [ HENaEY =0, 1<i<N,
0

where for each i, j, Z%7 is a n x d matrix, {B'}1<;<y are N independent d-dimensional Brownian motions
and K% is a continuous non decreasing process. Assuming that H(ur) > 0 this system is, conditionally
to Qn = {H(uy) > 0}, a classical reflected BSDE in (R™)¥, with normal reflexion on the boundary of

the constraint
N
On = {(yl,---,yfv) € RN, H (N 21 5.%-) > 0},

and (8) is precisely the asymptotic dynamic (as N — +00) of one of the particles in (9). As in the
forward case, the strict inequality assumed on the law of the terminal condition comes from the the fact
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that H(ur) > 0 is not a sufficient condition to ensure that H (%) > 0. We refer to the corresponding
point in the above discussion on forward SDE with constraint in normal law and to Sections 3.2 and 4.2
respectively for more details to handle properly such a problem.

Eventually, one may wonder if, for the one dimensional case when Y is a real process and in a Markovian
set up (i.e. when £ = ¢(Xr) for some ¢ : R" — R and some diffusion process X evolving according to
coefficients b, o : Ry xR™ — R and to the scalar valued Brownian motion B), the solution of the system (8)
can be written in term of the position X and its law thanks to a decoupling field u : Ry x R x P?(R") — R
and if the dynamic of such a decoupling field is given thanks to an obstacle problem, as shown in [22]
when the reflection is on the path. Assuming that the generator f is deterministic we show that such a
decoupling field exists and, when f does not depend on the Z argument, we obtain that u solves, in the
viscosity sense, the following obstacle problem on the Wasserstein space:

min {{(&t + Lyu(t, x, p) + f(t, z,ult,z, 1)) };
H(u(t,-, w)ip) p =0, on [0,T)x R™ x P*R"),
U(T, ) ) =9,

where for any probability measures v and mesurable function ¢, @fr denotes the push-forward of the
measure v by the map ¢ and where £ is given by, for all smooth ¢ : [0, T|xR™ x P?(R") — R

1

Loltaa) = 5 [ TeI((o0") (600, Dupli) b2 ) (0)] ldy) + | Do) b)) - b))

(10)

5T [((00") (1, ) D3p(t, 2, )] + Dt 2,1) - blt, 2)

Main results. We now describe our main results. In all the cases (forward setting with and without
common noise and backward setting), the existence part differs from the ones in [4] or [3]: we build the
solution by a penalization technique inspired from [25, 26]. Also, and still in all the cases considered,
our approach for the existence part heavily relies on suitable bi-Lipschitz property of the map H which
is assumed to hold in a neighbourhood of the boundary of the constraint set.

Concerning the forward equations, we first prove in Theorem 6 that (1) is well posed when K; =
f(f Vh(X;)d|K|s for stochastic Lipschitz in space coefficients bounded in Ly at point 0 uniformly in
time. We start by handling this specific case for the following reasons: firstly, this allows to introduce the
main tools needed for our analysis in a simple setting; secondly, the proof is done under some concavity
assumption assumed on H(u) = [ hdp (which will be no longer assumed for the rest of the forward
part) that allows to work with diffusion coefficients not necessarily globally bounded in space (and then
enables to sketch what will be usefull in the backward setting); thirdly, this allows to weaken a little bit
the bi-Lipschitz assumption on the constraint function H (through the map h) and finally, thanks to a
suitable transformation, this allows to connect the results obtained in this case of normal reflection with
the previous results of [3] where the reflection is oblique.

We then enter our framework and we prove in Theorem 8 and Theorem 11 the well-posedness of (3) and
(5) respectively: we show that, under suitable assumptions on the data, there exists a unique solution to
these equations. We emphasize that in both cases the uniqueness is shown to hold pathwise and in law.
We present both results separately because they involve different sets of assumptions: for instance, for
(3), we can allow the diffusion b to be unbounded while it is not the case for problems with common noise.
The case with common noise also requires stronger assumptions on the constraint H. One reason for this
is that, as can be seen on the Kolmogorov equations, (2) (which is associated with (3)) is a deterministic
reflexion problem, while (4) (associated with (5)) involves a diffusion term. As a consequence, for (3),
the process (K}) is deterministic and Lipschitz continuous, while it is random and merely continuous for
(5)-

Let us again emphasize that in a recent paper [20], Jabir considers process very similar to (3) (i.e.
satisfying same type of constraint but not enunciated or either identified as a solution of Skorohod problem
on the law). Using a different penalization approach and working under weaker regularity assumptions,
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provided that the constraint set is convex and the diffusion does not degenerate, he builds weak solutions
to the problem through tightness of the law of the penalization. However no uniqueness result is stated
in [20] and propagation of chaos as well as the common noise setting are not discussed.

Next, we present in Theorem 17 a conditional propagation of chaos for the particle system (6). In other
words, we show that system (6) converges, as N — +00, to the reflected SDEs with common noise (5).
Let us recall that [3] already studied the propagation of chaos in the one dimensional setting. The main
differences with [3] is that we work here with a normal reflexion (in [3] it was oblique) and in a common
noise setup. The convergence rate are also explicitly given.

Eventually, we make the connection with the Neumann problem on the Wasserstein space. This connec-
tion remains at a basic level, as we only prove is that the map U defined as U (to, [Xo]) = E [G([X7|W])]
is a viscosity solution of (7) in Theorem 20 and that any smooth solution of (7) can be written as
U(to, [Xo]) = E[G([X7|W])] in Proposition 21. Here, the notion of viscosity solution we adopt consists
in natural extension of the finite dimensional definition by testing the map U against smooth functions
from P2(R™) to R, the smoothness being understood in the Lions’s sense. In that respect, we follow the
definition proposed in [13] and extend it to the case of Neumann condition. Nevertheless, we do not prove
a uniqueness result which, in infinite dimensional metric space, appears to be involved and definitely out
of the scope of this paper. Let us just mention that, in that case, it seems to us that the map U could
be shown to be the unique classical solution of (7), avoiding then the difficulties relying on the notion of
viscosity solution. Again, such an investigation exceeds the scope of this paper.

Concerning the Backward equation, we first give in Theorem 24 an existence result for (8). This result
relies on the concavity property assumed on H in the current setting and is done through a three steps
scheme: we first tackle the case of deterministic bounded and space homogeneous driver; we then extend
the result to a stochastic generator in L?(Q, L%([0,T]) and eventually to a space dependent generator.
As in the forward case without common noise, the process (K;) is shown to enjoy a Lipschitz property.
Again, uniqueness holds pathwisely and in law.

Then we construct in Section 4.2 an interacting particle system satisfying a Skorohod problem in mean
field of type (9) and prove in Theorem 32 that the interacting particle system converges to (8) (meaning
that (8) precisely gives the asymptotic dynamic of one of the interacting particles). Again, we specify
the rate at which system (9) converges to (8).

Finally, thanks to our well-posedness result, we investigate the obstacle problem (10) through (decoupled)
Forward-Backward SDE (FBSDE) with normal constraint in law (on the backward part). When the driver
f no longer depends on the Z—variable, we show in Theorem 36 that the FBSDE with normal constraint
in law admits a decoupling field u which satisfies, in the viscosity sense, the PDE (10). The reason why
the driver is not allowed to depend on the variable Z relies to the lack of comparison principle when
considering non-linear equations which makes the usual procedure to tackle this term unavailable. For
the same reasons as pointed out for the Neumann problem, we do not prove any uniqueness result of
viscosity solutions and let it for future considerations.

1.2. Organization of this work. The paper is organized in the following way. We complete the
introduction by describing our notations, discussing the notion of Lions’s derivative and presenting the
various It6’s formulas used in the text as well as the tools needed to ensure the convergence of the particle
systems. Section 2 is devoted to the SDEs with normal reflexion in law: starting with the simplest setting
(1) to illustrate the method of proof, we then show the existence and the uniqueness of the solution of (3)
(Theorem 8). SDEs with normal reflexion in conditional law (i.e., the “common noise" case) are studied
in Section 3, where we prove the well-posedness of (5) (Theorem 11), the propagation of chaos (Theorem
17) and make the link with the Neumann problem (Theorem 20 and Proposition 21). Finally, the case
of backward equation is treated in Section 4, where we also prove the existence and the uniqueness of
the solution to (8) (Theorem 24), the propagation of chaos (Theorem 32) and a Feynman-Kac formula
(Proposition 36).

1.3. Notations and Mathematical tools. Throughout the paper we will make an intensive use of
Lions’s derivative, introduced in [24] and later discussed in [8, 11, 12, 14]. Let us recall that other notions
of derivatives in the space of measure have been developed in the literature: see for instance [1, 23, 27].
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Related to Lions’s derivatives, we also need several It6’s formulas, allowing to compute the value of a
map depending on the law (or the conditional law) of a process. These formulas have been developed in
various stages of generality in [8, 11, 12, 14]. Nevertheless, it is not yet clearly stated that this formula
holds for reflected processes, especially when they are submitted to a common noise as it is the case in
(5). Therefore, we prove below that such Itd’s formulas can be generalized to our framework. Eventually,
in order to ensure the convergence of our particle system (6) and (9), we provide at the end of this part
a Lemma allowing to control the uniform convergence in 2-Wasserstein metric of an empirical measure
of conditionally i.i.d. processes.

Notations. Throughout the paper, we work on a complete probability space (2, F,P) with a complete
and right-continuous filtration {F;};>0. We denote by & the o-algebra of progressive sets of 2 x Ry and
let B and W be two independent d-dimensional Brownian motion with respect to this filtration. We
denote by F" the completed filtration generated by W and, given a random variable X on (Q, F,P), let
[X] be its law and [X|W] be its law given F".

Let P(R™) be the set of Borel probability measures on R™ and, given ¢ > 1, let P4(R™) be the subset of
measures m in P(R™) with finite ¢ order moment:

M) = [ laltuldo) <o, e PR,
We denote by Wa(u, it’) the Wasserstein distance between two measures of P?(R™). Let us recall that
AN  y21) /2
Wa(u, i) = inf (E[IX - X)),

/

where the infimum is taken over all random variables (X, X’) such that [X] = pu, [X'] = /.

Derivatives. Given a map H : P?(R") — R, we denote by D, H : P*(R") x R™ — R™ its derivative,
when it exists, in Lions’s sense (or “L-derivative"): see [24] or Definition 5.22 in [12]. Let us recall that
H has an L-derivative at a measure po € P?(R") if there exists a random variable Xy with [Xo] = uo at
which the lifted map H : L?(Q) — R, defined by H(X) = H([X]), is differentiable. If H is L-differentiable
on P2(R"), then the derivative of H takes the form VH(X) = D,H([X])(X) ([24] or [12, Proposition
5.25]). As explained in [12, Remark 5.27], the derivative D, H allows to quantify the Lipschitz regularity
of H. Namely, H is Lipschitz continuous on P?(R") if and only if

H, = sup / D, H (1) (x)|P u(dz) < +o0,
wEPP(R™) JR™

with p = 2. In this case, Hs is the Lipschitz constant of H. We will often require that the map VH itself
is Lipschitz continuous on L?(£2): in order words,

VX,Y € L3(Q),  E[ID,H(X])(X) - DH(Y)(Y)P| < C*E[1X - Y]]
Then it is proved in [12, Proposition 5.36] that (up to redefining D, H),
Vj e PARY), Va,a' €RY, D H(u)(x) — DuH () ()] < Cla — ]

Second order derivatives. We now discuss further regularity of H. We say that H is partially C? if
the map y — D, H(u)(y) is continuously differentiable with a derivative (u,y) — 0,D,H (1)(y) jointly
continuous on P2(R™) x R™ (see also [12, Definition 5.95]). We say that H is globally C? if it is partially
C? and if the map p — D, H(p)(y) is L—differentiable with (x,y,y’) — DZH(M)(y,y’) continuous (see
also [12, Definition 5.82]).

Itd’s formulas. When H is partially C?, It6’s formula holds for the law of a diffusion of the form
dXt = btdt + O'tdBt

where (b;) and (o}) are progressively measurable with values in R™ and R"*? respectively and satisfy

T
E / (1bs]2 + |os]*)ds| < +oc.
0
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Namely, if H is partially C? with

sup /
peP2(R?) JRn

0,0, H(1)(w)| ldy) < +oc. (11)

then
() = H() + [ ED )X -blds+ 5 [ B @o,D (X)X s (12

where as = o507 [12, Theorem 5.98].
A similar 1t6’s formula holds for the conditional law of an 1t6’s process of the form,
dX; = bydt + o)dBy, + o} dW,
where B and W are independent d—dimensional Brownian motions living on different probability spaces

(Q9, FO P% and (Q', F1,P!) and where b, 0° and o! are progressively measurable with respect to the
filtration generated by W and B, with
E

T
/ (Ibal? + 100" + [0 [1)ds | < +oo.
0

We assume that H is globally C? with

sup, [ 1D HG@) P plda) + [ 10,0, H () o)+ [

nep?

Then, letting p;(w') = [X¢|W](w!), we have, P!—a.s.,

) | D2, H () (2, )| p(d)aldy) < +oc.

nxRn

() = H(juo) + / EO (D, H (1,)(Xa) - bs] ds + / E° [(01) DuH (1) (X,)] - dWW, (13)

+3 ) B 00D () X)) ds + 5 [ BB [T (D], H ) (X ol (51)°)] s

where X and 6! are independent copies of X and o' is defined on the space (Q0 x Q' P @ P'), while
as := (62(o)* + ol(cl)*). See [13, Theorem 11.13].

We actually need below more general versions of 1t6’s formulas (12) and (13) in which there is an additional
drift term BsdKs. In the generalization of (12), we assume that § is a continuous process adapted to the

filtration generated by B and that K is a deterministic, continuous and nondecreasing process process
with Ky = 0. We are then interested in the law (u:) of an Itd process

dXt = btdt + O'tdBt + ﬁtth-

Assuming, in addition to the conditions on b, o and H given above, that

E | sup |ﬂt|2 < 400,
te[0,T]
we have
H((X,)) =H([Xo]) + / E (D H([X,])(Xs) - by) ds + / E D H(X)(X,) A dEs  (14)

1t

+3 | BT (@0,D,H(X) (X)) ds.
where as = os0%. For the generalization of (13), we assume instead that S is a continuous process,
adapted to the filtration generated by B and W and that K is a continuous and nondecreasing process
adapted to the filtration generated by W with Ky = 0. We also assume

E | sup E° [|ﬂt|2] K%

te[0,T)

< +o0, (15)

We are then interested in the conditional law, given W, of the process

dXt = btdt + O'?dBt + O'tlth + /Btth.
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Under the above conditions on b, ¢°, ¢!, H, 8 and K, we have, P! —a.s.,
t t
H(pe) = H(po) +/ E% [D,, H (115)(X;) - bs] ds +/ E% [(04)*DyH (1s)(Xs)] - AW
0 0
t 1t
+ [ EOID,HG) () Bl K.+ 5 [ BT (0.0, DuH ) (X)) s (16)
0 0

+ % /0 EOE° [TI“ (DZHH(,US)(X& XS)O—; (5—;)*)} ds.

Proof of (14) and (16). Formula (14) and (16) can be derived from (12) and (13) respectively by reg-
ularizing the process K. We give the details for (16) to fix the idea, as (14) can be proved with the
same argument. We first extend K to R by setting K; = 0 for ¢ < 0 and then let K¢ := ¢° *« K, where
¢°(s) = e tg(s/e), ¢ being a smooth nonnegative kernel with compact support in R;. Then, K¢ is a
smooth nondecreasing process adapted to W. Let us set

t t t t
X; =X, +/ bsds +/ odB; +/ ordW; +/ Bs(K*®).ds
0 0 0 0
and pf = [XF|W]. By (15) and the fact that K is 7" adapted, we have
T
E [ / |BS<K8>;|2ds] < I6Y I | sup B (1) x| < 4o
0 0<s<T
So, by Itd’s formula (13), we obtain
t t
H(pg) = H(po) +/ E° Dy H (115)(X) - bs] d8+/ E° [(00) Dy (1) (X3)] - AW
0 0

+ [ D) (000) - (Vs + 5 [ B (T (0,0,D, i) (X)) s

1" o= . s
+ 5/0 E°R° [Tr (Di#H(,ui)(XSE,XSE)U;(U;) )} ds.
In order to let € — 0, we first prove the uniform convergence of X¢ to X. We note that
t t 2
E [ sup | XE — Xﬂ <E / (B — / Bud® (u — $)du)dKy| | |
0 s

sup
0<t<T 0<t<T
where
t t 2
sup /(ﬂs—/ Bud®(u — s)du)dKs| <2 sup |ﬂs|2K%,
0<t<T |JO s 0<s<T

the right-hand side being integrable by (15). Fix § > 0 small. By the continuity of 5, we have, uniformly
inse(0,t—9),

t
lim/ Bud®(u— s)du = limo/ Bud® (u — s)du = f3;.
s £ R

e—0

So, a.s.,

lim sup =0.

e—0 §<t<T

t—4§ t 2
/ (Bs — / Bud® (u — s)du)dK,
0 s

On the other hand,

<2 sup |Bul*(Ki— K—s)v0)-
0<u<lT

/( LG / Bt — )du)dE,

t—8)VO0

So, by the continuity of K,
2
=0.

lim limsup sup
020 e—0 0<t<T

/( C - / " 8060 — $)du)dES,

t—46)VO0
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We can then infer by dominate convergence that
. 2 .
lim E { sup | X7 — Xy ] =0 and thus lim E [ sup W3 (us, )| = 0. (17)
e—0 0<t<T e—0 0<t<T

By our assumptions on the data, one easily derive from this the convergence in Ly(2) of

H(uf)—H(uo)—/O E° [Dy, H (115)(X5) - bs] ds—/o E° [(05) D (1) (X5)] - dW,

~ 5 ) B I D] ds = 5 [ EOE [T (D}, ()0 Ko 02 s

to

H(ut)H(uo)+/0 E° [DyH (1) (Xs) - b dS/O E [(09)" Dy H (1) (X)) - dW,

1t 1 rt B -
~ 5 [ B @D Hu) (X)) ds — 5 [ BOE [T (D, H () (X, )0 (31)7)] d.
0 0
To complete the proof we just need to check that, in La(2),
t

tim [ B D, H(5)(X2) - 4] (K°Yods = [ B D) (X,) - i K. (18)

e—=0 Jo

Indeed

[ w000 I Yeds = [ ([ B DuHGE) 81605 — i) s,

0 0

where, by Cauchy-Schwartz and our assumption on D, H,

/Ot (/Tt E° Dy H (15)(X3) - Bs] de(s — ’r)ds) dK,

t, ot 1/2
< / (/ (B [IDuH () (X2)2])"? (B18.21) 7 6.(s — r)ds) d, < C (EO [ sup |/38|2D Kr.
0 T 0<s<T
The right-hand side of the above inequality is in L?(£2) thanks to (15). Using the uniform convergence
of s = E°[D, H (u)(XZ) - Bs) implied by (17), we can conclude exactly as in the proof of (17) that (18)
holds. (]

On uniform convergence of conditionally i.i.d. sequence of processes. The aim of this part
is to recast in the conditionally i.i.d. setting the result of [29] (see Theorem 10.2.7 therein) taking into
account the recent results obtained in [17] and in Chapter 5 of [12].

Lemma 1. Let (Q°, F° P%) and (Q', F1,P') be two different probability spaces. Let {X'}1<i<n be a
sequence of processes defined on (Q° x QY FO @ F1 PO @ P!) satisfying that the X* are, conditionally to
F1, ii.d. processes. Assume that there exists constants Co > 0, ¢ > 4 and p > 2 such that

E! [sup E° [|X, |9/ | < C

te[0,1]

and

EHXS - Xr|p|Xs - Xt|p]
E[1X: — X["]

Colt —r*, for0<r<s<t<l;
Colt —s], for0<s<t<I; (19)

VoO<s<t<l1

f— — )

E

sup |E0[|XUXS|2]|”] < Colt — s|P/2.

u€E[s,t]
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Then, setting us = [Xs|F'] and pl¥ = N—1 Zl]\il dx:, there exists a constant C' > 0, depending on n, p,
q and Cy only, such that
N=V2HP 4 g < 4,
E {Sup Wf(gf,us)] <Cey =0 x{ NYHUp(log(1+ N))'=2/P if d = 4, (20)
o<T N=20=2/D)/d r g > 4,

Proof. Using a time discretization (t)o<r<m With constant time step 1/m of the interval [0; 1] we obtain
that
2(=N 2(=N 2

sup Wy (15, ps) < 3 max xp, + max Wy (figy , pie, ) +max — sup W (pe,, pue) ¢

s<1 k k kot <t<tpqa
where

xe=sw AWEEYN @) AWEGEY A,
te <t<tpi1

Now we have

E

te<t<tkt+1 tr<t<tp4+1

max - sup Wf(utk,ut)] < E

max sup E°[|X, — th|2]]

< EYP |max sup ’EO [|Xt — thﬂ ’pl
te <t<tk+1
< EVr Z sup ’EO [|Xt - Xy, |2] ’pl

L thSt<tria
Therefore, using third line in Assumption (19) we obtain

E

b <t<tp41

max ~ sup WQQ(,Ut;NMt)‘| < COm~YEP, (21)

Following now the proof of Theorem 10.2.7 of [29] we have

c
E < — 22
] < 72 -
which will lead to a negligible contribution. Concerning the last term we write
1/p
E max WQQ(/ZQZ, ,utk)] < ml/P (m]?XIE [ng(ﬂé\;’ /’Ltk)i|) ) (23)

Since (E%)2P/4]|X,|?|] < 4+00 P'—a.s. for some ¢ > 4, we have, from Theorem 2 case (3) of [17] (see also
Theorem 5.8 and Remark 5.9 in [12]) that there exists a deterministic constant ¢ > 0 such that P!— a.s.

NP2ifd<3
WP () , pae,,) < c(B0)?P/9[| Xy, |7]] N’Z/jglog(l +N))Pifd=4
NP ifd >4

Hence,
1/p N-YV2ifd <3
(E {max W5 (jagy, utk)D < cE [ sup (E°)2P/9[1X,|7]| { N2 (log(1+ N)) ifd =4 (24)
g 0<i<1 N-2ifd> 4
We conclude by optimizing over m. O

Remark 2. We emphasize that, when working with i.i.d. sequence of processes, the above result holds
assuming only that

E[|X,—X?] <|t—s|, foral0<s<t<1,
instead of the third line in (19). In such case the control in (21) is direct and is m™! (this follows
essentially from the fact that in that case we have E = E° so that p could be, formally, co). The resulting
rate of convergence are then given by the ey defined above with p = oo therein up to the ad hoc constant.
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2. SDEs with normal reflexion in law.

In this section, we are concerned with the existence and uniqueness for the solution of (3). To avoid
unnecessary repetitions, we postpone the discussion of the particle system and of the Feynman-Kac
formula to the more general setting of the SDE with normal reflexion in conditional law. As a warm up
we start by studying

t t t
X: = Xo +/ b(s, Xs)ds +/ o(s,Xs)dBs +/ Vh(Xs)dKs, t>0,
0 0 0
t (25)
E[h(X,)] > 0, / E[h(X)]dK, = 0, ¢ >0,
0

which is the normally reflected version of (1).

2.1. Warm-up. In this subsection, we study the case where H(p) is given by [ hdp in the spirit of the
works [4], [3]. Roughly speaking, we extend the results of the previous papers to the multidimensional
setting.

In the following, we say that assumptions (Hwu) hold when the following assumptions are in force:

(Hc): The functions b: Q x Ry x R" — R™ and 0 : Q x R, x R” — R"*? are measurable with
respect to £ ® B (R™) and
(i) For all T' > 0, there exists Ly such that, P-a.s., for each ¢ € [0, T7,

Vo € R, Vy € R", [b(t, ) — b(t,y)| + |o(t,x) — o(t,y)| < Lr |z —yl;

(ii) For all T > 0,

sup E [[b(t,0)[* + |o(t,0)[*] < +oc.
t<T

(Hh): The function h : R® — R is C? with |V?h|s < 0o and
(i) h is concave;
(i) For all z € R", |[Vh(z)[* > 0;
(iii) There exists g € R™ such that h(zg) > 0.
(HO): The initial condition is Fy—measurable, square integrable and H ([Xo]) > 0.

Before going further, let us recall that, in this subsection, H ([Xo]) = E[h(Xj)].

Remark 3. Let us observe that the assumption (Hh)-(iii) is needed to ensure that the set

{MGPQ(R”) H() = /hduZO}

is not empty. For example, if h(z) = —e™* this set is empty. Moreover, when (Hh) holds true the set

{u € P2(R"™): H(p) = /hdu > 0}
is also non empty since it contains, in particular, a Dirac mass. Indeed, let (x:);>0 be the solution to
Z'(t) = Vh(z(t))dt, t>0, x(0) = zo.

Then, for ¢t > 0,

t t

h(z(t)) = h(zo) +/ |Vh(x(s))|2d52/ |Vh(z(s))|*ds > 0.

0 0
Remark 4. Let us point out that the concavity of h allows to weaken the assumption on Vi used in [4]
and [3] namely: there exists 8 > 0 such that

YV € R™, |Vh(z)|> > 8.

We only assume here that |[Vh|? does not vanish instead of being bounded from below by some positive
constant. Moreover, the gradient of h is only supposed to have a linear growth instead of being bounded
as assumed in the two papers mentioned above.
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To conclude the comparison with [4, 3], let us mention that, in the one dimensional case, one can switch
from the framework of the two quoted papers, namely

t t
Pt:XO—i—/ d(s,PS)ds—i—/ S(s,Ps)dBs + K, t >0,
0 0

suro 20, | B[R] dK, =0, >0,

with K deterministic to the setting of (25) by the transformation P, = F(X;) where

* dx

Definition 5. By a solution to (25), we mean a couple of adapted and continuous processes (X, K), K
being deterministic and non decreasing with Ky = 0, such that (25) holds.

Theorem 6. Under assumptions (Hwu), the SDE (25) has a unique square integrable solution with K
deterministic.

Proof. Let us start by uniqueness. Suppose that (X L KX ) and (Y, K Y) are two solutions of (25). Then,
we deduce from It6’s formula that

E[|X:—Y|*] = 2E [/Ot(xs —Y,) - (b(s, X,) — b(s, YS))ds} +E [/Ot lo(s, Xs) — (s, Ys)|*ds

t
+2E [/ (Xs —Ys) - (VR(X)dK — Vh(Ys)dKZ)} .
0
Since, h is concave, for all x € R", y € R", h(y) < h(x) + Vh(z) - (y — x). This last inequality rewrites
Ve e R", VyeR", (x —y) - Vh(z) < h(x) — h(y). (26)
Thus, using the Skorokhod condition together with the constraint, we have
t ¢
[ B -y aRE < [ BRG] - E b ar <o
0 0
and, similarly,
¢
~E [/ (X5 —Yy)- Vh(Ys)dKSY] <0.
0

Using the fact that b and o are Lipschitz, we get, for all t < T,
t
E[|X: - Y|*] < (2Lr + L7) / E [|X, — Ys|*] ds,
0

and Gronwall’s lemma implies that X and Y are equal on [0, 7] for each T > 0.
Since X =Y, we get from It6’s formula, that for any ¢,

t
AX ;:/ E [|[Vh(X,)[?] dK¥
0

E[h(Xt)]E[h(Xo)]/O E[VR(X,)b(u, X,)] du—% /0 E [Tr (vzh(xu)ag*(u,xu))]du

— [EIVHYP) dKY = [ E[VACGL)P) dKY =AY
0 0

Thus the nondecreasing continuous functions AX and AY are equal. For any step function ¢ on [0, 77,

/O () dAY = / p(W)E [[VR(X,)?] dKY = / ()E [[VR(X,)2] dKY = / p(u)dAY. (27)

The previous equality hold true also for any continuous function on [0, 7] as uniform limit of step functions.
The map u+— E [|[Vh(X,)|?] is continuous and does not vanish since [Vh(z)|? > 0 for all z € R". As a
byproduct,

u— o(u) = E[|VA(X,)?]

is continuous and we get, plugging this ¢ in (27), KX = KX.
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Let us fix T > 0 and let us now construct a solution to (25) on [0, 7. For this, let us consider, for k > 1,
X% solution to the following McKean-Vlasov SDE:

t t t
X} =X +/ b(s, X)) ds +/ o (s,XF)dB, +/ Vh(XE) e (E[h(XE)])ds, t>0,  (28)
0 0 0
where the function vy, is defined as
Yp(z)=rife<—-1/k, tp(x)=—kre, if —1/k<x<0, tp(x)=0,ifz>0.
The function 1, depends on the constant r > 0 which will be chosen later.

Existence and uniqueness of solutions to (28) under the assumptions (HWu) follows from straightforward
generalizations of results from [10]. We set

it = [ e [h (x1)]) as,

and rewrite (28) as
t t t
th:XO—i—/ b(s,Xf)ds—i—/ a(s,Xf)stJr/ Vh(XF)dKE, t>o0.
0 0 0

Let us start with some L2 bounds. Let us compute |XF — X¢|? with the help of It6’s formula. We have,
for0<t<T,

+ t
xh ol = [ (0t x0) b X s [ o (s X5 i
0 0

t t
+ 2/ (XF—Xo) -0 (s,XF)dB, + 2/ (XF—Xo) - Vh(XEF)dK?.
0 0
Since b and ¢ are Lipschitz in space, uniformly in time, we deduce from the above equality that, for
’2

t t
2
XF— X" < (2LT+2L2T)/ |XE — Xo ds+2/ (|b(s,X0)|2+|a(s,X0)|2) ds
0 0

t t
+ 2/ (XF—Xo) o (s,XF)dB, + 2/ (XF— Xo) - Vh(XF)dKE. (29)
0 0
Since h is concave and K* is deterministic, we obtain, using (26),
t t
B[ [ (xt-x0)- vh (e art] < [ (@[ (5] - B0 anc
0 0

= [ @1 (x)] - B e ([0 (4] ds <0,

the last inequality coming from the fact that z¢y(z) < 0 and E[h(X()] > 0. It follows from Gronwall’s
inequality, that,

supsupE || X || < € (T, Ly, B [|Xof?]) = 7. (30)
E>1t<T

Coming back to (29), since 1, is bounded by  and Vh has a linear growth, BDG’s inequality gives

sup E [sup |Xf|2] <C (T, L, E [|X0|2} ,|V2h|oo,r) .
k>1 Lt<T

Let us apply It0’s formula to compute the expected value of h (Xf) We get, for 0 < s <t <T,
t
E[h(X7)] =E[h(X7)] +/ B[ VA (X5)]*] ve (B[4 (X5)]) du

+/:E[Vh (XE) b (u, XE)] - /:Em (V2 (X5) 00" (u, X*))] du.

Since V2h is bounded, b and o are Lipschitz, we deduce, taking into account (30) and assumption (Hc)-
(ii) that, for some constant C' > 0 independent of k and r,

E[h(XF)] =E[h(XEH)] + /:]E “Vh (ij)ﬂ Ve (E[h(X])]) du—C(t —s).
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On the other hand, for any k& > 1,0 < u < T and a > 0, we have using Markov’s inequality,
E(|Vh (X5 2 E[|Vh (X5)[*1ixs1<a| 2 inf {[VAP(@) 2 o] < 0} B(IXE| <),
> inf {|VA[2(2) : 2] < a} (1 —a%E [\X{fﬂ) .

Having in mind the bound (30), we choose a = /27, to get, since |Vh|? is continuous, for any k > 1,
0<u<T,

E “Vh (ij)ﬂ > min {|Vh|2(z) 2| < \/ﬂ} /2 =m? > 0.
It follows that, for any k > 1,0 < s < ¢ < T,
E[h(X5)] > E [ (X5)] +m? /t i (E[h (X5)]) du — Ot — s). (31)
We choose r such that rm? > C. As a byproduct, w; have

Vk>1, Yo<t<T, E[h(X})]>- (32)

1
T
Indeed, if E [h (Xf)] < —1/k for some k > 1 and ¢ > 0, let s = sup{u < ¢ : E [h (X})] > —1/k}. Since
E[h(X0)] = 0, we have 0 < s < t and E [h (X})] < —1/k for s < u < t. Thus, by definition of vy,
Ui, (E[h (XF)]) > for u € [s,t] and it follows from (31) that

£ [ (xF)] > B [h (X)) + (m?r — C)(t —5) > —1.

This is a contradiction.
Let k,m € N*| by It6’s formula we have, for ¢ > 0,

Xk — x| = 2/(: (XE—X) - (b (s, X5) = b(s, X)) ds + /Ot o (s, X5) — o (s, X)|" ds
+2 /Ot (X~ X™) - (0 (5, X") — 0 (5,X™)) dB,
+2 /t (XF— X)) (Vh(XE)dKE — VR (X")dKT) .
Using the fact that b and ?7 are Lipschitz continuous, we get, for 0 < ¢ < T,
XF— x| < (2L + L2) /Ot X5 — x| ds + 2 /Ot (X5 = Xm) - (o (s, X5) — o (s, X)) dB,
+2 /Ot (XE—XI") - (Vh(XE)dKE — VA (X")dK]") . (33)
Arguing as in the proof of uniqueness, taking the expectation, we have, since h is concave,
B[ [ 0k xz) (9 O arct - e a)|
<[ [ (0 (xt) - o) (arct - aney)]
= [ B (x)] ~ B0 OE)] (e & (1 (X8)]) — o (B1 (X)) s,
and from (32), since, for any k > 1, 2y (x) <0, E [k (XF)] > —1/k and 0 < 4, < r, we obtain that
E [/Ot (X5 = X™) . (Vh (XF) dK* — Vh (X;")dK;")] < % + =

m

We conclude using Gronwall’s lemma that there exists C' > 0 depending on T and Ly such that for any
k,m € N* we have:

1 1
sup E[|Xf - X"?] <Cr (E + E) . (34)

0<t<T
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Coming back to (33), since supy~; [¢k[oc < 7 and Vh has at most a linear growth, taking into account

(30), we derive, from BDG and Cauchy-Schwarz inequalities, the estimate
E| sup |XF —XZ”|2} <C (L + L) ,
0<t<T VE  J/m
where the constant C' does not depend on k£ and m.
Thus, (X*),.,
7 for all k, K* is Lipschitz with |[K*|;, < r. By Arzela-Ascoli’s theorem, up to a subsequence, (Kk)

is a Cauchy sequence in S2. Let us denote by X its limit. Finally, since 1)y, is bounded by
E>1
converges, uniformly on [0, 7], towards a non decreasing, Lipschitz continuous function K.

It is straightforward to check that (X, K) solves (25). Indeed, since Vh has a linear growth, we have

sup E[|h(XF) —h(Xy)|] <C sup E[|XF—Xo| (1+]XF| + |X:])]
0<t<T 0<t<T

< C sup EY? [‘th — Xtﬂ (1 + sup E1/2 UXfﬂ)
0<t<T k>1
and thus, for 0 <t < T,
e E[h(X;)] = lim_0 E [h (XF)] >0 by (32),
e the Skorokhod condition is also satisfied : since xip;(z) <0,
t t

0< /tE[h(Xs)] dK, = lim [ E[h(X))]dKF= lim [ E[h(XF)] v (E[h(X])])ds <o0.

k—o0 Jq k—o0 Jq

The proof of this result is complete. O

2.2. Existence and uniqueness of the solution. In this section, we are concerned with the existence
and the uniqueness of a solution to (3) when H(u) is not necessarily of the form [ hdp and is not
necessarily concave in . However, in this case, we have to assume that the volatility ¢ is bounded. More
precisely we assume that the following conditions (H) hold:

(Hc): The functions b: Q x Ry x R” — R™ and 0 : Q x Ry x R” — R™*? are measurable with
respect to £ ® B (R™) and, for all T > 0, there exists Ly such that, P-a.s.,
(i) For each ¢ € [0,T],

Ve € R, Vy €R",  [b(t, ) = b(t,y)| +|o(t,x) — o(t,y)| < Lr |z —yl;
(ii) For each t € [0,T],

E [|b(t,0)|2] + sup |o(t,z)| < L.
IeR?’I

(HO): The initial condition is Fy—measurable, square integrable and H([Xo]) > 0 ;
(HH): The function H : P?(R") — R is partially C? and
(i) there exists M > 0 such that

Vue PR, [ IDHGP ) i) < M2, (35)
(ii) there exist 5 > 0 and 7 > 0 such that
Y€ PHRY with —n < H( <0, [ IDuHGP ) ude) > 5, (36)

(iii) there exists C' > 0 such that
VXY €13(),  E[IDH(XNX) - DH(YN)E] < CE[X - Y[ (37)

Examples. We now illustrate our assumptions through two examples. In the first one we consider the
case where H depends on the first order moment of the measure: Let f; : R” — R be of class C? with
bounded first and second derivatives, and let

Hy(p) = f1 (/n yu(dy)) . VuePRM).
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We also assume that the set {f; = 0} is compact and that 0 is a noncritical value of fi: V fi(x) # 0 if
fi(x) = 0. Note that this implies the existence of a constant C' > 0 such that C~! < |V fi(x)| < C for
any ¢ € R"™ with fi(z) =0. As

D)) = V1 ([ mlan)
is independent of z, it is clear that (35), (36) and (37) hold.

In the second example, we assume that Hy depends on the second order moments of the measure. Let
S™ be the set of n x n symmetric matrices, endowed with the usual euclidean distance: |A| = (Tr(AQ))%,
and let ST be the subset of nonnegative matrices. Let fz : S™ — R be of class C?. We assume that the
set {fo > —no} N ST is compact for some 79 > 0, that 0 is a noncritical value of f> and that f3(0) # 0.
Then there exists C > 0 with C™! < |V fa| < C on {|f2| < n}NS%, for n € (0,70) small enough, where
V f2 is the gradient of f; in S™. Moreover, as f2(0) # 0 and {f; > —n} N S? is compact, reducing n > 0
if necessary, there exists § > 0 such that Tr(A) > 0 if | f2(A)] < nand A € ST. Finally, we can assume,
without changing the level-set {f, = 0} N S%, that the restriction of f; to S% is bounded and that its
derivatives have compact support. Let

Hy () = /o ( I m*u(dﬂf)) Vi € PARY).
Then

Dy Ha(p)(x) =V f2 (/n m*u(dw)> x

[ puttsutin) = v ([ awuan)| [ jeuian

Let us note that condition (35) holds because, for any p € P*(R™), [q, za*u(dz) belongs to ST and
because the restriction V fo to S? has a compact support. We now check the bound (36). Let p be such

that —ny < Ha(p) < 0 and let us set A := / rx*p(dr). Then A € ST and, as |f2(A4)| < n, we have
Tr(A) > § and |V f2(4)| > C~1. So

Hence

[ D) @) lde) = 912 () Ti(4) = €725

which proves (36). Finally, we check (37). Let us recall that the restrictions to S of V f, and V? f; have
a compact support (say in a ball of radius R). Let Cy be a bound on V fs and V2 fs on S7. Let also
X, Yeld p=[X],v=[Y]and A := [, za*p(dz), B := [, za*v(dz). We assume that |A[,|B| < R,
since otherwise the result is obvious. Then

E[|D, Ho([X])(X) — D Ha([Y)(Y)]?] = E[|V f2(4)X — Vo(B)Y ]
< Co(|A - BPE[X| +E[|X ~ Y[)) < CE[IX —Y[?],

where the constant C' depends also on R. This shows (36).

Comments on the assumptions. Let us recall that, as explained in the introduction, Assumption
(35) implies that H is globally Lipschitz continuous in P?(R™). Since (37) holds, H is semiconcave and
semiconvex, in the sense, if y = [X] and v = [Y], then

|H(v) — H(p) — E[D,H(X])(X) - (Y = X)]| < CE[|X - Y]*]. (38)
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Indeed, we have

|H(v) = H(p) = E[D,H([X]))(X) - (Y = X)]]

/1 E[{D,H ([(1 - 0)X +iY]) (1 = )X +1Y) = D, H([X])(X)} - (Y = X)] dt
0

< / EY2 [[D,H ([(1 - )X +1Y]) (1 — )X +¢Y) — D H(X)X)[P]EV? [y - X))/ at

<CE[lY - X|*],

where we used (37) in the last inequality. Moreover, under (37), for each p € P?(R™), there exists a
Lipschitz continuous version of

D, H(p)(.) : R* — R,

with a Lipschitz constant independent of p and such that (p,x) — D,H(p)(x) is measurable and
continuous at each point (u,z) such that = € Supp(p) (Corollary 5.38 in [12]) Moreover,

E [|D,,H (1)(X) —
As a byproduct (inequality (5.49) in [12]), for [X] =
E [ID, H(1) (X) — Dy HW) (X)) < C W, ). (39)

Hw)(X)]’] <CE[|X -Y?].

Definition 7. By a solution to (3), we mean a couple of adapted and continuous processes (X, K), K
being deterministic and non decreasing, with Ko = 0.

Theorem 8. Under assumptions (H), the SDE (3) has a unique square integrable solution.

Remark 9. The result can be easily generalized to the case where b and o depend also on the law. In the
proof we actually show that the process K is locally Lipschitz continuous.

Proof. Let us start by uniqueness. Suppose that (X, KX) and (Y, KY) are two solutions of (3). Then,
we deduce from It6’s formula that

Bl -n) = 2] [0 -0 006, s v ] + ] [ s, 50 (e, Vs
v | [ (Xe ¥ - (DL H(X])(X.) dKY — D H(Y.])(Y,) dKY ).

Since H satisfies (38), using the Skorokhod condition together with the constraint, we have

t

e[ [ on v pamre any] < [ () - mQv)+ o (x. - i) ary
/H AKX — /H AKX + /CIE|X —Y,|*] dK ¥
g/otCE [ X — Yi|?] dK .

Similarly,

E { / (X, = Y,) - DL (YY) dKY } </ CCR (1%, - Vi) dKY.

Using the fact that b and o are Lipschitz continuous, we get, for some constant C' > 0,
t
BIX - YiP] < [ E[X, - Vi) (s + dRF + dRY)
0

and equality X = Y follows from Gronwall’s lemma applied to the continuous maps s — KX, s — K
(see Lemma 4 in [21] or Theorem 17.1 in [2]) and s — E [| X, — Y;[?].
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Next we show the equality KX = KY. We get from It6’s formula (14) and for any ¢ > 0

AX = [ BIDLH(X )] R = HEX) — H(Xo) — [ BIDLHX)E) b X)) do
%/0E[Tr(8ID#H([Xu])(Xu)JJ*(u,Xu))]du

=AY ;:/O E [|D,H([X.])(Xu)|?] dK) .

Thus the nondecreasing continuous functions AX and AY are equal. For any step function ¢ on [0, 77,
T T
| etwany = [ e (DX ard

T T
- / (WE [|D, H(X.))(X)P] dKY = / o(u)dAY . (40)
0 0

The previous equality hold true also for any continuous function on [0, 7] as uniform limit of step functions.
Since H([X,]) =0 for dK*X +dKY —a.e. u € [0,T], we have

E[D,H([X.]))(Xu)|?] >8>0  for dKX +dKY —a.e. u€[0,7].
As a byproduct, we can extend the map
—1

ur— p(u) = E [[Dy H ([Xu])(Xu) ]

from the support of dKX + dKY into a continuous map on [0,7] and we get, plugging this ¢ in (40),
Kz = KY. This completes the proof of the uniqueness of the solution: (X, K¥)= (Y, KY).

Let us now construct a solution to (3) on a time interval [0, T] (for 7' > 0 arbitrary). For this, let us
consider, for k>1/1, the solution X* to the following McKean-Vlasov SDE:

t t t
XE=Xo+ [ s xBds+ [ ats, X5 B+ [ DHIXE)XE) wnls H(XE) ds. ¢2 0, (a)
0 0 0
where the function ¢y : Ry x R™ — R is defined as
Yrp(t,x) =r(t) if e < -1/k, Yp(t,z) = —kr(t)z, it —1/k<2x<0, Yp(t,z)=0,ifz>0

and t — r(t) is a continuous, positive and increasing map to be chosen later. We set
t
K= [ (s H(XE)) ds:
0

Let us start with some L? bounds. In order to use condition (36), we introduce the deterministic time
Ty = inf{t > 0, H([X}]) < —n},

with the convention that T}, = 7' if the right-hand side is empty. Note that T} > 0 since H([Xo]) > 0.
Let us compute | XF|? for ¢ € [0,T},] with the help of Itd’s formula. We have

t t
IXF?? = |X0|2+2/ Xf-b(S,Xf)ds—i—/ Tr(oo* (s, X*)) ds
0 0
t t
+2/0 Xf~o(s,X§)st+2/0 XF. D, H(XM)(XF)dKE. (42)

Since b and ¢ are Lipschitz continuous in space, uniformly in time, we deduce from this equality that
there exists a constant C' = C'(Lr) such that

t t t
|XF|? < |X0|2+C/O (1+|b(s,0)|2+|Xf|2)ds+2/O Xf-a(s,Xf)st+2/0 XF.D,H(XM)(XF)dKE.
(43)
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Using Cauchy-Schwarz’s inequality, Assumption (35) and then Young’s inequality, we obtain,
B[ [ Dot anc]
0
< [ @Ixte)” (e [Ipar i) oo, D as
< /Ot (E [|X§|2])1/2 Mr(s)ds < /Ot (E [|Xf|2] + M?r?(s)) ds.

Hence
t
E [|X{] gE[|X0|2]+O/ (14 M?*r?(s) + E [| XF?]) ds.
0

It follows from Gronwall’s inequality that there exists Cy > 0, and, for any t € [0,7], C1(T) > 0,
depending on T', M3 ([Xo]), Lt and sup,. E[|b(t,0)|?] only, such that

t
supE [|XF?] < C(T) + M2/ eCot=5)y2(5)ds. (44)
s<t 0

Coming back to (43), since 1, is bounded by r, the upper bound of Assumption (35) together with BDG’s
inequality give

B [sup X4 < € (7 Lr, Mal(Xa)). sup BB, 0P M)

Let us apply Itd’s formula (12) to compute H([XF]). We get, for 0 < s < ¢, such that —n < H([XkK]) <
—1/k on [s,t],
H([X{]) = H([X{)) +/ E (D, H ([X31) (X)) P] vk (u, [X35]) du
+ [ B DX b XD] du+ 5 [ BT (0,0, HIXE (X o0" (1, X)] du

>H([Xk])+ﬁ2/ du—C/ (1+ kay D )du, (45)

for some constant C' > 0 independent of k and r. In the above inequality, we used the fact that
x +— D, H(p)(x) is Lipschitz uniformly in p, that ¢ is bounded, that 5% < E [|D,H ([X])(X)[*] < M?
for any X such that —n < H([X]) < 0 and that b has a linear growth while o is bounded. We deduce
from (44) that,

H([Xf]) > H(XE]) + /: <62r(u) e, (1 + <01 (T) + M? /Ou eC°<“”>r2(u)du) UQ)) du

> H(XF) + / <32 (u) — (1+Cl( ) 4+ M2eCou /ur2(v)dv)1/2> du. (46)

0
We can then choose the map t — r(t), independent of &, such that p(t) := fg r?(v)dv satisfies the ODE
plu)=C?B~* (1+C1(T) + MQeCO“p(u)) , Yu >0,

so that
r?(u) = C?B3~* <1 + C(T) + M2eCov /“ r2(v)dv) , Yu > 0. (47)
0
With this choice of r, we claim that
Vk>1, Ve<T.,  H(XM) > _% (48)

Indeed, if H([X[]) < —1/k for some to > 0, let
s =sup{u <to: H(XF) > —1/k} and t =inf {u > s H(XF) < H([Xfo]) V(-n}.
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Since H([Xo]) >0, we have 0 < s < t <ty and —n < H([X*]) < —1/k for s < u < t. Hence, by (46) and
(47), we get

1
H(XE) v (—n) = H(X}]) = H(XE) = —.
This is a contradiction and (48) holds. Note that, with this choice of r(-), we have Ty, = T and
sup K < C(t)  Vtelo,T). (49)
k

Let k,m € N*, with k,m>1/n. By Ito’s formula we have, for ¢ > 0,

t
XE— X2 9 / (XF = X) - (b(s, XE) = b(s, XI)) ds
0

+ [ Tol(o(s,8) - o, X205, XE) = (s, X2 s
0
b2 [(0F - XD (005, X0) — o(5,X7) dB.
0

t
+2/ (X7 = X0") - (DR H (X (XZ) dKY — D H (X)X dET).
0
Using the fact that b and o are Ly—Lipschitz continuous, we get

t t
XE -~ XD < 2Ly + I2) / XF - X7 ds 42 / (XF — X™) - (o(s, X¥) — o(s, X)) dB,
0 0

t
+2/ (X7 = XI") - (DR H([X)(XZ) dKY — D H([X[])(X) dET). (50)
0
Arguing as in the proof of uniqueness, taking the expectation, we have, since H satisfies (38),

e [ [0t = X 0t act D O )

S

< / (H(XH) — HOXT))(AEE — KT+ C / B[ - X7 (dKE 4 )
0 0

- / (T((XE]) — H(IX™])) (0 (5, H (X)) — (5, H (X)) ds+C / [1X5 — X™2] (dK* + dE™).

From (48), since a1y (t,x) < 0, H([X}]) > —1/k and (s, H([XF]) and ., (s, H([X™]) are in [0, 7(t)]
for s € [0,t], we obtain that

E [ / (XE = X (D H(IXH) (XE) i — DL H(X ) (X2) dK;”)]
0

- T m

< t(r(t) + @) +C/tE [ XF— X712 (dKE + dKD).

Therefore

¢
t t
E[XF-X"P]<C / E[| X} — X?] (ds + dKF + dK[") + t(% + M).
0 m
We conclude using Gronwall’s lemma and the bound on (K*) in (49) that, for any T > 0,

T) =(T) 1 1
E[|xXF—-xm?l<T r(T) T+KE+ KM <C(=+4=).
o (1t -] <7 (B2 S fexppor + Kb ) <€ (14 1)

Coming back to (50), we derive, from (34), (49), the BDG and Cauchy-Schwarz inequalities, the estimate

E {sup|Xk Xm|2] < C(

t<T

f\/_)

where the constant C' does not depend on k and m. Thus, {X*};>1 is a Cauchy sequence in S2. Let us
denote by X its limit. Since ¢y is bounded on [0, T] by r(T) for all k, K* is Lipschitz continuous with
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a Lipschitz constant bounded by r(T") on [0,7]. By Ascoli-Arzela theorem, up to a subsequence, (K*)
converges locally uniformly to a non decreasing, locally Lipschitz continuous function K.

It is straightforward to check that (X, K) solves (3). Indeed,

o H([X;]) = limg 0o H([XF]) > 0 by (48),
e the Skorokhod condition is also satisfied : since zvy (¢, x) <0,

o< [ B, = g [ O HE)ds <0
0

k— oo 0
O
3. SDEs with normal reflexion in conditional law.
In this section, we consider the reflected SDE:
t t t t
Xt:X0+/ b(s,XS)der/ Jo(S,XS)dBS+/ al(s,XS)dWSJr/ D, H([Xs|W])(Xs) dK,
0 0 0 0
(51)

a0, | HX W) dK, —0, ¢ 30,

where now B and W are independent Brownian motions and (K) is a continuous nondecreasing process
adapted to the filtration 7" associated with W. As before, H is a map from P?(R") to R. The notation
[X:|W] stands for the conditional probability of X, given W. We assume that the initial condition of the
process, Xo, is independent of B and of W and in L?. As explained below, this reflected process is the
limit of a reflected particle system with a common noise.

We assume in this part that the following conditions (Hcl) hold:

(HQ): The probability space is (2, P) = (20 x QL PO @P!), where Q° supports the Xy and B, while
Q! supports W with associated filtration F"V = FL.
(Hc): The functions b : 2 x Ry x R” — R™ and 09, 01 : @ x Ry x R* — R"*4 are measurable
with respect to € ® B (R™) and
(i) For all T' > 0, there exists Lz such that, P-a.s., for each ¢ € [0, T7,

(ii) b, o9, o1 are globally bounded: for all T > 0, there exists Cr such that, P-a.s.,

sup  {[b(t, )| + |oo(t,z)| + |o1(t, z)[} < Cr.
t<T, z€Rn

(HO): The initial condition is Xy is independent of B and W, in L?(2°) and with H ([Xo]) > 0;
(HH): The function H : P?(R") — R is globally C? and
(i) there exists M > 0 such that: Vu € P?(R"),

G+ [ D)) ) + [ 10,00 w)] ()

[ DL H )| nda)n(dy) < M2 52)
o R™
(ii) there exist 5 > 0 and 7 > 0 such that
V€ P*(R") with —n < H(u) <0, / D H ()] () pld) = 52, (53)

(iii) there exists C1 > 0 such that
VX,Y eLi,  E[D.H(X)X)-D.H(Y)Y)]<CE[X-Y]]. (54)

Examples. They are the same as in the previous section. For the first example, let fi; : R" — R be of
class C? and such that the set {f; = 0} is compact and 0 is a noncritical value of f;. We also assume,
without loss of generality, that f; is bounded and that V f; and V2 f; have compact support. We set

Hy () = fi ( Il yu(dy)) Vi € PAR™).



CONSTRAINED IN LAW (B)SDE 23

Then D Hs (1)) = V i (/Rn y,u(dy)) and D7 Hy(p)(z,2') = V2 fy (/

So conditions (Hel) hold as in the previous section.

yu(dy)) -

n

For the second example, we assume that Hs is given by

Hy(p) = fo (/n m*u(dx)) Vi € P*(R™),

where fs5 is as in the previous section. Then one can show with the same argument as in the previous
section that Hs is bounded and that its first and second order derivatives have bounded support and that
(53) holds. This easily implies that Hs satisfies conditions (Hcl).

3.1. Existence and uniqueness of the solution.

Definition 10. We say that (X, K) is a solution to (51) if (X, K) is a continuous and progressively
measurable process such that X; is square integrable for any ¢t > 0 and such that K is nondecreasing and
adapted to the filtration FV with Ky = 0.

Note that, under the above assumptions, the equation has a meaning since (denoting by E° the conditional
expectation with respect to W) we have, for any ¢t > 0 and P!—a.s.,

EO[A|DuHuxqwqug|dK4:=[:EOHDMquqwnxXgusz

1/2
sGw/mMW@mwﬁ K; < +o.
peP? JRA
Theorem 11. Under assumptions (Hcl), the SDE (51) has a unique square integrable solution. In

addition, we have, for any T > 0 and for any 0 > 0,

IE[ sup |XS|2} <o), E[exp{GKT}} < Cy(T), (55)

0<s<T
for some constants C(T) and Cy(T) depending on the data, T and, for Cy(T), 6.

Remark 12. We emphasize that weak uniqueness also holds for (3) and for (51). We explain why at the
end of the proof of Theorem 11.

Remark 13. In contrast with the previous section (without “common noise”) the process K is neither
deterministic nor Lipschitz continuous in general. For this reason, the assumptions under which we work
here are much stronger than the ones in Section 2.

From the proof of the Theorem (see estimate (66) below), we also deduce the following result.

Corollary 14. Let p > 2 and T > 0. Assume that in addition to (Hcl) we have My([Xo]) + Hp < +00.
Then, there exists a positive constant Cp(T) := C ((p, T, Mp([Xo]), Hp) > 0 such that

| s [ [1X.P7] < Gy, (56)

0<s<T
One can also show that the process depends in a continuous way of the initial condition:

Proposition 15. Let Xy and Yy be two initial conditions with H([Xo]) > 0 and H([Yo]) > 0. Let
(X, KX) and (Y, KY) be solutions of (51) with initial conditions Xo and Yy, respectively. Then, for any
T >0,
E[ sup E°[|X, — Yt|2]} < CE [|Xo - Yo|?]
0<t<T
while
E[ sup | X; — Ytﬂ <C (]E [1X0 — Yol2] + E [| X0 — Y0|2]1/2> .

0<t<T
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Eventually, we have the following regularity estimate on the continuity of the path K and X.

Proposition 16. Let (X, K) be the unique solution of SDE (51). Assume in addition to (Hcl) that
there exists p > 2 such that My([Xo]) +H, < +00.

Then, there exists a constant Cp(T) := C ((p, T, Mp([Xo]), Hp) > 0 such that

E[|K; — Kf”] < Cprlt — s]”/*, (57)
and if moreover p is in N
E (X, - X,P) + E | sup [E°[|X, — X "?| < Cporlt — sP/%. (58)
u€E[s,t]

Proof of Theorem 11: Ezistence under an additional moment condition. The structure of proof is roughly
the same as for Theorem 8. However, because the process K is no longer Lipschitz continuous nor deter-
ministic, we have to pay extra attention in the various estimates. Here we address the existence of the
solution under the additional condition that Xy has a moment of order 4: E[|X|*] < +oco. This extra
condition is removed after the proof of Proposition 15. The uniqueness is a straightforward consequence
of Proposition 15.

Step 1: Approximate solutions. We build the solution on the time interval [0, 7] (for an arbitrary
T > 0). All the constants below depend on this horizon 7. As before we argue by penalization. We
consider, for k > 1/n, X* solution to the following McKean-Vlasov SDE:

t t t
Xf:XO—i—/ b(s,Xf)ds—i—/ ao(s,Xf)st+/ o1 (s, XF) dw,
0 0 0

+ / D HXEW)(XE) g (HXHIW) ds, 120, (59)
0

where the function vy, is defined as

Yr(z) = k> if o < —1/k, p(x) = —kz, if —1/k<x<0, ¢r(z)=0,ifx>0.

t t
We set pf = [XF|W] and KF = / Yr(H([XFW))ds = / Vi (H(u¥)) ds and define the F" —stopping
0 0
time 7% by
™ =T ANinf{t >0, H(uF) < —n}.

We note for a later use that uka. = [thATkWV] since 7% is an FW-stopping time. We also stress that
H(p¥) € [-1/k,0] for dK*—a.e. s € [0,7%], so that, by (53) and for any nonnegative process ¢, adapted

to FW,
tATF 9 tATF
| em Db bt =8 [ i (60)
0 0
We finally note that (59) can be rewritten as

t t t
Xf:XO+/ b(s,Xf)ds+/ oo(s,Xj)st+/ o1(s, Xy dw,
0 0 0

t
+ [ Da(EWY O art, izo.
0
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Step 2: Estimate on K*. For 0 < s <t < T and by Itd’s formula (13), we have

tATk

Hlbp) = Hb )+ [ B D)X b XD d

SATH

AATF
+ [ e o] art
SATE
k

N l/t/\r - [Tr (GIDHH(MZ)(XS)(M(U,XS) + GQ(U,XS)))} du,

2 Jopn

1 taTk ~ ] . ] ~
g [ R [T (D2, H )k X (u, X)o7 (u, X)) du

ATE
tATE
[ B i XD, X] - (1)
SATE
tATF 9
We use (60) to bound below the term E° [’D#H(uﬁ)(){ff)‘ } dK¥. We also use our bounds on H
sATE

in (52) and the L* bounds on b and o; to estimate the other terms and obtain:

H(lu’ic/\rk) > H(MI:/\T’V) - C(t A Tk —sA Tk) + BQ(KZC/\T’V - K?/\Tk)

k

[T ot XD K] - a (62

ATk

Taking s = 0 and ¢t = T and using once again the fact that o is bounded and (52), we infer that the K*
have uniformly bounded exponential moments:

supE [exp{0KF.}] < C(0), V0> 0. (63)
k
Step 3: Some estimates on the (p)-moments of X}. We claim that:

E

o<t<tk

sup |Xf|2] < Cor(E[|Xol*] +1); (64)

and, assuming in addition to the current assumption that there exists p > 2 such that M, ([Xo]) +H, <
400, it holds:

E| sup E° [IXflp}l < Gy, (65)
o<t<tk
E (EO)Wl sup |Xf|2H < Cpr, (66)
0<t< 7k

where Cp, 1 := Cp (M, ([Xo]) + Hp) > 0.

Let us set 7 := exp{—a(dt + H(uF))} for a,6 > 1 to be chosen below. We note for later use that,
because of our boundedness assumption on H, vF is bounded above and below by positive constants. We
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have, by Itd’s formula (13),

tATk
A XE P = Xl + / Ep| XHP2XE - b(s, X ds
1

tATF
b5 [ Al XA GIXEP L+ plp - DIXEP X w X)) ds
0

tATF

tATE
+ [ pkosls XBIXEP X dB s [ bt (s, XB AP 2XE W
0 0
k k

tAT tAT
+ / YD, H (k) (XE) - [ XFP2XF dKF — as / K XEPds
0 0

tATk
o / VHIXEPE [Dy H (i) (XE) - b(s, X¥)] ds
k

tAT
a / AFIXEPEO [o7 (s, XF)D, H (uF)(X5)] - dW,

tATF
=5 [ XD [T (an(s, X0, D, ) (X))

tATk

« ~ ~ . -

—5/ V¥ XFPEOEC [Tr (Di#H(,u’;)(Xf,Xf)al(s,Xf)al(s,Xf))] ds
0

k

tAT
pa / VT (o7 (5, X)X EP-2XE(EO [of (s, XF)D, H (1F) (X)) ds
o? i ki vk k k k k k k
& / A XEPTY (B [0 (5, X*)D, H () (X5)] (B [0 (s, XF)D, H (uF)(XH)])7) ds
k

tAT
a / A FIXEPE D, H (1) (X)) dECE. (67)

From Young’s inequality, we have

HEO

tATH
[ Db - e dKf]
0

tATk
—1 1
< [ <E [p—p |X§|p}+EO L—)|D#H<u’;><xf>|ﬂ)dff§. (68)
0

By (52), the terms E° [|D,H (u¥)(XF)|], E® [|0,D, H (uf)(XF)[] and E°E° [| D2, H(uf)(XF,XF)|] are
a.s. bounded. So, by (60) applied to the last term and for « large enough (to absorb partially the first
term in dK¥) and then ¢ large enough (to absorb partially all the terms in ds), we have

E° [vfari| XfnrilP] < E° [v61X0[P] + CaoT + CHLKF
tATk
+ / PR [0 (s, XE) | XEP=2XE] - aw,
0
)

a / B [yE X B [of (s, XED, H(A) (XD -aWe. (69)
0

Taking expectation and using the bound on K* in (63) we find

s[upT] E [|X[/ o« lP] < CE[|Xol?] + Hyp) + C(T). (70)
telo,
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We come back to (69) and use the boundedness of K* in (63) and BDG inequality to find
E |sup B [y o] X[ |p]}
s<T

T 1/2
< CE[|Xol?] + Cas(T, Hp) + CE (/ (Vonre)? (E®)? [|X e 1] d5>
0

1/2 T 1/2
< CE[|Xol?) + Ca (T, Hy) + CE (S“p B [vfwlxs’“wlp]) </ Vinr B (1Kl ds)
s<T 0

1 T
< CE [|X0|p] + Coz,5(Ta Hp) + §E [Sgg E° [’ytk/\'rk'|X§/\'rk‘|p}:| +CE / E° [’75/\7’6|X§/\r’€|p] ds] : (71)
s< 0

Using (70), this proves (65).

Now, from Itd’s formula on [XF,_.|*> we obtain an expression similar to (67) (with p = 2 therein and
a = 0 = 0) without the last eight terms. Taking first the supremum, then the expectation E and using
the fact that

sATF
202 oy [ DLyt xtant]

s<t

El

IN

TATF
[ ey 1 ) an|

IN

C(M)(El)m[ sup {E° [|XF7]}| (DY [(57)7],

0<t<TATF

thanks to Cauchy-Schwarz inequality we deduce, from (65) with p = 2, estimates on the moment of
K and BDG’s inequality that (64) holds. Also, still working with the Itd’s expansion of [XF |2, we
obtain, taking first the supremum of this expression, then the expectation E°, taking the p power of this
expression, taking next the expectation E, using BDG inequality, and Gronwall’s lemma that (66) holds.

Step 4: Estimate of the difference X* — X™, first part. Let 7™ := 7% A 7™ and let us set
ve := exp{—a(st + H(uF) + H(u))} for a,d > 1 to be chosen below. By Ito’s formula (13), by using
the Lipschitz continuity of b and ¢; and absorbing the terms in dt as in Step 3, using the bounds on the
derivatives of H and on o1 as well as (60), we get, for § large enough:

k m 2
Venrremn| X rwm — XiR ]

AR tATE ™
<[ o) D HGE K i - [ 2K XD H () (X R
0 0

tATR™
+/ 2’76(X§ _X;n) : (UO(S’Xj) _UO(S7X;n))st
0

tATh™m IR

) ) 0 )
b X e X - s X aw - [ kX ds
0 0

AATE™
*04/0 Yo XE = XTPE [0 (s, XDy H (1) (X2)] + E° [o7 (5, XD, H (1) (X)) - AW

tATEm
— af? / Yol XE — XM 2(dKF + dK™). (72)
0
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Let us now estimate the first two terms in the right-hand side: by (38), we have, for 0 < s < t A 7F:™
and P! —a.s.,

E® [(X = X") - Dy H () (X9) v (H (1))
< (H(ug) — H(pg) + CE° [| X5 — X)) ¢ (H (15))
< (_H(M?)(l{infugtm-k,m H(up)>—2/m}y T Lint,_,, im Hup)<—2/m})
+ CE [|XE = X2 ) g (H (45))

(m +OLint,_,, o H(u)<—2/my + CE® [|X7 — X;”ﬂ) G (H (1f)),

where we used that z¢(z) < 0 and that H is bounded. The symmetric inequality holds when exchanging
the roles of k and m. Therefore, taking the conditional expectation with respect to EY in (72), we obtain:

/-)/15/\7""’"IE [|‘)(t/\'r’fm Xt/\‘l'km }

tATR™
= C/ ((1/m) + Liint, o okom H(up)<—2/m} T E° [|Xk X;"|2]) dK*

+C/ 1/k)+1{mfu<wka(m)< a/ky +EO [ X5 — X7 ]) dK{"
5 ATkm™
+/ 2751E0 [(XF =X (01(s, XE) — o1(s, XI))] dW, — %/ vE° [|XF — X% ds
0 0

—a / L X — X7
% (B [0 (5, XD, H () (XH)] + E° [0} (s, XD, H (™) (X)) - dW,

tATE™
7@52/ vE® [|XF — X ?]) {dKEF + dK}
0

So, for « large enough, we find (recalling that +; is positive and bounded),

FYt/\Tk’mE [|Xt/\‘rk m X?/I\Tk m |2}

c ((1/k) + (1/m) + Line, o Bup)<—2/m} T Lint, o H(;Lk)g—Q/k}) (K riom + K% i)

A k,m k m
)
+/ 2+,E° [(Xj —X™) (o1 (s, XF) — o1(s, X"))] dW, — O; / ~,E° [|X§ — X;n|2} ds
0 0

=3 g [JxE - X2 (B [of (s, XD H () (X5)
+ B o} (s, XD, H () (X)) - dW.. (73)

In order to proceed, we need to control the probability of the events {inf, < xm H(uk) < —2/k}. This
is the aim of the next step.

Step 5: Estimate of the probability P [{inf,<r H(u%) < —2/k}|. As H([X,]) > 0 and the map

that H([XE|W]) = —1/k, H(u*) < —1/k on [s,'] and H([X}|W]) < —2/k. Then (62) (applied between
s and t') implies that

u — pk is continuous on P2(R™), on the event {inquT H(uk) < 72/k}, there exist 0 < s < ¢ < 7% such

—(2/k) > —(1/k) + B2K*(t / /nal w, 2)D, H* (1) (2)pk (dz) - aw,,
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from which we derive that, for any v € (1/3,1/2),

sup
0<s<t'<T

1 ¢
W/ / of (u, 2)D H" () () pk (dx) - AW,
i ! 252 (¢! 1—y “17.3y—1
Zo<;35<T<m+ﬂ Rt =)' ) = 0

If we set
t
M= [ [ ol (oD ) ) (o) -
0 n

then, by Dubin-Schwarz, there is a standard 1—dimensional Brownian motion W* such that Mtk =
W(kM’“h' Hence

1 1 ~ ~
ME Mk) _ (Wk ik )
O§§1<llt)§T (t—s)7 ( ! ° O§§1<llt)§T (t—s)y \ M0 (MF)s
1 - .
co ap | (o).
o<s<t<cT | (t — )7

because
(M), — (M*)] < C(t —s),

since o7 is bounded and (52) holds. This proves that

k : k Ik ik
Pk <T] <P {{uuéfTH(uu) < 2/k}] <P {K:EECT (Wt - WS)

> Clk?’“] =: e,
(74)

(t—s)7

where e, — 0 since v € (1/3,1/2) by standard properties of the Brownian motion.

Step 6: Estimate of the difference X*—X™, second part. We come back to (73): taking expectation
we obtain, by (63) and (74),

E [Vt/\rk’m|th/\'rk’m - Xgl\Tk’m 2]

<O )+ O(F2 |1 _int, HG) < ~2/m)]

u<tATkm

SR int, L)< -2/ ) B2 (Kb o+ KDhnn )

u<tATkm

<C (k) +(1/m) +2/> +232).
Therefore

sup E[|XE . — X7 2] <C ((1/k:) +(1/m)+ef? 4 5342) : (75)
te[0,T]

Coming back once again to (73), we have by the BDG inequality, (63) and (74),

E { SUp Ygprh.mE [|Xk - X" 2]]

0<s<t sATk,m sATk,m
757

<C ((1/k) +(1/m) +e/? + 5},{2) +Cla+ 1)E[(/OWM B [|x — xm 2] ds)m]
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Hence by Jensen’s inequality

E |: sup ’Ys/\Tk”"EO [|X§/\7—k’m - X;?}\Tk’m|2:|:|
0<s<t

<C((/k)+(1/m) +elf?+2%)

tATR ™
+ CQE{ Sup (Yopprn B [ X5 o — X7 [2])1/2 (/ B [ x5 — x| ds) 1/2}
0

SATRm sATk.m
0<s<t

1
< C((/k) + (1/m) +etf? +2/*) + SB[ sup YonrimE® [|XEs i = X0 ?]]
0<s<t

t
+CE U 1XE m — X:;Tk,mﬂ ds,
0

from which we derive, by (75),

| sup B XE = X0hoanP]| <€ (/04 1/m) 42424 1% (76)

0<s<T

We finally need to remove the E° in the left-hand side. For this we come back to (72). Taking the
supremum in time and the expectation therein we find, by the BDG inequality, since « is bounded below
and above by positive constants,

E |: sup |X‘f/\7'k’m - X;CL\T"”"|2:|
0<s<T
Tk,m
<CE / B [|1x% — X% EO (D, H(IXE W) (x4 2] dKf]
0
Tk,m
0 k m|2 1/2 0 m my |2 1/2 m
+ CE / EO [|x% - x 2] BO (I, H (X W) (xm)2] dK: ]
Tk,m, 1/2
+CE </ |X§—X;“|4ds>
0
0 k m|2 1/2 k m
<CE sup E [|XS - X } (KTk,m + Tk,m)]
OSSSTk,WL
Lo 1/2
k m k m|2
+CE| sup |X;-X] |</ | X3 — X ds)
0<s<tk.m 0
<CEY? | sup E[IXF - XPP]| BV [(Kfe + KJ%n)’]
0<s<tk,m
1 Tk,m
+-E| sup |XF—X"?| +CE / |XF— X™m2ds|
2 0<s<rk,m 0

from which we obtain, in view of our bounds on K* and K™ in (63) and by (75) and (76),

E { sup [ XF, .. — X;’;Tk,mﬁ] <C ((1/l<:1/2) + (1/mY?) L/t + 5,1/4) :
0<s<T
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We finally need to replace the stopping time 7%™ by the stopping times 7% and 7 in the above inequality.
We have

E [ sup | XF . — X;’KTWP} <E [EO { sup Y| X5 o — X:}\Tk,m|2} 1{Tk,nL_T}:|
0<s<T 0<s<T

+2E [(EO [ sup |X§Afk|2] +E° [ sup |X§7\Tm|2]> (Lprrcry + 1{rm<T})]

0<s<T 0<s<t

<0 ((/K2) 4+ (1/mtl2) 4 el )

# OB (@2 | sup 18] + | s X332 | (B2 4 < 7)) 4 P2 < 7).

SAT
0<s<T 0<s<t

By the estimate (66) and the estimate of P [{r% < T'}] in (74) we conclude that

E [ sup | XF . — X:KTMQ} <C ((1//€1/2) +(1/m' ) et + 511/4) :

0<s<T

Step 7: Analysis of the limit process. We infer from the above inequality that (X FATk) is a Cauchy
sequence in §2. We denote by X the limit of this sequence and set ps = [Xs|W]. We note that

E { sup W;(MEAT,C,MS)} <E { sup |XF . — XS|2} — 0.
0<s<T 0<s<T

Next we remove the stopping time in the above inequality. By (74),
k < { i ky< — } <
P[r* <T] _]P’{ ulngH(uu)_ 2/k | < e,

where (¢4) tends to zero as k — +00. We can choose a subsequence (k'), such that supg< < W5 (MI;;\T’“/ S Hs)
tends to 0 a.s.. and, by the Borel-Cantelli Lemma, such that, a.s. and for &’ large enough, H([XF'|W]) >
—2/k" on [0,T]. In particular, this implies that, a.s. and for k¥’ large enough, ™ =T and

sup W;(Mlsc  ts) = 0.
0<s<T

Thus H(p;) > 0 a.s. on [0,T]. Moreover, by (61) and the convergence of X*, there exists a continuous
process (L;) such that

t
E l sup / /
0<t<T |Jo Jrn

Note that L is nondecreasing and adapted to FW. Let us set

2

D H(XE W) @) e (XY (W) (do)ds — L] | 0.

) i= |2 v [ IDuto@ atan)| L e P
and
k _ Y du®( da k-
vh= [ [ It du(da) i

Then h is continuous and bounded on P2(R™) and, as (53) holds and —(1/k") < H(u¥') < 0 dK¥ —a.s.
for k’ large enough,

i [ DY WYX R =t [ D, HGE) (X ) k) drt
= [ DLHXIWHX) AXIWY dL.

Let us set

K= / h((X.|W)) dL..
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Then K is nondecreasing and F" adapted and we have, passing to the limit in (59),
¢ ¢ ¢
X =Xo Jr/ b(s, Xs)ds Jr/ o0(s, Xs)dBs Jr/ o1(s, Xs) dWy
0 0 0
t
+/ D, H([X.,|W))(X,) dK,, > 0.
0
Moreover, for any continuous and bounded map ¢ : R — R such that ¢(z) =0 on [0, +00), one has
T T
0=t [ o (X W (X W] de =i [ oY IWD)A(XE W) dit
0
T T
= [ SUXAWD(XAW]) dLe = [ GUH(X:IW)) dE:
0 0
T
Therefore / 1m(x, )w))>0y dK¢ = 0. Note finally that (55) can be derived from (63) and (64). O
0

Proof of Proposition 15. The proof goes along the same lines as the estimate of the difference X* — X™
in the proof of Theorem 11 (Step 4). Let (X, KX) and (Y, KY') be two solutions, let us set p;X = [X;|W],
pl = [YVi[W] and v; := exp{—a(dt + H(u;*) + H(py ))} for @, § > 1 to be chosen below. By It6’s formula
(16) (which holds because (15) is satisfied thanks to assumption (52)), we have, using the Lipschitz
continuity of b and ¢; and for § > 0 large enough:

7| X = Yi? < |Xo — Yo|?

[ 2 ) (DL ()05 R — D H () k)
0

+/O 294(Xs = Ys) - (00(s, Xs) — 00(s,Ys)) dBs
+/0 27s(Xs = Ys) - (01(8, Xs) — 01(s,Y5)) dWs — %5/0 vs| Xs — Ys|? ds
- a/o Vs X = Y 2(E° [(01 (s, X)) "D H (13 ) (Xs)] +E [(01 (s, Ys)) Dy H (1) (Ys)] - AW

~a / Yl X = Yal? {E (1D, H () (X.) 2] Y + B [[DH () )(Va) ] dEY } (77)

As H satisfies (38), we have, for dKX —a.e. s,
E® [(Xs = Ys) - DuH () (Xs)] < H(pd) — H(py) + CE° [|X, — Ysf?] < CE° [|X, — Yof?].

The symmetric inequality holds when exchanging the roles of X and Y. Therefore, taking the conditional
expectation with respect to E? in (77), we obtain, for a and § large enough and by (53) (recalling that
v is positive and bounded):

WE? [| X — YVi|?] <E° [|Xo — Yo|?]

t t
+/ 270 [(Xs — Ya) - (01(8, Xs) — 01(s,Y3))] AW, — %5/ vE° [| X, — Yi|?] ds (78)
0 0

t
—a [ B X = V] (B [ (s, X)) D H (i) (0] + B (s, Vo)) D H G (Y] ) - s
Taking expectation, we obtain:

sup E [|X; — Yi|*] <E[|Xo - Yo|?]. (79)
0<t<T

Coming back to (78), we have by the BDG inequality

E [ sup 7B [|X, Ysﬂ] <E[|Xo - Y] +C(a+1)E[(/Ot |E® [|X, —Y5|2”2 ds)l/ﬂv

0<s<t
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from which we easily conclude using (79) that

E { sup E° [| X, — Y5|2]] < CLE [| X0 — Yo|?] . (80)

0<s<t

We finally remove the E? in the left-hand side. For this we come back to (77), take the sup in time and
the expectation to find, again for § large enough,

E [ sup vs| X, — Ysﬂ <E[|Xo - Yo|?]

0<s<t

+ CE |:/0 (EO [|Xs - }/S|2)1/2 (EO [|D#H(ﬂi()(Xs)|2})1/2dK6Xj|

+CE [/0 (E° [|IXs — ys|2)1/2 (E° [|DHH(MZ}/)(Ys)|2])1/2dK4

” 1/2
([ s)]
0

<E[|Xo - Yo*] + CE [ sup (B [|X, — Yil?])/2(KX + Kf)]

0<s<t

+C(a+1E

+Cla+ DE

‘ 1/2
sup (7;/2|XS_YS|) (/ 'Ys|Xs_Y;‘|2d3> 1
0

0<s<t

< E[|Xo - Yo|?] + CE'/? { sup B0 [|X, — Y5|2]] EY? (K + K})?

0<s<t

1 t
+—]E{sup 78|XS_§/;|2]+C(04+1)E[/ |Xs_ys|2ds]
2 |o<s<t 0

In conclusion, by our bounds on K% and KY, (79) and (80), we have

E [ sup |X, - YSF] < C (B2 [|X0 - Yol?] + E[1Xo - Yol?]).

0<s<t

O

We are now ready to show the existence of a solution without the extra moment assumption on the initial
condition:

Proof of Theorem 11: existence in the general case. Let X} := Xolfxo|<k}- Then (X¥) has a moment
of order 4 and converges in Ly(Q) to Xo. Let (X*, K*) be the solution to (51) associated with the initial
condition X[¥. Proposition 15 states that (X*) is a Cauchy sequence in S2. Then we can complete the
proof exactly as before. O

Proof of Theorem 11: uniqueness. Uniqueness of the path X follows from Proposition 15 so that unique-
ness of the process K can be deduced by reproducing the proof done in Theorem 8.

We finally explain why the weak uniqueness also holds for (51). Let (X, K, B,W) and (X', K', B', W)
be two weak solutions of (51). Let us now built a pair of processes (X, K) from the data (B’,W’) as
we did for (X, K). It is hence clear that (X, K, B,W) and (X, K, B’,W’) have the same law. But from
pathwise uniqueness we have (X', K') = (X, K) so that weak uniqueness holds. O

Proof of Proposition 16. On the one hand we apply It6’s formula to H(u:) and then proceed as in (61)
to obtain similarly to (62) that

572 { ) ~ H(uo)| + Cle =)~ [ B o0, X)DuH(n) (X)) - dWa}) = Ko~ K.,

since u — K, is non-decreasing. Also, from boundedness of D, H we have thanks to Cauchy-Schwartz’s
inequality that P!-a.s.
|H () — H(ps)| < M(E)Y? [| X, — X, ?] .
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On the other hand, applying It6’s formula on ()| X; — X4|? where v(t) = exp{—aH ()} for some a > 0,
then taking expectation E° and using the boundedness of the coefficients and estimate (55) we obtain
that
E° [y(6)|Xe = Xs|?] < Clt—s)+ 2/t7(U)EO [(Xu = Xs) - Dy H (p) (X )] d K
o [ AR, ~ XD, ) ()P,
+2 /t B [0 (u, Xu)(Xu — Xs)] - AW,y
o [ B Bl X E o (0, XD H () (o)
provided that « is large enough. Since H is semi-convex we have
[ AR 06— X0 D) (K 0,
ot t
< [ (Hu) = Hs) + B = X PR, < [ X~ XK,
according to the Skorokhod condition. Hence we have, for a large enough,
E® [y(®)1X: - X,?] < Ot —s)+2 / B o 0, ) (X, — X)) -
o [ B Bl X E o, XD B () (X)) W (1)
Recalling that ~ is bounded from below away from 0, then using the above estimate we have
K~ K. gcﬂt@/E%mmﬁmﬁmmam-mz

+(C(t - S) - a/ EO ['Yu|Xu - Xs|2} EO [UT(Ua XU)DMH(:uu)(Xu)] : qu

S

+ /St 7uEO o7 (u, Xu)(Xu — X5)] - qu)1/2}.

Taking the expectation E, using boundedness of the coefficients, (66) and BDG’s inequality we deduce
(57).

To obtain estimate on the first term in the left hand side of (58) one just has to use standard computations
and the following estimate:

EO[(/:D“H(”“)(X“)CZKU)”} _ /ts-"/tSEO[DHH('U’ul)(X’Uq)"'DMH(MUP)(XUp)]dKul"'dKup

/s.../SEO
t t

< Hp| K — KlP.

IN

P
p Z |DMH(Mue)(Xue)|p] Ay, - - dEKy,
(=1

To conclude, let us precise that the second term in the left hand side of (58) is controlled starting from
the difference of the processes X; — X;. Then, standards computations give

E [ sup |E° [|XT - Xs|2|p/2H

s<r<t

< CTJ) 1+ E

"

+E | sup <EO

s<r<t

2} )p/2

/ ol (u, X)) dW,

(s &[] [ Duttuxar,

s<r<t
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The second term in the above r.h.s is dealt using similar arguments as above while the third one can be
estimated by using the boundedness of o! and writing, provided p/2 is an integer,

<E0 QDW = (‘ / ' / uEO [o! (v, X)) (") (u, Xo)] AW dW,

+/ / E° [o' (W, X ) (0" (u, Xu) | AW, dW,y

/ ol (u, X )dW,

)P/2

3.2. The mean field limit. We consider the particle system (for i =1,...,N)
t t t t
X=X} +/ b(s, X!)ds +/ oo(s, X1)dB: +/ o1(s, X1) dWs +/ D, H (p) (X)) dKY,
0 0 0 0
N _ , N N N _
I _N;(SXZ, H(uN) >0, /OH(us)sz =0, t>0.
Here the data b, 0 and H satisfy conditions (Hcl) at the beginning of the section and, in addition, b, oo
and oy are deterministic. The B* and W are independent Brownian motions. The initial conditions of
the particles X{ are i.i.d. random variable with law 1o and are independent of the B® and of W. K% is
a continuous, nondecreasing process adapted to the filtration 7V generated by the X{, the B* and W.

We still assume that the probability space is (Q,P) = (20 x Q1 PY @ P!), where QY supports the X and
the B?, while Q! supports W with associated filtration 7 = F'. We work on the set

owen L (L550,) o).

Let us remark that (82) reads as a classical reflected SDE in (R™)%, with normal reflexion in the constraint

Oy = {(xl,...,:EN) e (RMHN, H (%Z%) >o}.

Indeed, let us recall that, if

| X
g(xl,...,xN):H<NZ;5m>,

then (see [11])
Ds.( ) 1DH<12N:6>()
zigacl,...,:(;N =~ Yu - T; €Z;).
N Ni:l

Therefore the vector —(D,H (% Zfil 53“) (1),...,D,H (% Zf;l 53“) (xn)) is an outward normal to

the set Oy at the point (x1,...,2x5) € dOy. Existence and uniqueness of the solution are therefore
immediate under our standing assumptions (cf. [25]).

Our aim is to show the convergence, on Qu, of the X to the solution X" to
t t t t
Xi=Xi +/ b(s, X7) ds +/ oo(s, X) dB +/ o1 (s, X 1) dW, +/ D, H (i) (X7) dE,,
0 0 0 0

t
fi = [X{ W], H (i) = 0, /H(ﬂs) dKs =0, t=0.
0

Note that the processes ji and K do not depend on ¢ and N: this is obvious by the uniqueness in law,
see Remark 12. The X* are no longer i.i.d., but they are i.i.d. given W. In particular, if i stands for
the empirical measure of (X?);<;<n, then we will show later that

lim E[ sup W2, fi) | = 0.
N—+oc0 0<s<T
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As the initial conditions X§ of the particles are i.i.d. and distributed according to g, Qn (the set of
events for which the initial condition belongs to On and for which for which system (82) has a meaning)
has not a full probability in general. There are several solutions to overcome this issue. We illustrate
two of them in this paper. One can, for instance, modify the initial position and “project” it onto O,
We shall follow this approach in Subsection 4.2 when we analyze the particle system associated with
backward SDEs with normal reflexion in law. Here we simply concentrate on the set (2. If one assumes,
for instance, that H (1) is positive, this event occurs with a probability which tends to 1 as N — +o0.

Theorem 17. For T > 0, there exists a constant C(T') independent of N such that

sup  sup E[|X] - X{|*1o,] < C(T)EY? | sup W5 (il )
i=1,...,N te[0,T] lo<t<T

and, for N large enough,

L0<s<T

sup |Xi — X 1QN}SO<T>E1/4 sup WHG )|

Lemma 18. Assume that the initial data satisfies the following moment condition: there exists an integer
p > 8 such that My([Xo]) + H, is finite. Then, there exists Cr := C(T, (Hel), Mp([€]), Hp) > 0 such
that
| sw W )| < Cren.
0<t<T

where ey is given in Lemma 1.

Proof. Since p > 8 we have, thanks to Proposition 16 and Corollary 14, that the assumptions of Lemma
1 are satisfied. U

Before proving Theorem 17, let us point out some consequences of (38) and (39). Let (z;)1<i<n and
(yi)1<i<n be two sequences of points of R"™. We set

1 1 &
:ug];V:NZ(Sym MiV:NZ&M
i i1

Inequality (38) becomes in this case
H (py) = H (1) SE[DuH (i) (X) - (V = X)] + CE[|X = Y]],
where [X] = p} and [Y] = pl). Of course, this inequality is true for any pair (X,Y) with [X] =z} and

[Y] = 1) so that we can choose a specific law for (X,Y). If all (z;) are distinct, let us pick Y = f(X)
with f(z;) = y;. We get

E[D.H (13) (X) - (f(X) = X)]+CE[|X - f(X ZD H (p3) () -( i_xi)+% Z|yi—3€i|2-
Therefore,
5 S DRHG ) ) s~ ) < H ()~ H (1) + 5 Dl = il (53)

This inequality also holds when the (x;) are not necessarily distinct by approximation. Moreover, in-
equality (39) becomes, with [X] = p2 and for any v € Pa(R"™),

N
E[IDuH()(X) ~ DuHW)(XOP] = 5 S IDuH (i) (w) — DuH @) )Pl < CWE G, 0). (84)
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We will also need below a few points on the L-derivative. For x = (x1,...,zy5) € (RM)Y, we set
HN(x) = H(+ Zi\il 0z;). We know from [11] that

Da, HY (x) = %DHH(% 3 b)),

1=1
1 1Y 1 1
2 Nyoy . L 1 2 o
lemlH (X) - NayD#H(N ;5%)(1'1) N D H(N ;csmi)(xhxl)v
1 N
Dz, HY(x) = WD;QWH(NX)S Nwi,z5)  iF]

So, if (X?%) and u? satisfies the reflected SDE (82), we have, by It&’s formula,

AH () = 37 DL )(XD) - bls, XD)ds

i=1
1 & _
v O T (000 (5. X2) + 0107 (s, X1)9, D H (1 )(X1)) ds
=1
N .
+ o ZTr (00 (s, X2) D2, H () (X2, X1)) ds

b 3 o (o4, X)o7 (5 XE)DE HO) (XL X)) s

4,J=1
1 N
Ny/ yi i i
TN ;D“H(“S )(X5) - oo(s, X)dBg (85)
1 N 1 N ,
+ 7 2 DR (0 X)W+ 5 ) [DH )] AR
=t i=1

We also note that, by Assumption (52),

¥ S HENED = [ 1D, H () @)l (o) < M, (56)
and

LS D2 ) (s X = [ DR )| (o ) < M. (87)

3,7=1

Proof of Theorem 17. We work on Qp. Let us set AX} = X} — X}. For a,d > 1 to be chosen below,
we set v, = exp{—a(dt + H(uN) + H(jis))}. We note that v, is bounded above and below by positive
constant on bounded time intervals. Choosing « and § large enough, we have, by 1td’s formula (16) and
(85) and by the Lipschitz continuity of b, op and o1 as well as the bounds on the coefficients (see also
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(86) and (87)):

t t
WAX <2 / VAXL Dy H (p)) (XD dKY —2 / VsAXL Dy H (i) (XD) dE
0

§ t . ) _ )
— % %|AXZ|2 ds + 2 / YsAX] - (o0(s, X2) — 00(s, X1)) dBL (88)
0

t N t
#2 [ 28X (10 XD —on (o KD) W = 7 [ AXIPDLH ()X (s, X2)aBE
0 : 0
Jj=1

t
—a/ o AXEP?
0

t N t
—a / AXI? 12!1) HY)(xD)|” | dEY —a / T AXIPEY (D, H () (XD ] dE..
Jj=1

o1 (5, XD, H () (XI) + E° [0 (5, XD H (i) (X)) | - AW

=
Mz

—

N 4
Using (83), we have, since H (u2) = 0 dK-a.e. and H|fis] = H([XW]) >0
2 o~ (! i Ny (yi N
N Z/O ’YSAXS ’ DHH (Ms ) (Xs) sz
i=1
' N N C [
(s N, Y 012 75N
<2 [ ) = 1 @) ar + 53 [ laxi i

t
§2/ Vs (H(/_Ls)fH( dKNJF_Z/ 75|AXZ|2dKN'
0

Since H is M-Lipschitz for W5, we get
2 oL [
23 [ axi Dt () (60 K
i=1

<2M sup W, (us s s KN—i——Z/ Y| AXY? dK N (89)

0<s<t

N t
2 X _ .
We split the term N g / vsAX, -D,H (fis) (X2) dK, into two parts:
— /o

N t
2 i _NY (¥
A=—— Zl/o VAX! D, H (EY) (X?) dK,
2 o [t .
Bim >0 [ AXI DM () (X)) - DuH (1) (X)) dK..
— /o
We use (83) for the first one: since H(uY) > 0 and H(jis) = 0 dKs-a.e.

NZ/% (X! — X)) -D,H (5Y) (X?) dK

t
32/ Vs (H (p2) = H (i) dK +—Z/ V| AXG|? K,
0

and using the Lipschitz continuity of H, we get

A<2M sup Wa(ph, jis Kt—i——Z/ vs| AXE? dK. (90)

0<s<t
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Finally, we have, using Cauchy-Schwarz inequality, the global bound on f]R” |D,H(u)|dp (given by as-
sumption (52)) and (84),
1/2

t N N 1/2
B<2 /Ovs<%2IAX§|2> (%Z\Duws)<X;>—Duﬂ<us><f<;>f) K,

i=1

1/2 N 1/4
<o [ (yDanr] (3 o ) (58 - p ) )

1=1
. | X 1/2
<C | w[=S"|1axiz| w2 EN, ) dK,
< /07<th1| s|> S (s is) dKC,
from which we deduce

N t
C .
B<Sy / I AXIE R+ C sup Wa(a, i) Ko (91)
N i=1v0

0<s<t
Inserting Assumption (53), estimates (89), (90) and (91) into (88), we get, for @ and § large enough,

N t
2 ) . _ .
§j|AXZ|2<C(KN+Kt) sp Wil ) + 7 3 / VAXL - (00(X]) = o0(X1)) dB]

i—1 0<s<t

N t
2 i i i , .
+N;/O VAXL - (01(5, X]) = o1(s, XD)) dW, — = Z / Yo AXIPDH () (X1) - 00(s, X7)dB]

1,j=1

N t N
o i 1 * j j * Vi - Vi
5 [ AKX i KDDL (D) + B o (5 KD H K] | W (92
i=1 =1

We prove below the following exponential moment estimate on K*:
sup E [exp{0K, }1q,] < Cy(t), Vo > 0. (93)
N>1

Then, taking expectation in (92) and using the Cauchy-Schwarz inequality, (93) and the fact that (K)
has also exponential moments (Theorem 11), we get, as Q0 is independent of B® and W,

1 N
N Z |AX1;L|2]‘QN
=1

< OB (K P1o,] + BV [KZ)EY? | sup WhG2 )

0<s<t
< C(t)EY? [ sup WG ,m} . (94)
0<s<t
Note that, by the exchangeability of the (X*), this implies that, for any T > 0,
sup sup B [IAX{P1a,] < CTEY | sup WHGEY )] (95)
te[0,T) i=1,..., 0<s<T

In order to improve this inequality and have the sup in time into the expectation, we come back to (92)
and obtain, by the BDG inequality,

N
sup — E° [|X] — X{I?] 1¢
2, 7 DB I - i) ]

E

N 1/2
< CE |:(K'1]"V]-QN =+ KT) sup WQ(ﬂiva ﬂs):| + CE (/ Z ]EO |A)(z dS) ]-QN )
0<s<T i1

from which we infer by the estimate on K in Theorem 11 and on K% in (93), by (94) and by the usual
argument, that

N
E| sup — E° [1X{ — X{*] 1
[ETE Sl Ee T

< C(T)EY? [ sup WE(EY ,ﬁs)] . (96)
0<s<T
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Then we come back to the corresponding version of (88) with v, = exp(—dt) therein, take the sup in time
and use the BDG inequality, the bound on D, H (through (86) in particular) to get

¢ 1/2
(/ vs| AXE? ds) 1QN] .
0

By exchangeability, the first term in the right-hand side does not depend on ¢. Thus

t
| s wAXIP10, | < C8 | [ [AXIPAKY + a0, + OB
0

0<s<t

E Uot(EO [[AXIP)Y2{dKY + dKS}1QN} =E

t N
[ fai) e - arcy,
0 i=1

1/2
1 _
= ~ 2B [IAX{P dKY 4 dK )1
- /0 <N; [| s|] { s + } QN
1N
1/2 0 io s v )
= E / [Oiggtﬁ ;E [|AX5| } 1(2}\7] E / [(Kt ]'QN —+ Kt) } .

By (95), (96) and the bounds on K~ and K, this finally implies that

E[ sup |AX§|21szN] <o) (E/[ sup W&(ﬂf,m} LEV [ sup Wf(ﬂf,ﬂs)D-
0<s<T 0<s<T 0<s<T

To complete the proof, it remains to show that (93) holds. We have, by It6’s formula (85),

1 M T .
) =1 + 53 [ D)) -bls. X

N T
1 « i « i i
Fa D ) (oo X+ vl XD (K1) s
N T

1 * % i i
s [ (ousi o XD H) X1, X)) ds
1
1 T
avr S [T (s, X2 o, XD H) (X XD) ds
i,j=170
1L T . o
F 3 [ DRHGE XD - s, XD
=1
1 N T 1 N T 9
N 7 7 N 7 N
+N;/O D#H(Ms )(Xs)'o-l(saXs)dWs+N;/O |D,LLH(M5 )(XS)| sz .
Note that, by (53) and on {H (1Y) = 0}, one has
RS N (yiy|2 N 2 N 2
¥ 2 IDuH T (XD = | DL Hu)@)]" ' (da) 2 82
i=1 "

On the other hand, by (52) and the L bound on b,

N
< Z D H () )(X0)| < C.

e

N
& ST DLH ()X - bs, X
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As 0 and o7 are bounded and (52) holds, we obtain in the same way

1 & . _
N 2 D (u)(X2) - bls, X)

N
1 ) . .
+ |37 2 T (0005 (s, XD) +0’101‘(8,Xé))@yDuH(uiv)(Xé))‘
=1
1 Y . o
+ |57 2 T (0005 (s, XD D, H () (X1, XD)
=1

N T
1 i\ i j i
+|57 Z/O Tr (01 (s, X2)oi (s, XD D2 H (ud ) (X7, X2)) ds| < C.

ij=1

As, in addition, H is bounded, we finally have

N T N T
1 . X . 1 . .
27N § N i i i 2 N % AW,
B KT S C - N P /0 D#H(Ms )(Xs) ' UO(SaXs)dBS - N Pt /0 D#H(:u’s )(Xs) ! Jl(sts)d Sy
which yield (93). O

3.3. Neumann Problem on Wasserstein space and Feynman-Kac formula. We connect here
our reflected process with a PDE on the Wasserstein space. For this we assume in addition to (Hcl) that
b and o are deterministic , continuous in time and let O := {u € P?*(R"™), H(u) > 0}. Given a bounded,
continuous map G : O — R we consider the map u : [0,7] x O — R defined by

ulto, o) = B [G(IX )] (97)

where (X!o-Xo Kto:Xo) solves the reflected SDE (51) on [tg, T| with initial condition Xf(‘;’xo = X and
[Xo] = po. Thanks to Remark 12, the uniqueness in law holds for (51) so that (97) is defined without
ambiguity. By the semi-group property, we have, for any F"-stopping time 7 > g,

u(to, o) = E [U(T, [XiO’X°|W])] ) (98)

So we can expect that u is, in a suitable sense, a solution to the following Neumann problem on the
Wasserstein space:

(i) @+ Ault, ) =0  in(0,T)x O,

(i) [ Duultn)w) DuH() =0, in (0.T) x 2O, (99)
R’Vl
(#31) u(T, u) = G(p), in O,
where the operator A is given, for any smooth function ¢ : [0, 7] x P?(R") — R, by

1

Ad(t, ) = / b(t,2) - Dyt 1) (2)du(z) + / Tel(ao(t, 2) + ax (t, 2))0.D (¢, 1) ()] da(2)

- . (100)
+3 / Tr (D}, ult, 1) (2, 2")o1(t, 2)o5 (t, 2')) p(dz)p(dz"),

R™ xR™

with a; = 0,07 (i =0,1).
Our results are the following : we first show that the map u given by (97) satisfies (99) in the viscosity
sense. Then we provide a Feynman-Kac formula showing that any classical solution of (99), if it exists, is
given by (97). Note that the question of the uniqueness of the viscosity solution of (99) is not considered
in this work.

In order to show that the map u given by (97) satisfies (99) in a viscosity sense, let us introduce the
following definition (inspired from Definition 11.17 of [13]).

Definition 19. We say that a continuous function u is a viscosity solution of (99) if

(i) u is continuous on [0, 7] x O;
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(ii) for any (¢,p) in (0,7) x P?(R™), for any test function ¢ : [0,7] x P?(R™) — R (see Definition
11.17 of [13] for the class of test functions) such that v — ¢ has a local minimum (resp. max) in
(t, 1) we have

(0: + A)p(t, p) <0, (resp. > 0) in O,
win { @0+ Ap(t) s [ DLHOE) Dyt )(2) du(z) | <0, (resp. > 0) i 90

(iii) w(T,pn) = G(p) in O.

(101)

Theorem 20. If (Hcl) holds and if, in addition, the coefficients b and o are continuous in time and
deterministic, then the map u defined by (97) is a viscosity solution of (99) in the sense of Definition 19.

Proof. Let us first check that u is continuous. Let g, v € P2(R™) and let [Xo] = po and [Yp] = vo. By
Proposition 15, there exists a C' > 0 such that:

EHX:O’XO _ X:01Y0|2] < CE [|XO _ S/O|2] )
Combining this inequality with the dynamic programming principle in (98), it is easy to see that the map
u is a continuous function.
Let us now prove that u solves (99) in the viscosity sense. Suppose that ¢ : [0,7] x P?(R") — R is a
test function such that u — ¢ have a local minimum in (¢, u). We can assume, without loss of generality,

that: ¢(t, ) = u(t, u) (which can be done by translating ¢). Let r > 0 be such that u(s,v) > ¢(s,v) for
s € [t,t + 7] and Wa(v, p) < 7. Let us set g := [XL#|W] and let 7 be the FW-stopping time

T =1inf{s > ¢, Walus, u) <r}.

Finally, for h € (0,r], we set 7, = 7 A (t + h). Note that, in view of the exponential estimate in
Theorem 11 and our assumptions on the coefficients of the reflected SDE; it is not difficult to check that
E[r, —t)/h] — 1. On the one hand we have from (98):

o(t, 1) = u(t, p) = E[u(th, pr,)] = Eo(Th, pr, )] - (102)
On the other hand, by applying Ito’s formula (16), we get:
Th
Pmpn) = o+ [ @ Aol
t

7] Du ) 6) Dt i) ()

; / [ ot (s 2)Duplr ) el (d2) - Wy

Plugging this equality into (102) and taking expectation we find:
Th Th
0 = B[/ @+ At t [ [ DuH@) @) Dl ) (i (d2)dE |
t t n

Assume now that p is such that H(u) > 0. Then choosing r > 0 small enough we have H(us) > 0 a.s. in
[t, 7], so that dK ([t,7]) = 0. Hence

E| /t "0+ Al pr)dr] < 0.

Dividing by h > 0, letting h — 0 and using that E[r, — t)/h] — 1, we eventually have
(0r + A)p(t, p) < 0. (103)
Assume now that p is such that H(u) = 0 and that

win { @0+ Ap(ts )5 [ Dusp(t. (i) > .

Changing r > 0 if necessary, there exists a > 0 such that, for any s € [t, ¢ +r] and Wa(v, ) < r, we have

win { (@ + Ae(s.0) ¢ [ Dts.)Gav(a) | =
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Then
Th Th
0 = EB[[T @+ plrir+ [ [ DL Dyl ) () dis (] 2 0 ().
t t n
As E[rp, —t)/h] — 1, we find a contradiction. O

In order to establish a kind of reverse statement, we now prove a Feynman-Kac formula.

Proposition 21. Assume that u is a classical solution to (99). Then u is given by (97).

Proof. Let us set jig := [X10*°|W]. Then, by It6’s formula (16):

() = ulto. ) + [+ Auts.pn) + [ [ Dyu(ogn) ) D) () () K

to

T
" / [ ot oDt ) @)pe(do) - .,

where, by (99)-(i

A)/} (s, ps)(y) - Dy H (1) (y) s (dy) dK

= [ tgucoor ([ a0 DA () i) ) = .
to n
From the equation satisfied by u, we obtain

u(to, po) = ulto, o) = E[uw(T' pr)] = E[G(pr)] -

4. Backward SDEs with normal reflexion in law.

In this part, we are interested in Backward SDE constrained in law with normal reflexion. Namely, on
[0,T], T > 0 we consider the following problem:

T T
V;=¢+ stS,Z)dsf/ Z,dB, +/ D, H([Y:])(Ys)dK,, 0<t<T,
(104)
H([Yt])ZO, 0<t<T, /H =0,

where B is a Brownian motion on a given probability space (€2, F,P) endowed with the natural filtration
FEB, the processes Y, Z are of dimension n and n x d respectively, f : Q x Ry x R" x R"*¢ — R" and
H:P?(R") — R.

We call solution of (104) a triple of progressively measurable processes (Y, Z, K) taking values in R™ x
R™*? x R such that K is deterministic, continuous and nondecreasing with Ky = 0. We study the system
under the following assumptions, referred as assumptions (A) in the following:

(A1) The functions f : Q x Ry x R? x R"*4 — R" is Lipschitz w.r.t. (y,z) uniformly in time and w
and adapted to the filtration F? for fixed (y, z) and:

E < +o0.

T
/ 1£(5,0,0)%ds
0

(A2) The function H : P(R") — R is fully C? (see the introduction for the definition) and
e there exist 0 < 8 < M and n > 0 such that

vne PEY), [ IDLHP ) ulds) < M2, (105)
and

Ve PAEY with — < H() <0, < [ D) u(do) (106)
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e there exists C' > 0 such that

VX €L’  E[D.H(X)(X)-D.H(Y)Y)] <CE[X-Y[*]. (107)

(A3) The function H is concave: for all u, v in Py (R™)
E

VX~ Y ~w, H(v) - Hip) — E[DH(X])(X) - (Y — X)] < 0. (108)

(A4) The terminal value £ is Fr-measurable and

H([¢]) 20, Ma([¢]) < +oo.

Remark 22. Let us note that:

(i) It follows from (106) and (A4) that there exists A in P2(R") such that H(\) > 0;

(ii) “Conversely”, if {H > —n} is bounded and if there exists A € P?(R") such that H()\) > 0 then (106)
holds.

Remark 23. In the following, we often use a r.v. A with law \ as a pivotal point to obtain certain
estimates. This leads us to use several times Itd’s formula on quantities like |Y; — /~\|2 To do so, we work
as follows: we pick a r.v. A ~ X independent of FZ on an atomless probability space (Q F, (]:t)t>0a P).
Then, we apply Ito’s formula on the space (Q,F, (Fi)is0,P) = (Ax Q, FQ F,(F: @ F)i>0,P @ P) and

denote by E and E the associated expectations.

In the following, this framework will be referred as we work on the enlarged filtered probability space of
Remark 23.

Proof of Remark 22. The first assertion is obvious pushing forward the measure [{] along D,H. Con-
cerning the second assertion, let A be such that —n < H(A) < 0. Let X, X € L? be such that [X] = ),
[Xo] = A. Then, by the concavity of H,

H(Y) < HQ\) +E[0,H(\)(X) - (Xo — X)]
< EV2 (|9, HO)(X)*| BY2 [|X0 - X[

As X is bounded in L? by some constant C' and H(X) > 0, this proves (106) with 5 = H(X)/C > 0.

Next, let us come back to the concavity assumption (A3). Let now x = (z1,...,2x) € (R®)Y and HV
be the finite dimensional projection of H:

1
N o P
HY0 = H(G Y )
We have that for all x,y in (R")V
N
N N 1 N
H(y) - H (%) - > DuH () (@) (@i — yi) <0, (109)

i=1

since

Dp, HN (x) = —D H( 25351) ;) (110)

this means that the mapping x + H™V(x) is concave in the classical sense. Hence, D2H" (x) is non-
positive, where

N

1
02, HY (x) = aD H( Zéml> xz)57J+N2D2 Nz(szl (zi, 7). (111)
(=1

=1
O
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4.1. Existence and uniqueness of the solution.

Theorem 24. Under (A) the BSDE with normal reflexion in law (104) has a unique square integrable
solution such that K 1is deterministic.

Proposition 25. Let p > 2. Assume that assumptions (A) hold true and assume in addition that
My ([€]) + Hp is finite. Suppose further that E UOT |f(s,0,0)|pds} < 4o00. Then, there exists a constant

Cor:=Cpr (Mp([f]),Hp,E UOT |f(s,0, 0)|pdsD > 0 such that

E[ sup |Yt|p] <Cpr. (112)
0<t<T

Proof. Let us start with the uniqueness result. Set (Y, Z, K) and (Y, Z’, K') two solutions of (104) and
let us denote AY; =Y; — Y/, AZ, = Z; — Z, and AK; = K; — K. Let a € R, applying It6’s formula on
e*'|AY;|? one obtains

T T
e|AY 2 = / (—ae®|AY, | + 26 (AYS) - Af(s, Yy, Z)) ds—2/ e**(AY;) - (AZsdBs)
t t

T T
- [ eiazfas 2 [ et (M) - (AD,HIV) (VAR

where A[D, H([Ys])(Ys)dK,] = D, H([Ys])(Ys)dKs — D, H([Y]])(Y,)dK. By using classical arguments
and assuming that o > 2| f||uip + 2||f][2;,, we derive:

1 /T T
e AY;)? + 5/ e |AZ Pds < —2/ e (AYy) - (AZ4dBsy)
t t
T
+2/t e™ (AYs) - (A[D, H([Ys])(Ys)dK]).
From the concavity on H, thanks to the Skorokhod condition and since Vs € [0,T], H([Y/]) > 0 we have
T T
[ e BlAY) DHY K, < [ e (H(Y) - HY)dE. <o,
¢ ¢
and the same arguments lead to
T
- [ emiav.) - DEEY) DK, <0
t

Hence,

1T
E eo‘t|AYt|2—|—§/ e |AZ ?ds| < 0,
t

and uniqueness of {Y, Z} follows.

Let us now deal with the uniqueness of the processes K, K’. We aim at reproducing the approach
implemented in the proof of Theorem 8. However, we cannot use the chain rule on the Wasserstein space
because of the lack of needed integrability of the processes Z and Z’. To overcome this problem, we
are lead to apply classical It6’s formula on i.i.d. copies of (Y, Z). Define {(Y)?, (Z)'}1<i<n as N copies

of (Y, Z). Writing ¥ = (Y!,...,YN)* | Z = (Z',...,ZN)* and ¥ = N1V, d(v,): we have, from
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classical It6’s formula

1o [ N2 1
i=1"YS

Ni

WE

H(id)— H(iy') —

t
[ Du DD - fw Yo Z0)

Il
-

NI

3 / T [D2HN (Y ) Za(Za)*] du

N t
1 N\ (VY . (7 VigRi
b 2o | DB (Zya,

-
1 _ =i (2
— 3 3 [ Dt K.,
i=17$
We have, passing to the limit N — +o00, that

/ B (D H ) V)] i, = / (D H v dc,

We can thus repeat the end of the proof of uniqueness in Theorem 8 to deduce that K = K’. The result
follows.

Let us now handle the existence part. The proof is divided into three parts: we first assume that the
driver f is space independent and bounded and construct a solution thanks to a penalization approxima-
tion; we then extend the result thanks to a truncation argument when it is in L?(Q,1L? ([0, T],R")); we
finally show, thanks to a Picard iteration, that the result holds true under (A1).

Step 1 : Existence for bounded and space independent generator. In what follows we start by assuming
that

(T1), Y(w,s,9,2) € Qx[0,T] x R" x R™ f(w,s,y,2) = f(w,s), Ik >0, |f(w,s)] < Kk, P—a.s..

In this case, we construct a solution through a penalization approach. For £ > 1, let ¥, : R — R4 be
the function defined by
Yp(x) =rife < -1/k, ¢p(x)=—kre, if —1/k<z<0, ¢p(z)=0,ifx>0.

Note that the function v, depends on the constant r > 0 which will be chosen later. Let (Yk, A k) be
the solution to the following BSDE:

T T T
vi—es [ g [ Zkaps [ DHEEEEnEE ), 0<e<T. (13)
t t t
We have the following Proposition whose proof will be given at the end of this Step.
Proposition 26. Under (A), for any k > 1 there exists a unique solution of (113) satisfying

T
E | sup |Ytk|2+/ |ZF2ds| < C,.
0

0<t<T

Moreover, under (T1), there exists r > 0 such that for all k > 1 and 0 <t < T we have
H([Y}) = ~1/k. (114)

Introducing

Kb = / Gk (H([Y]))ds,

we rewrite the previous BSDE as

T T T
Vi =¢ +/ f(s)ds — / ZkdB, +/ D H(YF)(YF)aKE, 0<t<T.
t t t

Let k,¢ in N* be fixed and set AY; := Y* — Y and AZ; = ZF — Z!. Applying Itd’s formula to |AY;|?,
and using Young’s inequality, we obtain:
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T T
AviP+ [ azPas < o [ v D (YIRS (115)
t t
T T
—2/ AY; - D, H([Y)(YHdKE ~ 2/ AY, - AZ,dB;.
t t
From the L-concavity of H, Proposition 26 and the definition of K* we have

E /t AK-DHH([K’“])(@)CZKQC] < E /t (H([YF]) = H(YD)w (H ([Y])ds

< 04T -0,
since () < 0 and v, is bounded by r. Arguing similarly we have

o) (T —1t).

WIﬁ

/ " AV, DL H(Y)Y )dKﬂ

1 1
<C T\ 7. VR E
s O, ( A + f)
and coming back to (115), we get from BDG’s inequality together with the fact that sup, ¥, < r that
there exists C7,,. > 0 such that

Hence we deduce that for some Cr, > 0O:

sup E
0<t<T

T
|AYt|2+/ |AZ,|?ds
0

T
E | sup |AYt|2+/ |AZ,|*ds
0

0<t<T

1 1
(1),
-\VE Ve
Thus, {(Y*, Z¥)}k>1 is a Cauchy sequence in §? x M2. Let us denote by (Y, Z) its limit. Since 1y, is

bounded by r for all k, K* is Lipschitz with |K¥|;, < r. Hence, by Ascoli-Arzela theorem, up to a
subsequence, (K*) converges towards a non decreasing, Lipschitz continuous function K in C([0,T], R).

It is straightforward to check that (Y, Z, K) solves (104). Indeed,
o H([Y:]) = limg 00 H([Y;"]) > 0 by Proposition 26.
e the Skorokhod condition is also satisfied : since zi;(z) < 0,

0</ H([Y:])dK, = lim TH([ Y aKk = Jim H([Yk])q/)k( ([YF])ds <o.

‘)OOO 0

Proof of Proposition 26. First note that existence and uniqueness of a solution follows from [8]. We work
on the enlarged filtered probability space of Remark 23. Arguing as in the proof of uniqueness, for « large
enough, we have, for 0 <t < T,

- 1 T
eat|Y;k _A|2 + 5/ eas|Z§|2dS
t
N T N T N T N
SeaT|§fA|2+/ eas|f(s,A,0)|2ds+2/ e (YF—A)-D, H(]Y] ])(Y’C)dK;tQ/ e (YF—A).Z*dB,.
t t t
(116)

Using the L-concavity of H together with the fact that H (5\) > 0 we have,

E

T T
/t e (V¥ — &) D, H(Y 1><Yk>dK’“] / e (H([YE)) — HOV) o (H(YH]))ds <0,

since zyy,(x) < 0. Tt follows that there exists C5 := C(Mz()), T, (A)) > 0 independent of k and r such
that

T
AP+ / 124 ds
0

sup E
0<t<T

< Cj. (117)
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Coming back to the estimate (116) and using BDG’s inequality, we deduce that, for some constant
Cor :=C(a,T,r,(A)) > 0 independent of k,

T
E| sup [V + / 24P ds| < Cay,
0

0<t<T

in other words, the sequence {(Y*, Z¥)};>1 is bounded in 8% x H2.

Let us now prove (114). Our approach here is in the same spirit as the proof of estimate (48) in paragraph
2.2. Again, due to the lack of needed integrability of the process Z*, we apply classical Ito’s formula and
then use the concavity property of the function H, see the computations below.

Assume that there exists 0 < to < T such that H([Y}]) < —1/k. Define t = inf{u > to : H([Y}}]) >
—1/k} and s = sup{u < ¢t : H([Y}]) < H([Y]) vV —n}. Since H([¢]) > 0, and —n < —1/k we have that
0<s<t<Tand —n<H(Y}F])<—-1/kon [s,1].

Let {(Y*)!,(Z*)", fi}1<i<n be N copies of (Y* Z* f). Writing Y¥ = (Y*)!,...,(Y*)V)* and Z* =

(ZM)Y, .. (ZF)N)* and i F = N1 0N d(ypy: we have, from classical Itd’s formula
1 [
_ _N.k SNy (kY L i
HEY) = HE™+ 5 3 [ DHESEE) - fwda
i=1""%

t
~5 [ DR (22 du

- )3 [ DG - (2B,
Nt
by 20 [ 1PuH )

Hence we have from (111):

. ) 1
H(ud*) > H@EM*) + =

t
[ T DT 2 du

= HE) S [ DHERTE) -
N
¥ DHGSGL) 2y s,
o 2 [ DB 118)

Taking the expectation and then the limit over N on both sides leads, see the proof of Theorem 5.98 of
[12], to

H([YS]) = H([Ytk])+/E[DuH([Yf])(Yf%f(UH du

+ [ BIDL QYo H (V) du

From (A) we get that there exists a constant C' := C(a,T, (A)) > 0 such that

H(Y) > H([Ytk])*C(t*S)Jr/E[IDuH([Yu’“])(Yu’“)F]wk(H([Yuk]))dU-
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Using now (T1) and the definition of v, we get

H(Y) > H(Y]) = Ct—s)+ 5t —s)r.
Since H([Y}]) < H([Y}*]) v —n < —1/k < H([Y}*]) this implies —C + % < 0 which cannot hold for all
r large enough and then leads to a contradiction. (|

Remark 27. Note that from the proof of the above Proposition and Stepl remain true for a generator f
satisying sup, < E[| f(t)|*] < 4-oo0.

Step 2 : from space independent generator in L>° to H2. We now prove, using a truncation argument,

that the BSDE (104) admits a solution when
T
| 1ss
0

T T T
Y=gt / F$)1 0oy <mdls — / ZmdB, + / D, H([Y]) (Y dE™.
t t t

For each m in N, this BSDE admits a unique solution from step 1. Moreover we have for any m,¢ > 0,
by applying It&’s formula on e®|Y,f — Y|, a > 1, that:

(T2), V(w,s,y,2) € Q2x[0,T] xR" x R™¥4 flw,s,y,2) = f(w,s), E < +o0.

Let Y™ be given by

T
U=y [ ezt 2 s (119)
t
T T
= 2/ e (YE=Y™) - (F()1)5(s)1<e — F(8)L)5(s)1<m)ds — 2/ e (Y=Y - (ZE - Z7")dB,
t t
T T
+2/ e (YL —Y") - D H([Y!]) (YKL - 2/ e (YL = Y") - D H([Y) (YK
t t

T
_a/ 6a5|5/;€—§/;m|2d8.
t

Taking now the expectation, using L-concavity, Skorokhod property and the fact that for each k the
marginals {[Y,*]}o<;<r satisfy the constraint, we deduce that:

/TE [e* (V) = V") - D H(YI)(Y)] dE — /T e E (Y = Y{") - Dy H([Y") (V)] dK "

T
< 2E / e (H([Y)]) — H([Y,"]) (dKf—dK;”)] <0, (120)
t
so that,
T
supE | e |Yy — v 2 +/ ezt — Z;"|2ds]
t<T t

T
< C/O E[If(s)15(6)1<e = F(8)1(5) <ml?] ds

Let us now show that K7 is bounded, uniformly in m. To do so, we work on the enlarged filtered
probability space of Remark 23. One has,

T T
eat|ytmfﬁ|2+/ e |2 2ds = eaT|ng|2+2/ e (Y™ = A) - £(8)15(s)|<mds
t t

(121)

T T
2 [ e - Ry zpa, sz [ et - B D H(YIDYAKY
t t

T ~
—oz/ e |Y™ — APds.
t
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Taking the expectation on both side, using Young’s inequality and L-concavity together with the Sko-
rokhod condition, we obtain for « large enough that
T
| 1rpas| ).
0

T
/ e Z™ |2 ds
0

Hence, coming back to (119), taking the supremum in time, the expectation and choosing « large enough
lead to

supE [e™|Y;" — /~\|2} +E
t<T

+ e THN) (K — KM) < C<I_E [1€ — 1~\||2} +E

T
E lsupeo‘tﬂ/f - Y2 —|—/ e*s|Z8 — Zm|%ds (122)
t<T 0

< C(E

+ / g (v =y’ B2 | D () ()]

+ E |sup

t<T

T T
/O |£(8)L 55y <0 — F(8)1 f(5)1<m|’ds / e (Y = Y/™) - (ZE— Z7")dB,
t

T
+/t EV2 Y =Y PIEY2 D H (V") (V")) dK;”>,

thanks to Cauchy-Schwarz’s inequality and since K™, K* are deterministic. Since from BDG’s inequality
and Young’s inequality one has

T
/ (YY) - (Z¢ — Z)dB,
t

T
/ es|zt — Zm2ds|
0

we deduce that {Y™, Z™} is a Cauchy sequence in S? x H? that converges to some limit {Y, Z}.

E lsup (123)

t<T

C
< €E [sup ey — th|2} + —E
t<T €

Let us now deal with the convergence of the process K™. By the convergence of {Y;™, Z"} it is clear
that the sequence of processes (L™).,>0 defined by

t
w0, L] = / D, H (™) (Y™ K™,
0

converges in 8% to some process L. Set h(p) := (f|DMH(u)(-)|2d,u\/ﬁ2)_1, for all t > 0, ¢ :=
Dy H (11)(Y:)]*. Let us denote by (o, hM (ut)),., the discretized version of (o1, h(pt)),s, along a
subdivision (tg)o<g<as of [0, T] of stepsize 1/M. Let M > 0, for I,m > 0 we have -

t t
K~ K| \E [ / h(u;w;"dw} E[ / h(uiwidLi}

[ [ 1n0er - netbary] + 8] [t - nudpapar
=] Ao B ()L |

=] R ()M y (L ac)] +x| [ Y () e dart]

Note now that for all k > 0, we have dL* = D, H (u*)(YF)dK* with K* deterministic. Writing L™ and
L' as this, one can inverse the integration and expectation operators in the first, second, third and fifth
terms of the above r.h.s. We can thus deduce, taking first the limit superior in m,l! and then the limit
superior over M, that the process K™ converges to some deterministic continuous process K.

It is not hard to see that this limit (Y, Z, K) is a solution of (104) under the standing assumption on the
generator f assumed in this part.
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Step 3: from space independent generator to space dependent generator. We now only assume that the
generator f satisfies our assumptions (A). We are now going to construct a solution to BSDE (104) by
using a Picard iteration. Set (Y, Z%) = (0,0) and define recursively (Y™, Z™) as the unique solution of

T T T
vr—g [ g yvrtzp as— [ zraps [ D)K.
t t t
T
V>0, H(Y") >0, / HY™)dE™ =0,  m>1.
t

Let us denote for any m > 0: AY™+H = y™+l _y™ and AZ™m+ = Zzm+l _ Zm,

On the one hand, applying Ité’s formula on e**|AY;" "2, o > 1, we have
T
eat|A}/tm+1|2+/ 6a5|AZ;n+1|2dS
t
T T
— o [ e AV Rds b2 [ e QYY) (1 Y 20 < f(s Y 20 s
t t
T T
2 [ e A (A2 B + [ e @AY D (Y K
t t
T
- [ e @y D) R (121)
t

Then, using Young’s inequality and arguing as in (120) it can be deduced that for a suitable choice of «
that

E
4

T
1
eat|Ath+1|2+/ eaS|AZ;"+1|2ds] < -E
t

T
/eo‘s(|Ath|2+|AZ?|2)ds]. (125)
t

Let us now work on the enlarged filtered probability space of Remark 23. We get that
YRR [ ezpPas = e Tlg- AR 2 [ ey - B gl Y 20 s
t t

T ~ T B
foz/ e Y™ — A2ds — 2/ e (Y™ — A) - Z™dB,
t t

S

T

w2 [ ey - Ry D H(YI) (YK
t

By using the Lipschitz property of f together with Young’s inequality and the Skorokhod condition, we

derive, for « large enough:

supE [e*"|Y;" —/~X|2] +E + e THON\) (K — K™)
t<T

T
/ e 2™ ds
0

T
/ |f<s,A,o>|2dsD , (120)
0
so that K7 is uniformly bounded.

Finally, coming back to (124), we can argue as in (120) (122) to deduce from (125) and (126) that
{Y;™, Z™} is a converging sequence in §? x H? that converges to some limit {Y, Z}. We obtain that K™
converges to some process K by using the same scheme as we did at the end of step 2. Again, it follows
from standard computations that the limit {Y, Z, K'} is a solution (104).

< c(fa [E— AP +E

O
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Proof of Proposition 25. Applying Itd’s formula to e®t|Y;|P for some p > 2 we have

rp—1) [*
eat|}/t|p+ 5 / €a5|Y5|p72|Z5|2d8
t
T T
= ey [P SV Z)ds —p [ YY) - 2,
t t

“’/t Y, P2(Y,) - D H(Y]) (Va)dEK, fa/t |V, Pds.

On the one hand, Lipschitz continuity assumption on f together with Young’s inequality yields

/t UNYLP2(Y,) - f(s, Ve Zo)ds

T T
1
< o,,{ / |£(5,0,0)[7ds + / (1+;)e”w+ee“|5fs|p-2|zs|2ds},

for any € > 0. On the other hand, still from Young’s inequality we have

T

g Pt p—2 as_P p p
sup [ e WY DD W)IK, < [ e Lo D () ()P,

Choosing € small enough and then « large enough gives

-1 T
eat|y;|p + p(p4 ) / easlys|p—2|ZS|2dS
t

T

T
< |§|p+0p{/t eaSIYslp+IDuH([Ys])(Ys)Ideer/t |f(8,070)|”d8} (127)

T
_p/ eaS|Yt€|p72(Yt€)' ZsdBs.
t

Taking the expectation in the above inequality and using Gronwall’s lemma applied to the continuous
maps s — K (see Lemma 4 in [21] or Theorem 17.1 in [2]) eventually lead to

-1 T
eat|Yt|p+p(p4 )/ eas|Ys|p72|ZS|2dS
t

/ ' If(s,O,O)IpdS] }

Coming back to (127), taking the supremum in time, the expectation and using then BDG’ inequality
and Young’s inequality yield, together with the above estimate, to the result.

supE
t<T

< cp,T{Engm +H Kp +E

O

4.2. Interacting particle system constrained in mean field. Let us consider the following Sko-
rokhod problem in mean field:

T T
V=g [ izt - / Zz;;deg+ / D, H () (YK,
t

(128)
N 1 N .
VEe[0,T): :NZ(SY;-, H(ul) > / HpMdKYN =0, 1<i<N,
i=1
where for each i, j, Z%7 is a n x d matrix, {B'}1<;<y are N independent d-dimensional Brownian motions
and K% is a continuous non decreasing process. The terminal conditions {éi}lgig N are Fi-measurable
({F;} being the augmented natural filtration of B?) independent r.v. having second order moment and

satisfying H (N DR ) > 0.
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Remark 28.  Making the analogy with classical mean field approximation of McKean-Vlasov processes,
a natural choice for the family of terminal conditions {£'} is the family {£'} of copies of the r.v. £ in
(104). Nevertheless, the condition H([¢]) > 0 is not sufficient to ensure that (128) is indeed a solution

of the Skorokhod problem in mean field since it does not imply H (Nfl vazl 6§¢) > 0. To overcome

the problem, we may work only on the set Qn = {H (Nfl vazl 53) > an} which becomes, for a
suitable choice of 1y, of full measure when N — +oc0. This hence leads to obtain an asymptotic solution
to the Skorokhod problem in mean field, but not for any N (see the approach in paragraph 3.2). In this
part, we decide to tackle the problem from a different point of view: we show how to construct, from the
family of {¢'}, a family {£'} satisfying the Skorokhod condition and whose empirical measure tends to
[€], provided some additional integrability conditions on the data.

By “some additional integrability conditions”, we mean that we assume fourth-order moment on the data
& and D, H. In comparison with the assumptions needed in the forward case (see paragraph 3.2), such
conditions may appear to be the price to pay to solve the Skorokhod problem for each N. It seems to
us that this is not the case, but something more related to the backward setting. For instance, still in
comparison with the result obtained in the forward case, the set Q5 is not independent of the B* and
it is a priori quite intricate to obtain higher order moment on the process K~ without any additional
assumptions on D, H (recalling the lack of integrability of Z).

Initialization, well posedness of the particle system constrained in mean field and estimates.
We first state the following Lemma which shows how to construct the {£'} from the {£7}.

Lemma 29. Suppose that assumptions (A) hold. Given N copies {£'} of &, there exists a family of

random variable {€'} satisfying
N
1

and if we assume in addition that M4([€]) + Ha is finite then there exists C := C((A), My([¢]),Hs) >0
such that

N N
E H STIE €| < CEVE[WEEY, )], i = %Z(Sgi- (129)
i=1

i=1

Proof. To guarantee that the constraint is satisfied, the main idea consists in transporting the initial
condition along the normal vector up to the set of constraint. Since we only assumed that the normal
vector is non zero around the zero of H we have to proceed in two steps : consider first the case
where the empirical measure is not "too far" from the constraint set and when it is too far away. Let
Qn = {H (i) > nn} where ny — 0 and n3°E [(Wa(id', [€])] — 0 and let us push forward the empirical
measure iy along the flow of dIf = DHH(,ul]}f)(lf)dt, g =z, 2 € R"™W, where M{:{, =N 0= and

li’z denotes the i*" n-dimensional component of [¥. For N large enough we have —nx > —n so that on
Qn (106) is satisfied and it is therefore possible to find a positive ¢ < /% such that H(uf) > 0 where
py = (R™N 32— 17 e R"V) ). We write {¢*} the family of associated r.v.

Let us now handle the case when we are in Q. From Remark 22 there exists A such that H (5\) > 0. We
then set £ = (i1q, + Alge . We have
N

1 L 2 1 & .
E —Zlﬁz—?IQ] SMZ—]X +EY? [log ] 5 DBV [IA - ¢,
i=1

N

i=1
thanks to Cauchy-Schwarz inequality. Since H([¢]) > 0,

E [W3 (g, [€])]
2
N

we have, choosing n%, = EY/? [W3 (1Y, [€])], that there exists a C := C ((A), M4([¢]), Ha) > 0 such that

P(Q%) <P (|H (A7) — H([E)] = nv) <

)

E €8 — &' < CEY? [W3 (i), [€)] -

WE

1
N

i=1
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Next, we have the following result.

Proposition 30. Suppose that assumptions (A) hold and that the initial data {€'} in (128) are given
by Lemma 29. Then, the system (128) is well posed.

Proof. The proof of this result is not new and relies on classical results. Let us indeed remark that (128)
reads as a classical reflected BSDE in R™" | with normal reflexion in the constraint

K= {X:(ml,...,xz\/) c (RMN, H(%i(%) 20}.

Indeed, let us recall that, if

then (see [11])

Therefore the vector — (D#H (% vazl 6961.) (1),...,D,H (% vazl 511.) (xN)) is proportional to the
outward normal to the set K at the point (z1,...,2x5) € OK. Existence and uniqueness of the solution

are therefore immediate under our standing assumptions (cf. [18]).
(]

Lemma 31 (Moment estimates). Under assumption (A), for any T > 0, there exists C := C((A),T) >0
such that

E 1Z|W|2 Z/ Z|Z”|2ds +E[KN] <,

=1

and

sup E[(K7)?] < C.

N>1

Proof. Let p > 2, and let us work on the enlarged filtered probability space of Remark 23 (recalling that
here, the filtration has also being enlarged to take into account the N independent Brownian motions).
Applying Ito’s formula on e®*|Y; — A|> we obtain, after summing over all the particles, that

1 N 1 N . N
— eo‘t Y — AP+ = / e*® Zi’j 2ds
1M o
= YAy Z / )+ fls,YE Zi)ds
/ ZZWdBJ += Z/ D, H(uM)(YdKN
/ e*®|Y? — A|%ds.

From L-concavity and Skorokhod condition we have,

N T
~ Z / Dy H (i ><Y;'>dK;V] <-= > / e H(\)dKY, (130)
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while Lipschitz continuity assumption on f together with Young’s inequality yield

T
2 [ (v - Ry £ Y 23
t
T ~ T 1 o N
< C / e[ f(s, A, 0)|*ds Jr/ (1 + —> eS|V — A]? + ee®®| 25 ds ¢ (131)
t t €

for any € > 0. Also, thanks to the construction in Lemma 29 we have

N
Z ' <€ + |A]? 4+ EM2. (132)

Choosing € small enough and « large enough hence gives

%Z Ry - Z/ O‘SZ|ZW| ds + 2H() (KN — KN)

T N
< = E[|E" — A|]+C/ e E[|f(s,A,0)? s——Z/ A)-Y " Zi7dB].(133)

i=1 j=1

Taking expectation on both side of the above estimate we can deduce the first estimate. Let us now prove
the second assertion. We come back to (118) and obtain

H(ufv)—H(uéV)—%Z/O DL (Y)Y - (Y 22

N t
oy [ pedoy Savanz 3 [Ioanoofas. s
i=170

j=1

Note that dK™ ({s, s.t. H(uY) > 0}) = 0 so that by (106) we obtain

N t
PRY < H) = H) = 53 [ D)) - £ Y2 2
i=170

N + N
1 Ny /v ij 1]
2 D)) Y- 7t (135)
On the one hand
N 2
E |su /D H(pYYhH -y ZhidBI
i ()02
[ 4 TN 2
N 1 1,7
< B|ys [ X S D)2
i 0 j=1li=1
[ 4 TN N N
< Elgm [ S ABHGNOIE Y (120 i
j=1i=1 i=1

IN

1 N T N
AH,E NZ/ S 120 Pdu
i=170 j=1
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On the other hand, using the Lipschitz continuity of f and Cauchy-Schwarz’s inequality,

2

T1 & i i i
i=1
T T 1 N 1 N
< 2 = 2, * 1,12 _
< O(%){/O 1£(5,0,0)] ds+/0 N;w +N;|Zs|ds}

Hence, choosing ¢t = T, then squaring the expression and eventually taking the expectation lead, thanks
to the two above estimates as well as the first assertion of this Lemma (using also (107)), to the result.
(I

The mean field limit Let {B'}1<;<ny be N independent d-dimensional Brownian motions, {£'}1<;<n
be N independent copies of £ and set {(Y?, Z%, K)}1<i<x the solution of (104) with data {(B%, ¢")}1<i<n
(note that K does not depend on 4 since it only depends on the law of the data, which are identically
distributed thanks to Remark 12). Let {(Y?, Z¢, K™¥)}1<;<n be the solution of (128) where the terminal
data {£'} therein are built from the {£/};<;<n thanks to Lemma 29. We aim at showing that the solution
{(Y?, 2, KN) is close to {(Y?, Z°, K)}.

Let us denote by AY? :=Y? —Y* and AZ» := Z% — Z%J where Z»J = Ognxa when i # j. We have:

Theorem 32. Suppose that assumptions (A) hold. Then, there exist Cr := C(T,(A)) > 0 such that

E sup— {|AY1|2 / Z|AZg’j|2ds}
1

t<T

t<T

< OT{El/Q[sup Wi(us,uf)}w Zw «s"IQH,
0<s<T =1
T N
E [sup q |AYS? + / AZ 2 du
sup { AV + | g| [2du}
< OT{E1/4 [supW%(us,us }HWl ZI& H

Lemma 33. Suppose that assumptions (A) hold. Assume further that there exists ¢ > 4 such that

M, ([E) is finite as well as Hy and fo [1f(5,0,0)|7] ds. Assume moreover that the data of the system
are such that there exists p > 4 and Cp z > 0 such that sup,<7 E[|Z:|’] < Cp z. Then, there eists

Cr = C (T, (A), My([€]), Hq,Cp,z) > 0 such that

1L
(E N;W—Elﬁ

where ey is given in Lemma 1 (see Remark 2).

) +]E[ sup Wi (us, iY)| < Cren,
0<s<T

Remark 34. The assumption on the integrability of Z could seems strange at first sight, especially because
this process is part of the solution and not an input of the problem. This assumption relies on the control
done for the discretization of the process Y to handle the convergence of the supremum in time of the
Wasserstein distance. For instance, such property is satisfied when the terminal condition ¢ and the
driver f are Malliavin differentiable (see also Lemma 4.4 in [6] for further details).

Proof of Lemma 33. Let us first emphasize that the result is straightforward for the first term in the
Lh.s. of the above estimate: it follows from Lemma 29 and Theorem 2 in [17] (see also Theorem 5.8 and
Remark 5.9 in [12]).

Let us now deal with the second term in the above l.h.s. To handle this part, we have to check that
assumptions in Lemma 1 are satisfied. Note first that, under our considered assumption, one can apply
Proposition 25. It thus remains to check that (19) hold after taking into account Remark 2. These are
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straightforward consequences of our standing assumptions provided the process K is Lipschitz continuous.
Let us now explain why this is latter fact is true.

Let (Y, Z) be a given (part of) the unique solution of (104). It then holds that sup,., E[|f(¢, Yy, Z;)|?] <
400 so that one can come back to Step 1 of the proof of Theorem 24 and build the process K in such a
way it is Lipschitz. By uniqueness, this proves that K is Lipschitz. The result then follows. (I

Proof of Theorem 32. For o large enough we have

17
e AY 2 + §/t eQSZ|AZ;’J|2d5 (136)
Jj=1
~ . T . .
<T@ [ Ayl D HG Y)Y
t
—2/ €AY - D, H (us) (Y dK, —2/ e AY] > AZdB].
t t

Jj=1

So that, summing over 7 leads to

2|~

17 X
at 7|2 as 1,7 |2
et AYY| +§/t e ;mzsqu

i=1

(e

eoT N ~. . T 1 N . )
ez [ e LY AV D)) kY
i=1 i=1

<
N - 1 N T N N _
/ N; {AY] - D,H(us) Y;)}dKSQN;/t eaSAY;.;AZ;Jng
= JN 4 IN@ET) + IV, T) + M (L, T). (137)

We first deal with the second term in the r.h.s. of (137). We have

T 1 N ) . T B
B0T) = [ e AV DG IRY < [ et (1) - HE)KY (138)

i=1
T
< [ e (b Ge) - HE)RY
t
from Skorokhod condition and since H(us) > 0 for all 0 < s < T. Thus,

Jo' (t,T) < Ce®™ sup Wa(us, i ) (K7 — K[Y).
t<s<T

Next we handle the third term in the right hand side of (137) and split it into two parts

T N
1 X _ .
T = -2 / €™ 3 AY! - D, H (p)(V)dK,
t

i=1

T N
2 [ e DAY (D () (V) = (D () (V) K

T N
1 . _ .
2 [ et S AY D H (VK. = 1Y (1) + 1 (4 T),
t i=1
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On the one hand we have from Cauchy-Schwarz’s inequality, (84) and Young’s inequality

T 1 N . 1/2
Ry < o[ e (GRIaNE) T W )k,

t i=1
TN 1/2

< C — WSIAYH? ) Wa(nh, ps)dK,

< of (FXemonr) wom
4 1 i 2|2 2/=N

< 0[N WY ) K,
T 4 N )

< C’/ —Zea8|AY;|2dKS+C’ sup Wi (il us) Kr.
t Ni:l t<s<T

On the other hand we have from L-concavity and since for all 0 < s < T, H(uY) > 0 and H(us) = 0
dKs-a.e.

Bur) < 2 e () - Bk,

IN

T
2/ e (H(ul) — H(ps))dK,
t
< 2e*" sup Wo(l, po) K.
t<s<T

Hence,
T q N )
I (T) < 0/ = Y AV PdE, + C sup {WF(iY, pe) + Waid, pe)} -
i N = t<s<T

Bringing together the estimates on J¥, 1 <4 < 3 in (137), we obtain

1 & . 1 [T N -
~ > {eatmm? + §/t ey |AZ§’J|2ds} (139)
i=1 j=1

aT N

¢ Fi i @ =
DI P CeT sup Walpus, YK — KY)
= t<s<T

IN

T N
1 , . _ _
+C/ NE e |AY[PdK, + C sup {W3(al, ps) + Walil, pus)} + Mn (8, T).
t i1 t<s<T

Hence, taking the expectation in (139), using Cauchy-Schwarz’s inequality, Gronwall’s lemma and then
using Lemmas 29 and 31 lead to

1 N T N

at 12 as 1,712
E N g {e |AY] Jr/t e El|AZ5J| ds} (140)
_ j=

i=1

+EY? [ sup Wf(us,ﬂf)} +E[ sup {Wf(ﬂivvus)JrWz(ﬂiv,us)}} }

t<s<T t<s<T
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Now we have from BDG and Young inequality

2 1/2
1 T N ) N . N
E[sup Mn(t)] < CE —/ s |AY||AZS| | ds
r 1/2
1 N ' 1 N T N o
< CFE - at AyzQ - as AZ4I124
< sup N;{el P N;/te;| i [ds
1 & 21 Y T
at 12 as 2,712
< CeE %N;{e |AY/?} +4—€NH E /t e > |AZY|Pds | ¢ (141)

j=1
for any £ > 0. Hence, coming back to (139) and taking first the supremum in time and then expectation
we deduce from the above estimate, Lemma 31 and Gronwall’s lemma, that

N

1 S B A
E |sup N Z {eo‘t|AY;|2 +3 /0 e’ Z |AZ§’J|2d5} (142)
j=1

ST =

13N
S CT{ElNZ|€l_£z|2

i=1

BV sup 3 o )] +E | sup (R ) + Wl )] }

t<s<T
Note that we also have from above results, thanks to the exchangeability of the (Y¢, Z%), that

. 1 T N - 1 X
E[eanY?F] —|—§E /t €QSZ|AZ;J|2dS < Cr {E NZ|§Z_€Z|2
i=1

j=1

+E!? [ sup Wf(ut,uiv)} } :
0<t<T
(143)
Coming back to (136), taking first the supremum then the expectation we get, thanks to BDG’s inequality
and (141), that

. 1 7 XN .
E sup{eat|Aw|2+—/ e%Zngﬂﬁdu} (144)
t<T 2 J o

T
< B(E -] 28| [ e AVID,HG I + i) +EY? [sup 3 i)
0

t<T

Since by exchangeability of the (Y?, Z%), Cauchy-Schwarz’s inequality and (105)

T
B| [ et |AYIID, @)K + dK.) (145)
t

N T
1 ) )
= N}jEV e | AYZ||D, H () (V) [(dK Y +sz>]
i=1 t

IN

N 1/2

1 )

MR sggeas (NZ|AY:|2> ((K%[*Kt)ﬁL(KT*Kt))
8> i=1

IN

N
1 .
2e*T M2E? lsup N Zl |AY 2| EY/? [((K%] - K)* + (K7 — Kt)Q)] )

s<T

we obtain, thanks to estimate in Proposition 25 and (142) that

. 1 (T N . 1N
E sup{e”lAY;I2+§/ e 3 |AZE Pdu | < O{E“‘* {supWZ?(us,uiV)%E”Q [NZI«?—SIQH-
s j=1

s<t t<T T
< > i=1

O
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4.3. Associated Obstacle problem on the Wasserstein space. As we did for the (forward) nor-
mally constrained in law SDE, we aim at connecting our backward system with a PDE. To do so, we
consider the Markovian setup, where the final condition (104) is of the form ¢(Xp,[X7]), for some
¢ : R" x P2(R") — R and where X is the solution of an SDE driven by Lipschitz coefficients. Namely we
consider for T' > 0, for any r.v. Xy having second order moment, independent of the Brownian motion
and any ¢ in [0, 7], the Mean-Reflected Forward-Backward SDE (MR-FBSDE):

Xoe :Xo+/ b(r,Xi*X°)dr+/ o(r, XpX0)dB,, s € [t,T], X*° =Xo, s€[0,1)
t t
T T
VI = (X, ) 4 [ pn Xt v ar - [ 2%,

T (146)
n / D, H([Y X)) (VX0) dKX0, s € [t T),

T
Vs 0,7], H(YIY) >0, / H(Y %)) dk %) =0, s€[0,7),
0

where the superscript (¢, Xo) stands for the initial condition of the SDE associated with X whose coeffi-
cients are supposed to be continuous in time and Lipschitz continuous in space (uniformly in time), where
the coefficients of the backward component satisfy (A) (with d = 1) and where ¢ : R® x P?(R") — R is a
continuous and bounded function. Also, in this section we further assume that the following assumptions
hold:

(A’1) The functions f : Ry x R™ x R — R is continuous and there exists a positive Cy such that for all
(s,2,9) 0 [0, T] x R™ xR = [f(s,2,9)] < Cp(1+ |2 +[y]),
(A’2) There exists 8 > 0 such that for all (z, u) € R™ x P?(R") we have 3 < D, H (u)(z).

In the following we say that assumptions (A’) are in force if assumptions (A’1), (A’2) and (A) hold.

We start by recalling that, according to Remark 12, uniqueness in law holds for (146). In this case, we
aim at proving that there exists a decoupling field u : [0, T] x R™ x P2(R") > (t,z, u) — u(t,x,pu) € R
such that for any ¢ in [0, 7], any r.v. Xy having second order moment and independent of the Brownian
motion, we have for all s in [t,T] u(s, Xt¥0, [XE¥0]) = VX0 as.

Especially we are going to prove that u solves, in the viscosity sense, the following obstacle problem on
the Wasserstein space:

min {{(8,5 + L)ult,z, p) + f(t,z, ult,z, 1) };

H(u(t,-, p)tp) p =0, on [0,T) x R™ x P*(R™), (147)
U(Ta ) ) =9,
where L is given by, for all smooth ¢ : [0, T|xR™ x P?(R") — R
Lo(t,z,pn) = %/ Tr [((00™)(t,y))0yDpup(p) (¢, z, 1) (y)] p(dy) + / Dup(p) (£, 2z, 1) (y) - b(t, y)p(dy)

1
+§Tr [((60™)(t,2))D2¢(t, z, 1)] + Dap(t, x, p) - b(t, z).
Inspired from [13], we define a viscosity solution of (147) as follows.

Definition 35. We say that a continuous function u : [0, T] x R™ x P?(R") — R is a viscosity solution
of (147) if

(i) The function w is jointly continuous and bounded;

(ii) for any (t,z,u) in [0, T] x R™ x P2(R"), for any test functions (see definition 11.18 of [13] for the
class of test functions) ¢ : (0,7) x R™ x P?(R") — R such that u — ¢ have a global minimum
(resp. max) in (¢, z, ;) we have

min {{(& + L)p(t,z, 1) + f(t, 2, 0(t, x, 1)) };

H (uft, ',M)ﬁﬂ)} <0, (resp.>0), [0,T)xR™ x P?(R");
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(iii) u(T,z,p) = ¢z, p) on R™ x P*(R™).
The result is the following :

Theorem 36. Suppose that assumption (A) holds.

(1) Then there exists a decoupling field u : [0,T] x R™ x P2(R") > (¢t,x, u) — u(t,z, ) € R such that
for any t in [0,T], any r.v. Xo having second order moment and independent of the Brownian
motion, we have for all s in [t,T] u(s, X\Xo [XEX0]) = YIX0 g.s..

(2) Suppose in addition that assumption (A’) holds. Then, the mapping u : [0,T] x R™ x P2(R") >
(t,x, 1) — u(t,z, 1) € R is a continuous function and solves, in the sense of Definition 35, the
obstacle problem on Wasserstein space (147).

Remark 37. In (146), the driver f does not depend on Z. This assumption again relies to the lack of
comparison principle for FBSDE (146) (see [8]) which is required to tackle driver depending on the Z
argument when investigating the existence of a viscosity solution connected with FBSDEs.

Proof. Let us first emphasize that strong uniqueness holds for (146) under our standing assumptions.
Considering the equation with the reflection process KX as an entry, one can deduce from classical
FBSDEs results that for any given initial ¢ in [0, T'] there exists a measurable function vy x, (¢,-) : R — R,
called a decoupling field, such that for any s in [t,T], v x, (s, X2X0) = V;"* as. (see also chapter
4 of [12]). To make the connection between the classical decoupling field v with a decoupling field
w: [0, T] x R™ x Py(R™) — R, let us first introduce the following decoupled flow of (146): for any x € R™,
we set on [0, T:

XboXo — +/ b(r, X1 X0) dr +/ o(r, Xp"*0)dB,, s > t, and XL"%0 =2, 5 < t,
t t
T T
}/St.,:n.,Xo _ (ﬁ(X;lI’XU, [X;XO]) +/ f(T, X:’I’XO,}/:"I’XO)dT 7/ Z::,I,XU dBT (148)

T
b [ D) ar e,

Note that this equation is not of a MR-FBSDE and not of McKean-Vlasov type as well. Indeed the
coefficients do not depend on the law of the solution of the above system but on the law of the so-
lution of (146). Under our current assumptions, since the processes (XXo, YXo KXo) are given, it
is not hard to see that this system is well posed. Moreover, from weak uniqueness, the solution
(XtzXo ytaeXo 76.2.X0) only depends on X through its law. Denoting this law by g, it is hence
possible to write the solution (Xt®# YE&:r 76&:1) without specifying the choice of the lifted random
variable Xy with law p. Defining the mapping u(t, z, ) := Y;"** : RT x R" x P(R") — R we can
show, arguing as in [14] (see proof of Proposition 2.2), that for any [Xo] = p, for all s in [t,T] :
(s, 3) = u(s, m, [XEX0]), u(s, Xo ) [x PNl = y oIl apq (s, XEX0 [XEX0]) = VX0 as..

We now have the following lemma whose proof is postponed at the end of the current section.

Lemma 38. The decoupling field u defined above is a continuous function from [0, T] x R™ x Po(R™) — R.

It thus remains to check that this function solves, in the viscosity sense, (147). Let ¢ be a test function
and (¢,z,u) € [0,T) x R™ x Po(R™) be such that u — ¢ has a global minimum at (¢, x, ). For any s > ¢
we have from the flow property that

Eu(s, XE™H [ XEH)) = u(t, =, u) — IE/ fr, XLPr Y BT dr — IE/ D, H([YPM)(YE5H) dKE*, (149)
t t
and from It6’s formula (12) that:
Eop(s, Xp™, [X01) = olt, @, 1) + ]E/ (O + L)p(r, Xpm! [X M) dr. (150)
¢

Up to a translation of ¢ we can assume that u(t, x, u) = p(t,x, u). Since (¢, z, 1) is a global minimum we
have
Eu(s, XE5H [ XEH]) — Ep(s, XEPH [ XE0H]) >0, se[t,T).
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Hence we have:

weld, B [ O Dl X X ar
t

SB[ X5 dr B [ DY) K < o
t

t

Assume now that p is such that H(u(t, “ M)ﬁu) > 0 hence, by continuity, there exists 5 > ¢ such for s in
[t, 8] we have H ([u(s, XLH, [XDH])]) = H([YEX0]) >0, s € [t, 3] so that dK"H([t,s]) =0, s € [t,3]. Thus

IE/ (0 + L)p(r, XETH [ XEH]) dr + E/ fr, XEmr Y ET1) dr < 0.
t t

Dividing by (s — t) and then letting s — ¢ we deduce
O+ L)p(t, x, 1) + f(E,2,0(t, 2, 1)) <0, (151)

and
min { (B + £)olt,2. ) + £t plt ) H(ult o)) | <0
If 4o is now such that H (u(t,-, p)fp) = 0 then
min { (B + £)¢lt,2. ) + 10, plt ) H(ult o)) | <0
O

Proof of Lemma 38. Let (t,z,p) = (t°,2°% %) and (¢, 2™, ™), tends to (t,z,pu) as m — 0. Let X"
and Xo be of law u™ and u respectively. Recall that

X;m,mmjx(;" — M4 j;s b(?"’ X,ﬁm7lm7x6n) dr + fts 0’(7"’ X,ﬁm7lm7xsn) dBT,S >t and
XS _m Ly (152)
}/St X _ ¢(X;m,mm,[X; , X ])+fST f(T, X:"’,mm,}/’rt X )d’r—fST Z;E "X dBT

+ [ D HY X ar T s e o,

It is straightforward to see that X*"*"X¢" — Xt#Xo in 2. Denoting by (Y*" X" Z¢"-X") the solu-
tion of (146) with initial condition (¢™, X{"), it is also easily to see (see proof of the uniqueness part of
Theorem 24) that Y*" X" — Y% in 2 and that Z*" X" — Z:¥Xo in M?2. The tricky part here consists

in proving that the solution Yfm’mm’x‘;n of (152) tends to the solution Y;"**° of (148). Recall indeed that
when considering the decoupled flow (148) of (146) we are not considering solutions of MR-FBSDE since
the process K is only an input in these equations so that the Skorokhod condition is not satisfied anymore.

™ X t,m,X . o o
To prove that YV;m & 7% — Y;"™"° we first notice that these quantities are deterministic so
t"a™ X" ™™ X

}/tm o }/tt.,:n,Xo - F |:}/tm m B nt,m,Xo:|

‘E [Ytt:,z’",x(;" _ Ytt’",mm,xg”} ‘ i ‘]E {Ytt’",mm,x(;" _ Yf’Z’XU} _

IN

(153)

We have

t
e gmam xm P -
‘E{th’ D A H < ’E/ flr, Xp 77 70 Y ’°)\d7"
t

m

t
FJE [ Dt arcy
t

m

Note now that since f satisfies the linear growth assumption in (A’) (so that sup,«p E[|f(t, X, Y2)[?] <
+00) we can deduce from the proof of Step 1 and Proposition 26 (see Remark 27) that the map [0,7] >
7 — K" is Lispchitz continuous (uniformly in m). Hence, there exists k™ satisfying sup,cpo k" < ¢
(with ¢ := ¢((A’)) > 0 independent of m) such that for all  in [0,7T] we have dK[* = k™dr. Using this
property, together with assumptions in (A) and (A’) it clear that the above contribution also tends to
0.
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It then remains to show that the second term in the right hand side of (153) also tends to 0. This last
fact is a little bit more involved. We start by setting for all s in [0, T,

L :/ DL H (YT akg T
0

S

and

Lo= [ DAH(YR ) ari,
0

From the FBSDE (146), we have, for all s in [0,T7],

S

S
e T o
Lm = YTy +/ Flr, XEXE °>dr7/ 20 g
t tTrL

m
and

Ls — _Egt,Xo + }/;t,Xo +/ f(r, X’,t‘,XU,Yrt,Xo) d'r _/ Zf‘,Xo dBT,
t

t

from which we deduce that for every s in [0, T:

lim LT = L,. (154)

m——+oo

Let us now rewrite the BSDE (152) in the following form:

T
T m X’VTL m TYI XTYI m X’VTL TYIS m XTYI 71
" / DL H (Y (v, e >(D (S ) ss)

Setting

s m m m m m _m ym —1
A= [ D) (D) T

S S

) / D, H (Y X0]) (V150 (D, (0] (vE=X0)) ™ dL,,

and
U™ = th,xm,XS” - Yt,ac,Xg 4 A™ vm = Ztm,xm,XS” - Zt,x,Xg
we deduce that (U™, V™) satisty the following BSDE,
T T T
ur=nm —|—/ (e UM dr + U dLT) / V."dB, —|—/ dF", s€l0,T],
where:

Fr = / (—aP A + B dv — ALY
0
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with
o= e(Xp T Xy ) - e (X))
+ / D H(yE o) (D (" '])(n”““”*xs”>)*1 dLT"
0

- /T Dy H (Y (V7 %0) (D, H([Y =5 )) (V= X)) ™ dL,
0

m _.m
T

m m m m m m m
Flr, X700 X0y Xy g xR b Xoy

m —
« - Stm,:c"",X(;" B }/St,ac,Xo ’
m m m
BT = flr X TR YR — (i, X, yEe),
(DX D (v () )
= e X

Y; _ Y;t,:n,Xo

m m m m 71
< (DY)

using the convention 0/0 = 0. The definition of L™ and the Lipschitz property of K™ yield

", X,

XM tm o™ XM X .
I L P (LR L)
/77‘ T T =

o o Uk dr, (156)

Y; _ Y;t,:n,Xo

with k" < ¢ where ¢ > 0 does not depend on m. Note also that o, 8™ and v are bounded uniformly

in m. We then obtain for every 1 < p < 2:
T P
/ d|F™|, .
0

Hence, applying Gronwall’s inequality, we obtain that there exists ¢ := ¢(T") > 0 such that

(0]

Let us now prove that the right hand side of the above equation tends to 0.

T
E[UTP = E[EUT|FP] < C {Emmv’ 4 / E[U7Pdr +E

EU P < c(Eln™") + E

Note that from (154) we obtain that n™ — 0 and from Lipschitz property of r — K" we know that there
m xm 2
exists C':= C((A’),T) > 0 such that E [fOT ‘DHH([Y; o ])(Y&”XO)dK;”‘ } < C so that E[|n™|P] — 0.

We consider now the term E [|[F™|}.]. First note that from the Lispchitz property of r — K™ and the
definition of 4™ and L™:

£ X £ g X X "
(D5 Y™ B e
’y’l”‘nA:ldL:L = tm_gpm_ X A;nk’;"dr, (157)

Y, _ Y;’I’X“

so that there exists C' := C((A),T) > 0 (that may change from line to line) such that

T p
C’{E / AMdR™ }
0

T
/0 (4mp + |ﬂl”|”>dr] |

E[IF™ 7]

IN

T
/ (A™P + |87 P)dr | +E
0

IN

CE
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It is clear that E[|G"|P] — 0. Let us now investigate the convergence of E[|AT|P]. We have from the
definition of A7 and LY" that

S

AT / D, H(lYS X (vpeXo)dKm — / D, H([Y X)) (YEoX0)dk,
0 0

[ (Dt Qv 5 v 250) — D () () ) ks

0

4 [ D () (@ - d,). (158)
0

The first term in the right hand side tends to 0 by continuity and uniform boundedness of k. To prove

the convergence to 0 of the second term in the right hand side it is sufficient to prove, thanks to an

approximation argument, that this holds when the integrand is any step function. The problem hence
reduces to prove the convergence of K" to K for every s in [0, T]. Recall

K" = / D H(Y D ALy, K, = / (D, H (VX )(y X))~ L.
‘We then have
K™ _ K _ SD H th,X(;n thammvx(;n -1 D H Yt,Xo Yt,Z,X() —1dLm
FoKe = | DLHY D )7 — DL H([Y,EY]) (v Xo) TLaLy
+ / D, B (Yo (¥ Xo) (L — L),
0

On the one hand we have r — [DMH([YTtm’X‘?L])(Y}tm’zm’ng)]_1 is continuous and we also have that for

every step function ¢, [ ¢(s)d(LT — Ls) — 0 so that
| D Ly - 1) <o
0

On the other hand,

B sup | [ D, H( N D, () v ) Ly
sefo,7] |Jo
T m m m m m
) EU N T W T e eI P T
0
T m m m m m 2
< or [ B DTy v e ]
0
m m m m m 2
< E!/2 UD#H([YJ Xy (e )’ }dr
r X £ ™ X 2
< Cr / E'/? U[Dumm FED ) D, () e ]Mdr,

and it is clear that the last term in the above right hand side also tends to 0.

For any subsequence (m/), there exists (m”) C (m') such that for every s in [0,7], K™ — K, and then
A™" — 0. Finally, we deduce from our assumptions and the Lipschitz regularity of K that the family

(A™ ),,»>0 is uniformly bounded in L?([0,T] x ) so that it converges to 0 in LF([0,T] x ) for any
1 < p < 2. This means that (A™),,>0 converges to 0 in LP([0,T] x Q) for any 1 < p < 2.

We obtain that for all s in [0,7], 1 < p < 2: E[|U*?] — 0, which means that in LP, for every s in [0, T},

tmammax(;n t,I,XU
Y, — Y .

Using this in (153), this concludes the proof.
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