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FORWARD AND BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH

NORMAL CONSTRAINTS IN LAW

PHILIPPE BRIAND, PIERRE CARDALIAGUET, PAUL-ÉRIC CHAUDRU DE RAYNAL, AND YING HU

Abstract. In this paper we investigate the well-posedness of backward or forward stochastic differential
equations whose law is constrained to live in an a priori given (smooth enough) set and which is reflected
along the corresponding “normal” vector. We also study the associated interacting particle system
reflected in mean field and asymptotically described by such equations. The case of particles submitted
to a common noise as well as the asymptotic system is studied in the forward case. Eventually, we
connect the forward and backward stochastic differential equations with normal constraints in law with
partial differential equations stated on the Wasserstein space and involving a Neumann condition in the
forward case and an obstacle in the backward one.

1. Introduction.

In this paper, we are concerned with reflected (forward or backward) Stochastic Differential Equations
(SDE) in the case where the constraint is on the law of the solution rather than on its paths. This kind of
equations have been introduced in their backward form in [4] in the scalar case and when the constraint
is of the form

∫

h dµ ≥ 0 for some map h : R → R satisfying suitable assumptions and where µ denotes
the law of the considering process. Such a system being reflected according to the mean of (a functional
of) the process, the authors called it a Mean Reflected Backward Stochastic Differential Equation (MR
BSDE). In [3], the authors studied the forward version (hence called MR SDE) in the same setting as
well as its approximation by an appropriate interacting particle system and numerical schemes. In [20],
weak solution to related forward equations with constraint1 are built. In the same framework, let us also
mention the work [6] where the approximation of MR BSDE by an interacting particle system is studied,
[19] where MR BSDE with quadratic generator are investigated and [5] where MR SDE with jumps are
considered.

The aim of this work consists in enlarging the results of [3, 4, 6] to the multi-dimensional case and for
rather general constraint sets on the law in the backward and forward cases. Mean-field interacting
particles counterpart of such systems are also investigated as well as the so called common noise setting.
Eventually, we also aim at introducing the deterministic counterpart of such reflected stochastic system
through Partial Differential Equation (PDE) stated on Wasserstein space of Neumann (in the forward
case) or obstacle (in the backward case) type.

1.1. Outline of the paper.

On SDE with normal constraint in law. Given coefficients2 (b, σ) : R+ × R
n → R

n × R
n×d, a MR

SDE is an equation of the following form


















Xt = X0 +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs +Kt, t ≥ 0,

E[h(Xt)] ≥ 0,

∫ t

0
E[h(Xs)] dKs = 0, t ≥ 0,

(1)

The second and fourth authors have been partially supported by the ANR project ANR-16-CE40-0015-01. For the third
Author, this work has been partially supported by the ANR project ANR-15-IDEX-02 .

1Therein, the author consider SDE with constraint in law but without the Skorokhod condition.
2which could be assumed to be random, see the results below.
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where B is a Brownian motion, h is a function from R
n to R, the law of the initial condition X0 is such

that E[h(X0)] ≥ 0 and where, for the time being, n = d = 1.

When focusing on this forward system, there are several ways to understand the mean reflected SDE.
One striking example lies into the equation satisfied by the law of the solution X , which turns out to be a
reflected Fokker-Planck equation. In other words, solving the above system translates into searching for
solution to the Skorohod problem stated on Partial Differential Equation of Fokker-Planck type. Indeed,
let (X,K) be a solution of the above system (which, according to [3], under suitable assumptions, exists,
is unique and where the process K is supposed to be a deterministic increasing process starting from 0).
By Itô’s formula, the law µt = [Xt] of Xt satisfies, in the sense of distributions,















dtµt(x) =
{

Dx(µt(x)b(t, x)) +
1

2
D2

x(µt(x)a(t, x))
}

dt+Dx (µt(x)) dKt,

∫

h dµt ≥ 0

∫ t

0

(

∫

h dµs

)

dKs = 0, t ≥ 0,

where a = σ2. Note that, as this system is deterministic, the deterministic assumption assumed on the
reflexion term Kt really makes sense.

From this perspective it is natural to look for a solution to the more general problem (allowing d and n
to be greater than 1):



















dtµt(x) =
{

div(µt(x)b(t, x)) +
1

2

∑

i,j

D2
i,j(µt(x)aij(t, x))

}

dt+ div (µt(x)DµH(µt)(x)) dKt,

H(µt) ≥ 0

∫ t

0
H(µs) dKs = 0, t ≥ 0,

(2)

where H is a map from P2(Rn) to R (where we denote by P2(Rn) the set of Borel probability measures
on R

n with finite second order moment) and DµH denotes the Lions’ derivative (cf. [12, 24] and the
discussion at the end of the Introduction). Of course, when H(µ) =

∫

Rn h(x)µ(dx), DµH(µ)(x) = ∇h(x).
The map DµH(µ)(·) can be viewed as a gradient of H in the space P(Rn) (see [12, 24] and the discussion
below), so that the “outward normal” to the set O := {µ, H(µ) > 0} at a point µ ∈ ∂O is, at least
formally, DµH(µ)(·). For this reason (2) can be understood as the Fokker-Planck equation with a normal
reflexion. The probabilistic counterpart of (2) then writes as the following reflected SDE:



















Xt = X0 +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs +

∫ t

0
DµH([Xs])(Xs) dKs, t ≥ 0,

H([Xt]) ≥ 0,

∫ t

0
H([Xs]) dKs = 0, t ≥ 0.

(3)

Indeed, if one denotes by (X,K) a solution of the above system, by Itô’s formula, the law µt = [Xt] of
Xt satisfies system (2) in the sense of distributions. The above problem is actually no longer a “mean
reflected” SDE but a SDE with normal constraint in law since the constraint can now be written in a
general form.

In comparison with [3], we are led to deal with general constraints and possibly multi-dimensional valued
processes. Considering this more general setting explains why we now specify the direction of the reflec-
tion (which is done along the “outward normal”) while in [3] the reflection is oblique along the unitary
vector. Indeed, when working in this framework, the explicit formula obtained in the aforementioned
work for the process K is not valid anymore, so that we cannot “just add it” to ensure that the constraint
is satisfied.

In (2) the Fokker-Planck equation is deterministic, which explains why the reflection term K is naturally
deterministic. A further generalization of (2) consists in considering instead a stochastic Fokker-Planck
equation reflected on the set O = {µ, H(µ) > 0}. Given the coefficients (b, σ0, σ1) : R+ × R

n →



CONSTRAINED IN LAW (B)SDE 3

R
n ×R

n×d ×R
n×d and a d−dimensional Brownian motion W , one may look for a solution to the system































dtµt(x) =







div(µt(x)b(t, x)) +
1

2

∑

i,j

D2
i,j(µt(x)aij(t, x))







dt

+div (µt(x)σ1(t, x)dWt) + div (µt(x)DµH(µt)(x)) dKt,

H(µt) ≥ 0

∫ t

0
H(µs) dKs = 0, t ≥ 0,

(4)

where a = (σ0σ
∗
0 + σ1σ

∗
1) and (Ks) is a continuous nondecreasing process adapted to the filtration FW

associated with W . The way we added the stochastic perturbation in the above reflected stochastic
Fokker-Planck equation relies on the probabilistic interpretation of this problem. Indeed, given a Brow-
nian motion B (supposed to be independent of W ), the above system precisely gives the dynamic of the
conditional law (conditioned by FW ) µt = [Xt|W ] of the solution of the system


















Xt = X0 +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ0(s,Xs) dBs +

∫ t

0
σ1(s,Xs)dWs +

∫ t

0
DµH([Xs|W ])(Xs) dKs,

H([Xt|W ]) ≥ 0,

∫ t

0
H([Xs|W ]) dKs = 0, t ≥ 0.

(5)

This is a reflected SDE with normal constraint on its conditional law. For reasons that will be clear in
few lines (and relies on the mean field interacting particles counterpart of such a system), we call this
case the normal reflexion in law with a common noise.

Let us now discuss the interpretation of (5) (or (3)) at the particles level. Consider the system (X i
t) of

N particles, where, for i = 1, . . . , N ,






















X i
t = X i

0 +

∫ t

0
b(s,X i

s) ds+

∫ t

0
σ0(s,X i

s) dBi
s +

∫ t

0
σ1(s,X i

s) dWs +

∫ t

0
DµH

(

µN
s

)

(X i
s) dKN

s ,

µN
t =

1

N

N
∑

i=1

δXi
t
, H

(

µN
t

)

≥ 0,

∫ t

0
H
(

µN
s

)

dKN
s = 0, t ≥ 0.

(6)

Here the Bi and W are independent Brownian motions. The initial conditions of the particles X i
0 are i.i.d.

random variable with law µ0 and are independent of the Bi and W . Eventually, KN is a continuous,
nondecreasing process adapted to the filtration FN generated by the Bi, X i

0 and W . Assuming that
H(µ0) > 0, this system is, conditionally to ΩN = {H(µN

0 ) ≥ 0}, a classical reflected SDE in (Rn)N , with
normal reflexion on the boundary of the constraint

ON =

{

(x1, . . . , xN ) ∈ (Rn)N , H

(

1

N

N
∑

i=1

δxi

)

> 0

}

.

Following [24], we understand W as a common noise, since it affects all the players. Note that we have
chosen to describe the mean field limit in the common noise case, but it reduces to the case without
common noise if we let σ1 ≡ 0. It turns out that the limit system of (6) is nothing but our SDE with
normal reflexion in its condition law (5): as the number of players tends to infinity, the reflection term KN

in (6) no longer depends on the position of the other particles, but only on their statistical distribution
conditioned by the common noise.

Let us just emphasize that, above, the law of the initial condition is assumed to satisfy the constraint
in order to work conditionally to the event ΩN . This assumption relies on the fact that H(µ0) ≥ 0 is
not a sufficient condition to ensure that H(µN

0 ) ≥ 0. In order to remove such a strict inequality, one
may either work conditionally to the event ΩN,η = {H(µN

0 ) ≥ −ηN } which, provided that (ηN )N≥0 is
chosen appropriately, becomes of full measure as N tends to the infinity (so that the particle system
solves the “original” Skorohod problem asymptotically) or either construct suitable initial conditions X̃ i

0
whose empirical measure µ̃N

0 satisfies (under suitable assumptions) H(µ̃N
0 ) ≥ 0 and which is such that

µ̃N
0 → µ as N → ∞. In this last case, for any N ≥ 1, system (6) with X̃ i

0 instead of X i
0 is a solution of

the Skorohod problem in mean field on ON . We refer to Sections 3.2 and 4.2 respectively for more details.
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We eventually conclude this outline on SDE with normal constraint in law by giving another interpretation
of (6) (or of (3) when σ1 ≡ 0) through the dynamic of the family of mapping (Ut)t≥0 from P2(Rn) → R

defined by ∀t0 ≥ 0, Ut0
(µ0) = G([Xt0,µ0

T |W ]), for some given G : P2(Rn) → R. Enlarging naively the
definition of viscosity solution on finite dimensional space, one can show that the dynamic of U is given
(in the viscosity sense) by the the following (backward) Neumann problem in the set O = {µ, H(µ) > 0}:







































































(i) − ∂tU(t, µ) − 1

2

∫

Rn

Tr ((a(t, y))∂yDµU(t, µ)(y))µ(dy)

−
∫

Rn

DµU(t, µ)(y) · b(t, y)µ(dy)

− 1

2

∫

Rn×Rn

Tr
(

D2
µµU(t, µ)(x, y)σ1(t, x)σT

1 (t, y)
)

µ( dx)µ( dy) = 0

in (0, T ) × O,

(ii)

∫

Rn

DµU(t, µ)(y) · DµH(µ)(y)µ(dy) = 0 in (0, T ) × ∂O,

(iii) U(T, µ) = G(µ) in O,

(7)

where a = σ0σ
∗
0 + σ1σ

∗
1 . Condition (ii) is exactly the Neumann boundary condition associated with the

set O. Conversely, any smooth solution to (7) can be written as E
[

G([Xt,µ
T |W ])

]

.

BSDE with normal constraint in law. The above discussion leads to investigate whenever the original
constrained in law problem stated on BSDE from [4] can be generalized. We here aim at showing that
the generalization done in the case of forward SDE remains valid, up to the common noise setting (and
under a slightly different set of assumptions, see the discussion in the next paragraph). Concerning this
last framework, it seems that the results remain valid, provided additional assumptions (insuring suitable
boundedness conditions on Z) are satisfied. Nevertheless we do not explore it in order to short the current
paper.

As underlined in the previous paragraph, we aim at extending the results of [4] in a multi-dimensional
setting. Following (3), we are lead to investigate the problem















Yt = ξ +

∫ T

t

f(s, Ys, Zs) ds−
∫ T

t

Zs dBs +

∫ T

t

DµH([Ys])(Ys)dKs, 0 ≤ t ≤ T,

H([Yt]) ≥ 0, 0 ≤ t ≤ T,

∫ T

0
H([Ys])dKs = 0,

(8)

where ξ ∈ L2(FT ), where the processes Y, Z are respectively of n and n × d dimension and where
f : Ω ×R+ ×R

n ×R
n×d −→ R

n. Here again, H is a map from P2(Rn) to R and DµH denotes the Lions’
derivative so that the “outward normal” to the set O := {µ, H(µ) > 0} at a point µ ∈ ∂O is again, at
least formally, DµH(µ)(·). For this reason (8) is now called a BSDE with normal constraint in law.

Also we aim at investigating the mean field counterpart of such a system, extending to the current
framework the results obtained in [6]. Namely, we consider the interacting particle system























Y i
t = ξi +

∫ T

t

f(s, Y i
s , Z

i,i
s )ds−

∫ T

t

N
∑

j=1

Zi,j
s dBj

s +

∫ T

t

DµH(µN
s )(Y i

s )dKN
s ,

∀t ∈ [0, T ] : µN
t =

1

N

N
∑

i=1

δY i
t
, H(µN

t ) ≥ 0,

∫ T

0
H(µN

s )dKN
s = 0, 1 ≤ i ≤ N,

(9)

where for each i, j, Zi,j
s is a n×d matrix, {Bi}1≤i≤N are N independent d-dimensional Brownian motions

and KN is a continuous non decreasing process. Assuming that H(µT ) > 0 this system is, conditionally
to ΩN = {H(µN

T ) ≥ 0}, a classical reflected BSDE in (Rn)N , with normal reflexion on the boundary of
the constraint

ON =

{

(y1, . . . , yN ) ∈ (Rn)N , H

(

1

N

N
∑

i=1

δyi

)

> 0

}

,

and (8) is precisely the asymptotic dynamic (as N → +∞) of one of the particles in (9). As in the
forward case, the strict inequality assumed on the law of the terminal condition comes from the the fact
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that H(µT ) ≥ 0 is not a sufficient condition to ensure that H(µN
T ) ≥ 0. We refer to the corresponding

point in the above discussion on forward SDE with constraint in normal law and to Sections 3.2 and 4.2
respectively for more details to handle properly such a problem.

Eventually, one may wonder if, for the one dimensional case when Y is a real process and in a Markovian
set up (i.e. when ξ = φ(XT ) for some φ : Rn → R and some diffusion process X evolving according to
coefficients b, σ : R+×R

n → R and to the scalar valued Brownian motionB), the solution of the system (8)
can be written in term of the position X and its law thanks to a decoupling field u : R+×R

n×P2(Rn) → R

and if the dynamic of such a decoupling field is given thanks to an obstacle problem, as shown in [22]
when the reflection is on the path. Assuming that the generator f is deterministic we show that such a
decoupling field exists and, when f does not depend on the Z argument, we obtain that u solves, in the
viscosity sense, the following obstacle problem on the Wasserstein space:























min

{

{

(∂t + L)u(t, x, µ) + f(t, x, u(t, x, µ))
}

;

H(u(t, ·, µ)♯µ)

}

= 0, on [0, T ) × R
n × P2(Rn),

u(T, ·, ·) = φ,

(10)

where for any probability measures ν and mesurable function ϕ, ϕ♯ν denotes the push-forward of the
measure ν by the map ϕ and where L is given by, for all smooth ϕ : [0, T ]×R

n × P2(Rn) → R

Lϕ(t, x, µ) =
1

2

∫

Rn

Tr [((σσ∗)(t, y))∂yDµϕ(µ)(t, x, µ)(y)] µ(dy) +

∫

Rn

Dµϕ(µ)(t, x, µ)(y) · b(t, y)µ(dy)

+
1

2
Tr
[

((σσ∗)(t, x))D2
xϕ(t, x, µ)

]

+Dxϕ(t, x, µ) · b(t, x)

Main results. We now describe our main results. In all the cases (forward setting with and without
common noise and backward setting), the existence part differs from the ones in [4] or [3]: we build the
solution by a penalization technique inspired from [25, 26]. Also, and still in all the cases considered,
our approach for the existence part heavily relies on suitable bi-Lipschitz property of the map H which
is assumed to hold in a neighbourhood of the boundary of the constraint set.

Concerning the forward equations, we first prove in Theorem 6 that (1) is well posed when Kt =
∫ t

0 ∇h(Xs)d|K|s for stochastic Lipschitz in space coefficients bounded in L2 at point 0 uniformly in
time. We start by handling this specific case for the following reasons: firstly, this allows to introduce the
main tools needed for our analysis in a simple setting; secondly, the proof is done under some concavity
assumption assumed on H(µ) =

∫

h dµ (which will be no longer assumed for the rest of the forward
part) that allows to work with diffusion coefficients not necessarily globally bounded in space (and then
enables to sketch what will be usefull in the backward setting); thirdly, this allows to weaken a little bit
the bi-Lipschitz assumption on the constraint function H (through the map h) and finally, thanks to a
suitable transformation, this allows to connect the results obtained in this case of normal reflection with
the previous results of [3] where the reflection is oblique.

We then enter our framework and we prove in Theorem 8 and Theorem 11 the well-posedness of (3) and
(5) respectively: we show that, under suitable assumptions on the data, there exists a unique solution to
these equations. We emphasize that in both cases the uniqueness is shown to hold pathwise and in law.
We present both results separately because they involve different sets of assumptions: for instance, for
(3), we can allow the diffusion b to be unbounded while it is not the case for problems with common noise.
The case with common noise also requires stronger assumptions on the constraint H . One reason for this
is that, as can be seen on the Kolmogorov equations, (2) (which is associated with (3)) is a deterministic
reflexion problem, while (4) (associated with (5)) involves a diffusion term. As a consequence, for (3),
the process (Kt) is deterministic and Lipschitz continuous, while it is random and merely continuous for
(5).

Let us again emphasize that in a recent paper [20], Jabir considers process very similar to (3) (i.e.
satisfying same type of constraint but not enunciated or either identified as a solution of Skorohod problem
on the law). Using a different penalization approach and working under weaker regularity assumptions,
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provided that the constraint set is convex and the diffusion does not degenerate, he builds weak solutions
to the problem through tightness of the law of the penalization. However no uniqueness result is stated
in [20] and propagation of chaos as well as the common noise setting are not discussed.

Next, we present in Theorem 17 a conditional propagation of chaos for the particle system (6). In other
words, we show that system (6) converges, as N → +∞, to the reflected SDEs with common noise (5).
Let us recall that [3] already studied the propagation of chaos in the one dimensional setting. The main
differences with [3] is that we work here with a normal reflexion (in [3] it was oblique) and in a common
noise setup. The convergence rate are also explicitly given.

Eventually, we make the connection with the Neumann problem on the Wasserstein space. This connec-
tion remains at a basic level, as we only prove is that the map U defined as U(t0, [X0]) = E [G([XT |W ])]
is a viscosity solution of (7) in Theorem 20 and that any smooth solution of (7) can be written as
U(t0, [X0]) = E [G([XT |W ])] in Proposition 21. Here, the notion of viscosity solution we adopt consists
in natural extension of the finite dimensional definition by testing the map U against smooth functions
from P2(Rn) to R, the smoothness being understood in the Lions’s sense. In that respect, we follow the
definition proposed in [13] and extend it to the case of Neumann condition. Nevertheless, we do not prove
a uniqueness result which, in infinite dimensional metric space, appears to be involved and definitely out
of the scope of this paper. Let us just mention that, in that case, it seems to us that the map U could
be shown to be the unique classical solution of (7), avoiding then the difficulties relying on the notion of
viscosity solution. Again, such an investigation exceeds the scope of this paper.

Concerning the Backward equation, we first give in Theorem 24 an existence result for (8). This result
relies on the concavity property assumed on H in the current setting and is done through a three steps
scheme: we first tackle the case of deterministic bounded and space homogeneous driver; we then extend
the result to a stochastic generator in L2(Ω, L2([0, T ]) and eventually to a space dependent generator.
As in the forward case without common noise, the process (Kt) is shown to enjoy a Lipschitz property.
Again, uniqueness holds pathwisely and in law.

Then we construct in Section 4.2 an interacting particle system satisfying a Skorohod problem in mean
field of type (9) and prove in Theorem 32 that the interacting particle system converges to (8) (meaning
that (8) precisely gives the asymptotic dynamic of one of the interacting particles). Again, we specify
the rate at which system (9) converges to (8).

Finally, thanks to our well-posedness result, we investigate the obstacle problem (10) through (decoupled)
Forward-Backward SDE (FBSDE) with normal constraint in law (on the backward part). When the driver
f no longer depends on the Z−variable, we show in Theorem 36 that the FBSDE with normal constraint
in law admits a decoupling field u which satisfies, in the viscosity sense, the PDE (10). The reason why
the driver is not allowed to depend on the variable Z relies to the lack of comparison principle when
considering non-linear equations which makes the usual procedure to tackle this term unavailable. For
the same reasons as pointed out for the Neumann problem, we do not prove any uniqueness result of
viscosity solutions and let it for future considerations.

1.2. Organization of this work. The paper is organized in the following way. We complete the
introduction by describing our notations, discussing the notion of Lions’s derivative and presenting the
various Itô’s formulas used in the text as well as the tools needed to ensure the convergence of the particle
systems. Section 2 is devoted to the SDEs with normal reflexion in law: starting with the simplest setting
(1) to illustrate the method of proof, we then show the existence and the uniqueness of the solution of (3)
(Theorem 8). SDEs with normal reflexion in conditional law (i.e., the “common noise" case) are studied
in Section 3, where we prove the well-posedness of (5) (Theorem 11), the propagation of chaos (Theorem
17) and make the link with the Neumann problem (Theorem 20 and Proposition 21). Finally, the case
of backward equation is treated in Section 4, where we also prove the existence and the uniqueness of
the solution to (8) (Theorem 24), the propagation of chaos (Theorem 32) and a Feynman-Kac formula
(Proposition 36).

1.3. Notations and Mathematical tools. Throughout the paper we will make an intensive use of
Lions’s derivative, introduced in [24] and later discussed in [8, 11, 12, 14]. Let us recall that other notions
of derivatives in the space of measure have been developed in the literature: see for instance [1, 23, 27].
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Related to Lions’s derivatives, we also need several Itô’s formulas, allowing to compute the value of a
map depending on the law (or the conditional law) of a process. These formulas have been developed in
various stages of generality in [8, 11, 12, 14]. Nevertheless, it is not yet clearly stated that this formula
holds for reflected processes, especially when they are submitted to a common noise as it is the case in
(5). Therefore, we prove below that such Itô’s formulas can be generalized to our framework. Eventually,
in order to ensure the convergence of our particle system (6) and (9), we provide at the end of this part
a Lemma allowing to control the uniform convergence in 2-Wasserstein metric of an empirical measure
of conditionally i.i.d. processes.

Notations. Throughout the paper, we work on a complete probability space (Ω,F ,P) with a complete
and right-continuous filtration {Ft}t≥0. We denote by E the σ-algebra of progressive sets of Ω × R+ and
let B and W be two independent d-dimensional Brownian motion with respect to this filtration. We
denote by FW the completed filtration generated by W and, given a random variable X on (Ω,F ,P), let
[X ] be its law and [X |W ] be its law given FW .

Let P(Rn) be the set of Borel probability measures on R
n and, given q ≥ 1, let Pq(Rn) be the subset of

measures m in P(Rn) with finite q order moment:

Mq(µ) :=

∫

Rn

|x|qµ(dx) < +∞, µ ∈ Pq(Rn).

We denote by W2(µ, µ′) the Wasserstein distance between two measures of P2(Rn). Let us recall that

W2(µ, µ′) = inf
X,X′

(

E
[

|X − X ′|2
])1/2

,

where the infimum is taken over all random variables (X,X ′) such that [X ] = µ, [X ′] = µ′.

Derivatives. Given a map H : P2(Rn) → R, we denote by DµH : P2(Rn) × R
n → R

n its derivative,
when it exists, in Lions’s sense (or “L-derivative"): see [24] or Definition 5.22 in [12]. Let us recall that
H has an L-derivative at a measure µ0 ∈ P2(Rn) if there exists a random variable X0 with [X0] = µ0 at
which the lifted map H̃ : L2(Ω) → R, defined by H̃(X) = H([X ]), is differentiable. If H is L-differentiable
on P2(Rn), then the derivative of H̃ takes the form ∇H̃(X) = DµH([X ])(X) ([24] or [12, Proposition
5.25]). As explained in [12, Remark 5.27], the derivative DµH allows to quantify the Lipschitz regularity
of H . Namely, H is Lipschitz continuous on P2(Rn) if and only if

Hp := sup
µ∈Pp(Rn)

∫

Rn

|DµH(µ)(x)|pµ(dx) < +∞,

with p = 2. In this case, H2 is the Lipschitz constant of H . We will often require that the map ∇H̃ itself
is Lipschitz continuous on L2(Ω): in order words,

∀X,Y ∈ L2(Ω), E

[

|DµH([X ])(X) − DµH([Y ])(Y )|2
]

≤ C2
E
[

|X − Y |2
]

.

Then it is proved in [12, Proposition 5.36] that (up to redefining DµH),

∀µ ∈ P2(Rn), ∀x, x′ ∈ R
n, |DµH(µ)(x) − DµH(µ)(x′)| ≤ C|x − x′|.

Second order derivatives. We now discuss further regularity of H . We say that H is partially C2 if
the map y → DµH(µ)(y) is continuously differentiable with a derivative (µ, y) → ∂yDµH(µ)(y) jointly
continuous on P2(Rn) × R

n (see also [12, Definition 5.95]). We say that H is globally C2 if it is partially
C2 and if the map µ → DµH(µ)(y) is L−differentiable with (µ, y, y′) → D2

µH(µ)(y, y′) continuous (see
also [12, Definition 5.82]).

Itô’s formulas. When H is partially C2, Itô’s formula holds for the law of a diffusion of the form

dXt = btdt+ σtdBt

where (bt) and (σt) are progressively measurable with values in R
n and R

n×d respectively and satisfy

E

[

∫ T

0
(|bs|2 + |σs|4)ds

]

< +∞.
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Namely, if H is partially C2 with

sup
µ∈P2(Rn)

∫

Rn

∣

∣

∣∂yDµH(µ)(y)
∣

∣

∣

2
µ(dy) < +∞, (11)

then

H([Xt]) = H([X0]) +

∫ t

0
E [DµH([Xs])(Xs) · bs] ds+

1

2

∫ t

0
E [Tr (as∂yDµH([Xs])(Xs))] ds, (12)

where as = σsσ
∗
s [12, Theorem 5.98].

A similar Itô’s formula holds for the conditional law of an Itô’s process of the form,

dXt = btdt+ σ0
t dBt + σ1

t dWt,

where B and W are independent d−dimensional Brownian motions living on different probability spaces
(Ω0,F0,P0) and (Ω1,F1,P1) and where b, σ0 and σ1 are progressively measurable with respect to the
filtration generated by W and B, with

E

[

∫ T

0
(|bs|2 + |σ0

s |4 + |σ1
s |4)ds

]

< +∞.

We assume that H is globally C2 with

sup
µ∈P2

∫

Rn

|DµH(µ)(x)|2 µ(dx) +

∫

Rn

|∂xDµH(µ)(x)|2 µ(dx) +

∫

Rn×Rn

∣

∣D2
µµH(µ)(x, y)

∣

∣

2
µ(dx)µ(dy) < +∞.

Then, letting µt(ω
1) = [Xt|W ](ω1), we have, P1−a.s.,

H(µt) = H(µ0) +

∫ t

0
E

0 [DµH(µs)(Xs) · bs]ds+

∫ t

0
E

0 [(σ1
s)∗DµH(µs)(Xs)

]

· dWs (13)

+
1

2

∫ t

0
E

0 [Tr (as∂yDµH(µs)(Xs)))] ds+
1

2

∫ t

0
E

0
Ẽ

0 [Tr
(

D2
µµH(µs)(Xs, X̃s)σ1

s(σ̃1
s)∗
)]

ds

where X̃ and σ̃1 are independent copies of X and σ1 is defined on the space (Ω̃0 × Ω̃1, P̃0 ⊗ P̃
1), while

as := (σ0
s(σ0

s)∗ + σ1
s(σ1

s)∗). See [13, Theorem 11.13].

We actually need below more general versions of Itô’s formulas (12) and (13) in which there is an additional
drift term βsdKs. In the generalization of (12), we assume that β is a continuous process adapted to the
filtration generated by B and that K is a deterministic, continuous and nondecreasing process process
with K0 = 0. We are then interested in the law (µt) of an Itô process

dXt = btdt+ σtdBt + βtdKt.

Assuming, in addition to the conditions on b, σ and H given above, that

E

[

sup
t∈[0,T ]

|βt|2
]

< +∞,

we have

H([Xt]) =H([X0]) +

∫ t

0
E [DµH([Xs])(Xs) · bs] ds+

∫ t

0
E [DµH([Xs])(Xs) · βs] dKs (14)

+
1

2

∫ t

0
E [Tr (as∂yDµH([Xs])(Xs))] ds,

where as = σsσ
∗
s . For the generalization of (13), we assume instead that β is a continuous process,

adapted to the filtration generated by B and W and that K is a continuous and nondecreasing process
adapted to the filtration generated by W with K0 = 0. We also assume

E

[

sup
t∈[0,T ]

E
0 [|βt|2

]

K2
T

]

< +∞, (15)

We are then interested in the conditional law, given W , of the process

dXt = btdt+ σ0
t dBt + σ1

t dWt + βtdKt.
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Under the above conditions on b, σ0, σ1, H , β and K, we have, P1−a.s.,

H(µt) = H(µ0) +

∫ t

0
E

0 [DµH(µs)(Xs) · bs] ds+

∫ t

0
E

0 [(σ1
s)∗DµH(µs)(Xs)

]

· dWs

+

∫ t

0
E

0 [DµH(µs)(Xs) · βs] dKs +
1

2

∫ t

0
E

0 [Tr (as∂yDµH(µs)(Xs)))] ds (16)

+
1

2

∫ t

0
E

0
Ẽ

0 [Tr
(

D2
µµH(µs)(Xs, X̃s)σ1

s(σ̃1
s)∗
)]

ds.

Proof of (14) and (16). Formula (14) and (16) can be derived from (12) and (13) respectively by reg-
ularizing the process K. We give the details for (16) to fix the idea, as (14) can be proved with the
same argument. We first extend K to R by setting Kt = 0 for t ≤ 0 and then let Kε := φε ∗ K, where
φε(s) = ε−1φ(s/ε), φ being a smooth nonnegative kernel with compact support in R+. Then, Kε is a
smooth nondecreasing process adapted to W . Let us set

Xε
t = X0 +

∫ t

0
bsds+

∫ t

0
σ0

sdBs +

∫ t

0
σ1

sdWs +

∫ t

0
βs(Kε)′

sds

and µε
t = [Xε

t |W ]. By (15) and the fact that K is FW adapted, we have

E

[

∫ T

0
|βs(Kε)′

s|2ds
]

≤ ‖(φε)′‖∞E

[

sup
0≤s≤T

E
0 [|βs|2

]

|KT |2
]

< +∞.

So, by Itô’s formula (13), we obtain

H(µε
t ) = H(µ0) +

∫ t

0
E

0 [DµH(µε
s)(Xε

s ) · bs] ds+

∫ t

0
E

0 [(σ1
s)∗DµH(µε

s)(Xε
s )
]

· dWs

+

∫ t

0
E

0 [DµH(µε
s)(Xε

s ) · βs] (Kε)′
sds+

1

2

∫ t

0
E

0 [Tr (as∂yDµH(µε
s)(Xε

s )))] ds

+
1

2

∫ t

0
E

0
Ẽ

0 [Tr
(

D2
µµH(µε

s)(Xε
s , X̃

ε
s )σ1

s(σ̃1
s)∗
)]

ds.

In order to let ε → 0, we first prove the uniform convergence of Xε to X . We note that

E

[

sup
0≤t≤T

|Xε
t −Xt|2

]

≤ E

[

sup
0≤t≤T

∣

∣

∣

∣

∫ t

0
(βs −

∫ t

s

βuφ
ε(u− s)du)dKs

∣

∣

∣

∣

2
]

,

where

sup
0≤t≤T

∣

∣

∣

∣

∫ t

0
(βs −

∫ t

s

βuφ
ε(u − s)du)dKs

∣

∣

∣

∣

2

≤ 2 sup
0≤s≤T

|βs|2K2
T ,

the right-hand side being integrable by (15). Fix δ > 0 small. By the continuity of β, we have, uniformly
in s ∈ (0, t− δ),

lim
ε→0

∫ t

s

βuφ
ε(u− s)du = lim

ε→0

∫

R

βuφ
ε(u − s)du = βs.

So, a.s.,

lim
ε→0

sup
δ≤t≤T

∣

∣

∣

∣

∣

∫ t−δ

0
(βs −

∫ t

s

βuφ
ε(u− s)du)dKs

∣

∣

∣

∣

∣

2

= 0.

On the other hand,
∣

∣

∣

∣

∣

∫ t

(t−δ)∨0
(βs −

∫ t

s

βuφ
ε(u− s)du)dKs

∣

∣

∣

∣

∣

≤ 2 sup
0≤u≤T

|βu|2(Kt −K(t−δ)∨0).

So, by the continuity of K,

lim
δ→0

lim sup
ε→0

sup
0≤t≤T

∣

∣

∣

∣

∣

∫ t

(t−δ)∨0
(βs −

∫ t

s

βuφ
ε(u− s)du)dKs

∣

∣

∣

∣

∣

2

= 0.
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We can then infer by dominate convergence that

lim
ε→0

E

[

sup
0≤t≤T

|Xε
t −Xt|2

]

= 0 and thus lim
ε→0

E

[

sup
0≤t≤T

W2
2 (µε

t , µt)

]

= 0. (17)

By our assumptions on the data, one easily derive from this the convergence in L2(Ω) of

H(µε
t ) −H(µ0) −

∫ t

0
E

0 [DµH(µε
s)(Xε

s ) · bs] ds−
∫ t

0
E

0 [(σ1
s)∗DµH(µε

s)(Xε
s )
]

· dWs

− 1

2

∫ t

0
E

0 [Tr (as∂yDµH(µε
s)(Xε

s )))] ds− 1

2

∫ t

0
E

0
Ẽ

0 [Tr
(

D2
µµH(µε

s)(Xε
s , X̃

ε
s )σ1

s(σ̃1
s)∗
)]

ds

to

H(µt) −H(µ0) +

∫ t

0
E

0 [DµH(µs)(Xs) · bs] ds−
∫ t

0
E

0 [(σ1
s)∗DµH(µs)(Xs)

]

· dWs

− 1

2

∫ t

0
E

0 [Tr (as∂yDµH(µs)(Xs)))]ds− 1

2

∫ t

0
E

0
Ẽ

0 [Tr
(

D2
µµH(µs)(Xs, X̃s)σ1

s(σ̃1
s)∗
)]

ds.

To complete the proof we just need to check that, in L2(Ω),

lim
ε→0

∫ t

0
E

0 [DµH(µε
s)(Xε

s ) · βs] (Kε)′
sds =

∫ t

0
E

0 [DµH(µs)(Xs) · βs] dKs. (18)

Indeed
∫ t

0
E

0 [DµH(µε
s)(Xε

s ) · βs] (Kε)′
s ds =

∫ t

0

(

∫ t

r

E
0 [DµH(µε

s)(Xε
s ) · βs]φε(s− r)ds

)

dKr,

where, by Cauchy-Schwartz and our assumption on DµH ,
∣

∣

∣

∣

∫ t

0

(

∫ t

r

E
0 [DµH(µε

s)(Xε
s ) · βs]φε(s− r)ds

)

dKr

∣

∣

∣

∣

≤
∫ t

0

(

∫ t

r

(

E
0 [|DµH(µε

s)(Xε
s )|2

])1/2 (
E

0[|βs|2]
)1/2

φε(s− r)ds
)

dKr ≤ C

(

E
0
[

sup
0≤s≤T

|βs|2
])1/2

KT .

The right-hand side of the above inequality is in L2(Ω) thanks to (15). Using the uniform convergence
of s → E

0 [DµH(µε
s)(Xε

s ) · βs] implied by (17), we can conclude exactly as in the proof of (17) that (18)
holds. �

On uniform convergence of conditionally i.i.d. sequence of processes. The aim of this part
is to recast in the conditionally i.i.d. setting the result of [29] (see Theorem 10.2.7 therein) taking into
account the recent results obtained in [17] and in Chapter 5 of [12].

Lemma 1. Let (Ω0,F0,P0) and (Ω1,F1,P1) be two different probability spaces. Let {X i
· }1≤i≤N be a

sequence of processes defined on (Ω0 × Ω1,F0 ⊗ F1,P0 ⊗ P
1) satisfying that the X i are, conditionally to

F1, i.i.d. processes. Assume that there exists constants C0 > 0, q > 4 and p > 2 such that

E
1

[

sup
t∈[0,1]

E
0 [|Xt|q]

2p/q

]

≤ C0

and

E[|Xs −Xr|p|Xs −Xt|p] ≤ C0|t− r|2, for 0 ≤ r < s < t ≤ 1;

E[|Xt −Xs|p] ≤ C0|t− s|, for 0 ≤ s ≤ t ≤ 1; (19)

∀0 ≤ s ≤ t ≤ 1, E

[

sup
u∈[s,t]

∣

∣E
0[|Xu −Xs|2]

∣

∣

p

]

≤ C0|t− s|p/2.
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Then, setting µs = [Xs|F1] and µ̄N
s = N−1∑N

i=1 δXi
s
, there exists a constant C > 0, depending on n, p,

q and C0 only, such that

E

[

sup
s≤T

W 2
2 (µ̄N

s , µs)

]

≤ CǫN := C ×







N−1/2+1/p if d < 4,

N−1/2+1/p(log(1 +N))1−2/p if d = 4,

N−2(1−2/p)/d if d > 4.

(20)

Proof. Using a time discretization (tk)0≤k≤m with constant time step 1/m of the interval [0; 1] we obtain
that

sup
s≤1

W 2
2 (µ̄N

s , µs) ≤ 3

{

max
k

χk + max
k

W 2
2 (µ̄N

tk
, µtk

) + max
k

sup
tk≤t≤tk+1

W 2
2 (µtk

, µt)

}

,

where

χk = sup
tk≤t≤tk+1

{

W 2
2 (µ̄N

t , µ̄
N
tk

) ∧W 2
2 (µ̄N

t , µ̄
N
tk+1

)
}

.

Now we have

E

[

max
k

sup
tk≤t≤tk+1

W 2
2 (µtk

, µt)

]

≤ E

[

max
k

sup
tk≤t≤tk+1

E
0 [|Xt −Xtk

|2
]

]

≤ E
1/p

[

max
k

sup
tk≤t≤tk+1

∣

∣E
0 [|Xt −Xtk

|2
]∣

∣

p

]

≤ E
1/p

[

∑

k

sup
tk≤t≤tk+1

∣

∣E
0 [|Xt −Xtk

|2
]∣

∣

p

]

Therefore, using third line in Assumption (19) we obtain

E

[

max
k

sup
tk≤t≤tk+1

W 2
2 (µtk

, µt)

]

≤ Cm−1/2+1/p. (21)

Following now the proof of Theorem 10.2.7 of [29] we have

E

[

max
k

χk

]

≤ C√
m
, (22)

which will lead to a negligible contribution. Concerning the last term we write

E

[

max
k

W 2
2 (µ̄N

tk
, µtk

)

]

≤ m1/p

(

max
k

E

[

W 2p
2 (µ̄N

tk
, µtk

)
]

)1/p

. (23)

Since (E0)2p/q[|Xt|q|] < +∞ P
1−a.s. for some q > 4, we have, from Theorem 2 case (3) of [17] (see also

Theorem 5.8 and Remark 5.9 in [12]) that there exists a deterministic constant c > 0 such that P
1− a.s.

W 2p
2 (µ̄N

tk
, µtk

) ≤ c(E0)2p/q [|Xtk
|q|]







N−p/2 if d ≤ 3

N−p/2(log(1 +N))p if d = 4

N−2p/d if d > 4

Hence,

(

E

[

max
k

W 2p
2 (µ̄N

tk
, µtk

)

])1/p

≤ cE

[

sup
0≤t≤1

(E0)2p/q[|Xt|q|]
]







N−1/2 if d ≤ 3

N−1/2 (log(1 +N)) if d = 4

N−2/d if d > 4

(24)

We conclude by optimizing over m. �

Remark 2. We emphasize that, when working with i.i.d. sequence of processes, the above result holds
assuming only that

E
[

|Xs −Xt|2
]

≤ |t− s|, for all 0 ≤ s ≤ t ≤ 1,

instead of the third line in (19). In such case the control in (21) is direct and is m−1 (this follows
essentially from the fact that in that case we have E = E

0 so that p could be, formally, ∞). The resulting
rate of convergence are then given by the ǫN defined above with p = ∞ therein up to the ad hoc constant.
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2. SDEs with normal reflexion in law.

In this section, we are concerned with the existence and uniqueness for the solution of (3). To avoid
unnecessary repetitions, we postpone the discussion of the particle system and of the Feynman-Kac
formula to the more general setting of the SDE with normal reflexion in conditional law. As a warm up
we start by studying



















Xt = X0 +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs +

∫ t

0
∇h(Xs)dKs, t ≥ 0,

E[h(Xt)] ≥ 0,

∫ t

0
E[h(Xs)] dKs = 0, t ≥ 0,

(25)

which is the normally reflected version of (1).

2.1. Warm-up. In this subsection, we study the case where H(µ) is given by
∫

hdµ in the spirit of the
works [4], [3]. Roughly speaking, we extend the results of the previous papers to the multidimensional
setting.

In the following, we say that assumptions (Hwu) hold when the following assumptions are in force:

(Hc): The functions b : Ω × R+ × R
n −→ R

n and σ : Ω × R+ × R
n −→ R

n×d are measurable with
respect to E ⊗ B (Rn) and
(i) For all T > 0, there exists LT such that, P-a.s., for each t ∈ [0, T ],

∀x ∈ R
n, ∀y ∈ R

n, |b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ LT |x− y|;
(ii) For all T > 0,

sup
t≤T

E
[

|b(t, 0)|2 + |σ(t, 0)|2
]

< +∞.

(Hh): The function h : Rn −→ R is C2 with |∇2h|∞ < ∞ and
(i) h is concave;
(ii) For all x ∈ R

n, |∇h(x)|2 > 0;
(iii) There exists x0 ∈ R

n such that h(x0) ≥ 0.
(H0): The initial condition is F0–measurable, square integrable and H([X0]) ≥ 0.

Before going further, let us recall that, in this subsection, H([X0]) = E[h(X0)].

Remark 3. Let us observe that the assumption (Hh)-(iii) is needed to ensure that the set
{

µ ∈ P2(Rn) : H(µ) =

∫

h dµ ≥ 0

}

is not empty. For example, if h(x) = −e−x this set is empty. Moreover, when (Hh) holds true the set
{

µ ∈ P2(Rn) : H(µ) =

∫

h dµ > 0

}

is also non empty since it contains, in particular, a Dirac mass. Indeed, let (xt)t≥0 be the solution to

x′(t) = ∇h(x(t)) dt, t ≥ 0, x(0) = x0.

Then, for t > 0,

h(x(t)) = h(x0) +

∫ t

0
|∇h(x(s))|2ds≥

∫ t

0
|∇h(x(s))|2ds > 0.

Remark 4. Let us point out that the concavity of h allows to weaken the assumption on ∇h used in [4]
and [3] namely: there exists β > 0 such that

∀x ∈ R
n, |∇h(x)|2 ≥ β.

We only assume here that |∇h|2 does not vanish instead of being bounded from below by some positive
constant. Moreover, the gradient of h is only supposed to have a linear growth instead of being bounded
as assumed in the two papers mentioned above.
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To conclude the comparison with [4, 3], let us mention that, in the one dimensional case, one can switch
from the framework of the two quoted papers, namely



















Pt = X0 +

∫ t

0
d(s, Ps) ds+

∫ t

0
S(s, Ps) dBs +Kt, t ≥ 0,

E[l(Pt)] ≥ 0,

∫ t

0
E[l(Ps)] dKs = 0, t ≥ 0,

with K deterministic to the setting of (25) by the transformation Pt = F (Xt) where

F (x) =

∫ x

0

dx

h′(x)
, x ∈ R.

Definition 5. By a solution to (25), we mean a couple of adapted and continuous processes (X,K), K
being deterministic and non decreasing with K0 = 0, such that (25) holds.

Theorem 6. Under assumptions (Hwu), the SDE (25) has a unique square integrable solution with K
deterministic.

Proof. Let us start by uniqueness. Suppose that
(

X,KX
)

and
(

Y,KY
)

are two solutions of (25). Then,
we deduce from Itô’s formula that

E
[

|Xt − Yt|2
]

= 2E

[∫ t

0
(Xs − Ys) · (b(s,Xs) − b(s, Ys))ds

]

+ E

[∫ t

0
|σ(s,Xs) − σ(s, Ys)|2ds

]

+2E

[∫ t

0
(Xs − Ys) ·

(

∇h(Xs)dKX
s − ∇h(Ys)dKY

s

)

]

.

Since, h is concave, for all x ∈ R
n, y ∈ R

n, h(y) ≤ h(x) + ∇h(x) · (y − x). This last inequality rewrites

∀x ∈ R
n, ∀y ∈ R

n, (x − y) · ∇h(x) ≤ h(x) − h(y). (26)

Thus, using the Skorokhod condition together with the constraint, we have
∫ t

0
E [(Xs − Ys) · ∇h(Xs)] dKX

s ≤
∫ t

0
(E [h(Xs)] − E [h(Ys)]) dKX

s ≤ 0,

and, similarly,

−E

[∫ t

0
(Xs − Ys) · ∇h(Ys)dKY

s

]

≤ 0.

Using the fact that b and σ are Lipschitz, we get, for all t ≤ T ,

E
[

|Xt − Yt|2
]

≤
(

2LT + L2
T

)

∫ t

0
E
[

|Xs − Ys|2
]

ds,

and Gronwall’s lemma implies that X and Y are equal on [0, T ] for each T > 0.

Since X = Y , we get from Itô’s formula, that for any t,

AX
t :=

∫ t

0
E
[

|∇h(Xu)|2
]

dKX
u

= E [h(Xt)] − E [h(X0)] −
∫ t

0
E [∇h(Xu)b(u,Xu)] du− 1

2

∫ t

0
E
[

Tr
(

∇2h(Xu)σσ∗(u,Xu)
)]

du

=

∫ t

0
E
[

|∇h(Yu)|2
]

dKY
u =

∫ t

0
E
[

|∇h(Xu)|2
]

dKY
u =: AY

t .

Thus the nondecreasing continuous functions AX and AY are equal. For any step function ϕ on [0, T ],

∫ T

0
ϕ(u) dAX

u =

∫ T

0
ϕ(u)E

[

|∇h(Xu)|2
]

dKX
u =

∫ T

0
ϕ(u)E

[

|∇h(Xu)|2
]

dKY
u =

∫ T

0
ϕ(u) dAY

u . (27)

The previous equality hold true also for any continuous function on [0, T ] as uniform limit of step functions.
The map u 7−→ E

[

|∇h(Xu)|2
]

is continuous and does not vanish since |∇h(x)|2 > 0 for all x ∈ R
n. As a

byproduct,

u 7−→ ϕ(u) = E
[

|∇h(Xu)|2
]−1

is continuous and we get, plugging this ϕ in (27), KX
T = KY

T .
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Let us fix T > 0 and let us now construct a solution to (25) on [0, T ]. For this, let us consider, for k ≥ 1,
Xk solution to the following McKean-Vlasov SDE:

Xk
t = X0 +

∫ t

0
b
(

s,Xk
s

)

ds+

∫ t

0
σ
(

s,Xk
s

)

dBs +

∫ t

0
∇h
(

Xk
s

)

ψk

(

E
[

h
(

Xk
s

)])

ds, t ≥ 0, (28)

where the function ψk is defined as

ψk(x) = r if x ≤ −1/k, ψk(x) = −krx, if − 1/k ≤ x ≤ 0, ψk(x) = 0, if x ≥ 0.

The function ψk depends on the constant r > 0 which will be chosen later.

Existence and uniqueness of solutions to (28) under the assumptions (HWu) follows from straightforward
generalizations of results from [10]. We set

Kt
k =

∫ t

0
ψk

(

E
[

h
(

Xk
s

)])

ds,

and rewrite (28) as

Xk
t = X0 +

∫ t

0
b
(

s,Xk
s

)

ds+

∫ t

0
σ
(

s,Xk
s

)

dBs +

∫ t

0
∇h
(

Xk
s

)

dKk
s , t ≥ 0.

Let us start with some L2 bounds. Let us compute |Xk
t −X0|2 with the help of Itô’s formula. We have,

for 0 ≤ t ≤ T ,

∣

∣Xk
t −X0

∣

∣

2
= 2

∫ t

0

(

Xk
s −X0

)

· b
(

s,Xk
s

)

ds+

∫ t

0

∣

∣σ
(

s,Xk
s

)∣

∣

2
ds

+ 2

∫ t

0

(

Xk
s −X0

)

· σ
(

s,Xk
s

)

dBs + 2

∫ t

0

(

Xk
s −X0

)

· ∇h
(

Xk
s

)

dKk
s .

Since b and σ are Lipschitz in space, uniformly in time, we deduce from the above equality that, for

∣

∣Xk
t −X0

∣

∣

2 ≤
(

2LT + 2L2
T

)

∫ t

0

∣

∣Xk
s −X0

∣

∣

2
ds+ 2

∫ t

0

(

|b(s,X0)|2 + |σ(s,X0)|2
)

ds

+ 2

∫ t

0

(

Xk
s −X0

)

· σ
(

s,Xk
s

)

dBs + 2

∫ t

0

(

Xk
s −X0

)

· ∇h
(

Xk
s

)

dKk
s . (29)

Since h is concave and Kk is deterministic, we obtain, using (26),

E

[∫ t

0

(

Xk
s −X0

)

· ∇h
(

Xk
s

)

dKk
s

]

≤
∫ t

0

(

E
[

h
(

Xk
s

)]

− E [h(X0)]
)

dKk
s

=

∫ t

0

(

E
[

h
(

Xk
s

)]

− E [h(X0)]
)

ψk

(

E
[

h
(

Xk
s

)])

ds ≤ 0,

the last inequality coming from the fact that xψk(x) ≤ 0 and E [h(X0)] ≥ 0. It follows from Gronwall’s
inequality, that,

sup
k≥1

sup
t≤T

E

[

∣

∣Xk
t

∣

∣

2
]

≤ C
(

T, LT ,E
[

|X0|2
])

=: γ. (30)

Coming back to (29), since ψk is bounded by r and ∇h has a linear growth, BDG’s inequality gives

sup
k≥1

E

[

sup
t≤T

|Xk
t |2
]

≤ C
(

T, LT ,E
[

|X0|2
]

, |∇2h|∞, r
)

.

Let us apply Itô’s formula to compute the expected value of h
(

Xk
t

)

. We get, for 0 ≤ s ≤ t ≤ T ,

E
[

h
(

Xk
t

)]

= E
[

h
(

Xk
s

)]

+

∫ t

s

E

[

∣

∣∇h
(

Xk
u

)∣

∣

2
]

ψk

(

E
[

h
(

Xk
u

)])

du

+

∫ t

s

E
[

∇h
(

Xk
u

)

· b
(

u,Xk
u

)]

du+
1

2

∫ t

s

E
[

Tr
(

∇2h
(

Xk
u

)

σσ∗
(

u,Xk
u

))]

du.

Since ∇2h is bounded, b and σ are Lipschitz, we deduce, taking into account (30) and assumption (Hc)-
(ii) that, for some constant C ≥ 0 independent of k and r,

E
[

h
(

Xk
t

)]

≥ E
[

h
(

Xk
s

)]

+

∫ t

s

E

[

∣

∣∇h
(

Xk
u

)∣

∣

2
]

ψk

(

E
[

h
(

Xk
u

)])

du− C(t− s).
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On the other hand, for any k ≥ 1, 0 ≤ u ≤ T and a > 0, we have using Markov’s inequality,

E

[

∣

∣∇h
(

Xk
u

)∣

∣

2
]

≥ E

[

∣

∣∇h
(

Xk
u

)∣

∣

2
1|Xk

u|≤a

]

≥ inf
{

|∇h|2(x) : |x| ≤ a
}

P
(∣

∣Xk
u

∣

∣ ≤ a
)

,

≥ inf
{

|∇h|2(x) : |x| ≤ a
}

(

1 − a−2
E

[

∣

∣Xk
u

∣

∣

2
])

.

Having in mind the bound (30), we choose a =
√

2γ, to get, since |∇h|2 is continuous, for any k ≥ 1,
0 ≤ u ≤ T ,

E

[

∣

∣∇h
(

Xk
u

)∣

∣

2
]

≥ min
{

|∇h|2(x) : |x| ≤
√

2γ
}

/2 = m2 > 0.

It follows that, for any k ≥ 1, 0 ≤ s ≤ t ≤ T ,

E
[

h
(

Xk
t

)]

≥ E
[

h
(

Xk
s

)]

+m2
∫ t

s

ψk

(

E
[

h
(

Xk
u

)])

du − C(t− s). (31)

We choose r such that rm2 > C. As a byproduct, we have

∀k ≥ 1, ∀0 ≤ t ≤ T, E
[

h
(

Xk
t

)]

≥ − 1

k
. (32)

Indeed, if E
[

h
(

Xk
t

)]

< −1/k for some k ≥ 1 and t > 0, let s = sup{u ≤ t : E
[

h
(

Xk
u

)]

≥ −1/k}. Since

E [h(X0)] ≥ 0, we have 0 < s < t and E
[

h
(

Xk
u

)]

≤ −1/k for s ≤ u ≤ t. Thus, by definition of ψk,

ψk

(

E
[

h
(

Xk
u

)])

≥ r for u ∈ [s, t] and it follows from (31) that

E
[

h
(

Xk
t

)]

≥ E
[

h
(

Xk
s

)]

+ (m2r − C)(t− s) > − 1

k
.

This is a contradiction.

Let k,m ∈ N
∗, by Itô’s formula we have, for t ≥ 0,

∣

∣Xk
t −Xm

t

∣

∣

2
= 2

∫ t

0

(

Xk
s −Xm

s

)

·
(

b
(

s,Xk
s

)

− b (s,Xm
s )
)

ds+

∫ t

0

∣

∣σ
(

s,Xk
s

)

− σ (s,Xm
s )
∣

∣

2
ds

+ 2

∫ t

0

(

Xk
s −Xm

s

)

·
(

σ
(

s,Xk
s

)

− σ (s,Xm
s )
)

dBs

+ 2

∫ t

0

(

Xk
s −Xm

s

)

·
(

∇h
(

Xk
s

)

dKk
s − ∇h (Xm

s ) dKm
s

)

.

Using the fact that b and σ are Lipschitz continuous, we get, for 0 ≤ t ≤ T ,

∣

∣Xk
t −Xm

t

∣

∣

2 ≤
(

2LT + L2
T

)

∫ t

0

∣

∣Xk
s −Xm

s

∣

∣

2
ds+ 2

∫ t

0

(

Xk
s −Xm

s

)

·
(

σ
(

s,Xk
s

)

− σ (s,Xm
s )
)

dBs

+ 2

∫ t

0

(

Xk
s −Xm

s

)

·
(

∇h
(

Xk
s

)

dKk
s − ∇h (Xm

s ) dKm
s

)

. (33)

Arguing as in the proof of uniqueness, taking the expectation, we have, since h is concave,

E

[∫ t

0

(

Xk
s −Xm

s

)

·
(

∇h
(

Xk
s

)

dKk
s − ∇h (Xm

s ) dKm
s

)

]

≤ E

[∫ t

0

(

h
(

Xk
s

)

− h (Xm
s )
) (

dKk
s − dKm

s

)

]

=

∫ t

0

(

E
[

h
(

Xk
s

)]

− E [h (Xm
s ))

] (

ψk

(

E
[

h
(

Xk
s

)])

− ψm (E [h (Xm
s )])

)

ds,

and from (32), since, for any k ≥ 1, xψk(x) ≤ 0, E
[

h
(

Xk
s

)]

≥ −1/k and 0 ≤ ψk ≤ r, we obtain that

E

[∫ t

0

(

Xk
s −Xm

s

)

·
(

∇h
(

Xk
s

)

dKk
s − ∇h (Xm

s ) dKm
s

)

]

≤ r

k
+

r

m
.

We conclude using Gronwall’s lemma that there exists C ≥ 0 depending on T and LT such that for any
k,m ∈ N

∗ we have:

sup
0≤t≤T

E
[

|Xk
t −Xm

t |2
]

≤ C r

(

1

k
+

1

m

)

. (34)
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Coming back to (33), since supk≥1 |ψk|∞ ≤ r and ∇h has at most a linear growth, taking into account
(30), we derive, from BDG and Cauchy-Schwarz inequalities, the estimate

E

[

sup
0≤t≤T

|Xk
t −Xm

t |2
]

≤ C

(

1√
k

+
1√
m

)

,

where the constant C does not depend on k and m.

Thus,
(

Xk
)

k≥1 is a Cauchy sequence in S2. Let us denote by X its limit. Finally, since ψk is bounded by

r for all k, Kk is Lipschitz with |Kk|Lip ≤ r. By Arzelà-Ascoli’s theorem, up to a subsequence,
(

Kk
)

k≥1
converges, uniformly on [0, T ], towards a non decreasing, Lipschitz continuous function K.

It is straightforward to check that (X,K) solves (25). Indeed, since ∇h has a linear growth, we have

sup
0≤t≤T

E
[∣

∣h
(

Xk
t

)

− h(Xt)
∣

∣

]

≤ C sup
0≤t≤T

E
[∣

∣Xk
t −Xt

∣

∣

(

1 +
∣

∣Xk
t

∣

∣+ |Xt|
)]

≤ C sup
0≤t≤T

E
1/2
[

∣

∣Xk
t −Xt

∣

∣

2
]

(

1 + sup
k≥1

E
1/2
[

∣

∣Xk
t

∣

∣

2
]

)

and thus, for 0 ≤ t ≤ T ,

• E [h(Xt)] = limk→∞ E
[

h
(

Xk
t

)]

≥ 0 by (32),
• the Skorokhod condition is also satisfied : since xψk(x) ≤ 0,

0 ≤
∫ t

0
E [h(Xs)] dKs = lim

k→∞

∫ t

0
E
[

h
(

Xk
s

)]

dKk
s = lim

k→∞

∫ t

0
E
[

h
(

Xk
s

)]

ψk

(

E
[

h
(

Xk
t

)])

ds ≤ 0.

The proof of this result is complete. �

2.2. Existence and uniqueness of the solution. In this section, we are concerned with the existence

and the uniqueness of a solution to (3) when H(µ) is not necessarily of the form
∫

hdµ and is not
necessarily concave in µ. However, in this case, we have to assume that the volatility σ is bounded. More
precisely we assume that the following conditions (H) hold:

(Hc): The functions b : Ω × R+ × R
n −→ R

n and σ : Ω × R+ × R
n −→ R

n×d are measurable with
respect to E ⊗ B (Rn) and, for all T > 0, there exists LT such that, P-a.s.,
(i) For each t ∈ [0, T ],

∀x ∈ R
n, ∀y ∈ R

n, |b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ LT |x− y|;
(ii) For each t ∈ [0, T ],

E
[

|b(t, 0)|2
]

+ sup
x∈Rn

|σ(t, x)| ≤ LT .

(H0): The initial condition is F0–measurable, square integrable and H([X0]) ≥ 0 ;
(HH): The function H : P2(Rn) −→ R is partially C2 and

(i) there exists M > 0 such that

∀µ ∈ P2(Rn),

∫

Rn

|DµH(µ)|2(x)µ(dx) ≤ M2, (35)

(ii) there exist β > 0 and η > 0 such that

∀µ ∈ P2(Rn) with − η ≤ H(µ) ≤ 0,

∫

Rn

|DµH(µ)|2(x)µ(dx) ≥ β2, (36)

(iii) there exists C ≥ 0 such that

∀X,Y ∈ L2(Ω), E
[

|DµH([X ])(X) − DµH([Y ])(Y )|2
]

≤ C E
[

|X − Y |2
]

. (37)

Examples. We now illustrate our assumptions through two examples. In the first one we consider the
case where H depends on the first order moment of the measure: Let f1 : Rn → R be of class C2 with
bounded first and second derivatives, and let

H1(µ) = f1

(∫

Rn

yµ(dy)

)

, ∀µ ∈ P2(Rn).
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We also assume that the set {f1 = 0} is compact and that 0 is a noncritical value of f1: ∇f1(x) 6= 0 if
f1(x) = 0. Note that this implies the existence of a constant C > 0 such that C−1 ≤ |∇f1(x)| ≤ C for
any x ∈ R

n with f1(x) = 0. As

DµH1(µ)(x) = ∇f1

(∫

Rn

yµ(dy)

)

is independent of x, it is clear that (35), (36) and (37) hold.

In the second example, we assume that H2 depends on the second order moments of the measure. Let
Sn be the set of n×n symmetric matrices, endowed with the usual euclidean distance: |A| = (Tr(A2))

1
2 ,

and let Sn
+ be the subset of nonnegative matrices. Let f2 : Sn → R be of class C2. We assume that the

set {f2 ≥ −η0} ∩ Sn
+ is compact for some η0 > 0, that 0 is a noncritical value of f2 and that f2(0) 6= 0.

Then there exists C > 0 with C−1 ≤ |∇f2| ≤ C on {|f2| ≤ η}∩Sn
+, for η ∈ (0, η0) small enough, where

∇f2 is the gradient of f2 in Sn. Moreover, as f2(0) 6= 0 and {f2 ≥ −η} ∩ Sn
+ is compact, reducing η > 0

if necessary, there exists δ > 0 such that Tr(A) ≥ δ if |f2(A)| ≤ η and A ∈ Sn
+. Finally, we can assume,

without changing the level-set {f2 = 0} ∩ Sn
+, that the restriction of f2 to Sn

+ is bounded and that its
derivatives have compact support. Let

H2(µ) = f2

(∫

Rn

xx∗µ(dx)

)

∀µ ∈ P2(Rn).

Then

DµH2(µ)(x) = ∇f2

(∫

Rn

xx∗µ(dx)

)

x.

Hence
∫

Rn

|DµH2(µ)(x)|2µ(dx) =

∣

∣

∣

∣

∇f2

(∫

Rn

xx∗µ(dx)

)∣

∣

∣

∣

2 ∫

Rn

|x|2µ(dx).

Let us note that condition (35) holds because, for any µ ∈ P2(Rn),
∫

Rn xx
∗µ(dx) belongs to Sn

+ and
because the restriction ∇f2 to Sn

+ has a compact support. We now check the bound (36). Let µ be such

that −η ≤ H2(µ) ≤ 0 and let us set A :=

∫

Rn

xx∗µ(dx). Then A ∈ Sn
+ and, as |f2(A)| ≤ η, we have

Tr(A) ≥ δ and |∇f2(A)| ≥ C−1. So

∫

Rn

|DµH2(µ)(x)|2µ(dx) = |∇f2 (A)|2 Tr(A) ≥ C−2δ,

which proves (36). Finally, we check (37). Let us recall that the restrictions to Sn
+ of ∇f2 and ∇2f2 have

a compact support (say in a ball of radius R). Let C0 be a bound on ∇f2 and ∇2f2 on Sn
+. Let also

X,Y ∈ L2
P
, µ = [X ], ν = [Y ] and A :=

∫

Rn xx
∗µ(dx), B :=

∫

Rn xx
∗ν(dx). We assume that |A|, |B| ≤ R,

since otherwise the result is obvious. Then

E
[

|DµH2([X ])(X) − DµH2([Y ])(Y )|2
]

= E
[

|∇f2(A)X − ∇f2(B)Y |2
]

≤ C0(|A−B|2E[|X2|] + E
[

|X − Y |2
]

) ≤ CE
[

|X − Y |2
]

,

where the constant C depends also on R. This shows (36).

Comments on the assumptions. Let us recall that, as explained in the introduction, Assumption
(35) implies that H is globally Lipschitz continuous in P2(Rn). Since (37) holds, H is semiconcave and
semiconvex, in the sense, if µ = [X ] and ν = [Y ], then

|H(ν) −H(µ) − E [DµH([X ])(X) · (Y −X)]| ≤ CE
[

|X − Y |2
]

. (38)
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Indeed, we have

|H(ν) −H(µ) − E [DµH([X ])(X) · (Y −X)]|

=

∣

∣

∣

∣

∫ 1

0
E [{DµH ([(1 − t)X + tY ]) ((1 − t)X + tY ) − DµH([X ])(X)} · (Y −X)] dt

∣

∣

∣

∣

≤
∫ 1

0
E

1/2 [|DµH ([(1 − t)X + tY ]) ((1 − t)X + tY ) − DµH([X ])(X)|2
]

E
1/2 [|Y −X |2

]1/2
dt

≤ CE
[

|Y −X |2
]

,

where we used (37) in the last inequality. Moreover, under (37), for each µ ∈ P2(Rn), there exists a
Lipschitz continuous version of

DµH(µ)(.) : Rn −→ R
n,

with a Lipschitz constant independent of µ and such that (µ, x) 7−→ DµH(µ)(x) is measurable and
continuous at each point (µ, x) such that x ∈ Supp(µ) (Corollary 5.38 in [12]). Moreover,

E
[

|DµH(µ)(X) − DµH(ν)(X)|2
]

≤ C E
[

|X − Y |2
]

.

As a byproduct (inequality (5.49) in [12]), for [X ] = µ

E
[

|DµH(µ)(X) − DµH(ν)(X)|2
]

≤ CW 2
2 (µ, ν). (39)

Definition 7. By a solution to (3), we mean a couple of adapted and continuous processes (X,K), K
being deterministic and non decreasing, with K0 = 0.

Theorem 8. Under assumptions (H), the SDE (3) has a unique square integrable solution.

Remark 9. The result can be easily generalized to the case where b and σ depend also on the law. In the
proof we actually show that the process K is locally Lipschitz continuous.

Proof. Let us start by uniqueness. Suppose that (X,KX) and (Y,KY ) are two solutions of (3). Then,
we deduce from Itô’s formula that

E
[

|Xt − Yt|2
]

= 2E

[∫ t

0
(Xs − Ys) · (b(s,Xs) − b(s, Ys)) ds

]

+ E

[∫ t

0
|σ(s,Xs) − σ(s, Ys)|2 ds

]

+2E

[∫ t

0
(Xs − Ys) · (DµH([Xs])(Xs) dKX

s − DµH([Ys])(Ys) dKY
s )

]

.

Since H satisfies (38), using the Skorokhod condition together with the constraint, we have

E

[∫ t

0
(Xs − Ys) · DµH([Xs])(Xs) dKX

s

]

≤
∫ t

0

(

(H([Xs]) −H([Ys])) + CE
[

|Xs − Ys|2
])

dKX
s

=

∫ t

0
H([Xs]) dKX

s −
∫ t

0
H([Ys]) dKX

s +

∫ t

0
CE

[

|Xs − Ys|2
]

dKX
s

≤
∫ t

0
CE

[

|Xs − Ys|2
]

dKX
s .

Similarly,

−E

[∫ t

0
(Xs − Ys) · DµH([Ys])(Ys) dKY

s

]

≤
∫ t

0
CE

[

|Xs − Ys|2
]

dKY
s .

Using the fact that b and σ are Lipschitz continuous, we get, for some constant C > 0,

E
[

|Xt − Yt|2
]

≤ C

∫ t

0
E
[

|Xs − Ys|2
]

(ds+ dKX
s + dKY

s ),

and equality X = Y follows from Gronwall’s lemma applied to the continuous maps s 7→ KX
s , s 7→ KY

s

(see Lemma 4 in [21] or Theorem 17.1 in [2]) and s → E
[

|Xs − Ys|2
]

.
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Next we show the equality KX = KY . We get from Itô’s formula (14) and for any t ≥ 0

AX
t :=

∫ t

0
E
[

|DµH([Xu])(Xu)|2
]

dKX
u = H([Xt]) −H([X0]) −

∫ t

0
E [DµH([Xu])(Xu) · b(u,Xu)] du

− 1

2

∫ t

0
E [Tr (∂xDµH([Xu])(Xu)σσ∗(u,Xu))] du

= AY
t :=

∫ t

0
E
[

|DµH([Xu])(Xu)|2
]

dKY
u .

Thus the nondecreasing continuous functions AX and AY are equal. For any step function ϕ on [0, T ],

∫ T

0
ϕ(u) dAX

u =

∫ T

0
ϕ(u)E

[

|DµH([Xu])(Xu)|2
]

dKX
u

=

∫ T

0
ϕ(u)E

[

|DµH([Xu])(Xu)|2
]

dKY
u =

∫ T

0
ϕ(u) dAY

u . (40)

The previous equality hold true also for any continuous function on [0, T ] as uniform limit of step functions.
Since H([Xu]) = 0 for dKX + dKY −a.e. u ∈ [0, T ], we have

E
[

|DµH([Xu])(Xu)|2
]

≥ β2 > 0 for dKX + dKY −a.e. u ∈ [0, T ].

As a byproduct, we can extend the map

u 7−→ ϕ(u) = E
[

|DµH([Xu])(Xu)|2
]−1

from the support of dKX + dKY into a continuous map on [0, T ] and we get, plugging this ϕ in (40),
KX

T = KY
T . This completes the proof of the uniqueness of the solution: (X,KX) = (Y,KY ).

Let us now construct a solution to (3) on a time interval [0, T ] (for T > 0 arbitrary). For this, let us
consider, for k>1/η, the solution Xk to the following McKean-Vlasov SDE:

Xk
t = X0 +

∫ t

0
b(s,Xk

s ) ds+

∫ t

0
σ(s,Xk

s ) dBs +

∫ t

0
DµH([Xk

s ])(Xk
s )ψk(s,H([Xk

s ])) ds, t ≥ 0, (41)

where the function ψk : R+ × R
n → R+ is defined as

ψk(t, x) = r(t) if x ≤ −1/k, ψk(t, x) = −kr(t)x, if − 1/k ≤ x ≤ 0, ψk(t, x) = 0, if x ≥ 0

and t → r(t) is a continuous, positive and increasing map to be chosen later. We set

Kk
t =

∫ t

0
ψk(s,H([Xk

s ])) ds.

Let us start with some L2 bounds. In order to use condition (36), we introduce the deterministic time

Tk = inf{t ≥ 0, H([Xk
t ]) ≤ −η},

with the convention that Tk = T if the right-hand side is empty. Note that Tk > 0 since H([X0]) ≥ 0.
Let us compute |Xk

t |2 for t ∈ [0, Tk] with the help of Itô’s formula. We have

|Xk
t |2 = |X0|2+2

∫ t

0
Xk

s · b(s,Xk
s ) ds+

∫ t

0
Tr(σσ∗(s,Xk

s )) ds

+ 2

∫ t

0
Xk

s · σ(s,Xk
s ) dBs + 2

∫ t

0
Xk

s · DµH([Xk
s ])(Xk

s ) dKk
s . (42)

Since b and σ are Lipschitz continuous in space, uniformly in time, we deduce from this equality that
there exists a constant C = C(LT ) such that

|Xk
t |2 ≤ |X0|2+C

∫ t

0
(1+|b(s, 0)|2 + |Xk

s |2)ds+ 2

∫ t

0
Xk

s · σ(s,Xk
s ) dBs + 2

∫ t

0
Xk

s · DµH([Xk
s ])(Xk

s ) dKk
s .

(43)
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Using Cauchy-Schwarz’s inequality, Assumption (35) and then Young’s inequality, we obtain,

E

[∫ t

0
Xk

s · DµH([Xk
s ])(Xk

s ) dKk
s

]

≤
∫ t

0

(

E
[

|Xk
s |2
])1/2

(

E

[

∣

∣DµH([Xk
s ](Xk

s )
∣

∣

2
])1/2

ψk(s,H([Xk
s ]) ds

≤
∫ t

0

(

E
[

|Xk
s |2
])1/2

Mr(s) ds ≤
∫ t

0

(

E
[

|Xk
s |2
]

+M2r2(s)
)

ds.

Hence

E
[

|Xk
t |2
]

≤ E[|X0|2]+C

∫ t

0
(1 +M2r2(s) + E

[

|Xk
s |2
]

) ds.

It follows from Gronwall’s inequality that there exists C0 > 0, and, for any t ∈ [0, T ], C1(T ) > 0,
depending on T , M2([X0]), LT and supt≤T E[|b(t, 0)|2] only, such that

sup
s≤t

E
[

|Xk
s |2
]

≤ C1(T ) +M2
∫ t

0
eC0(t−s)r2(s)ds. (44)

Coming back to (43), since ψk is bounded by r, the upper bound of Assumption (35) together with BDG’s
inequality give

E

[

sup
t≤T

|Xk
t |2
]

≤ C

(

T, LT ,M2([X0]), sup
t≤T

E[|b(t, 0)|2],M, r(·)
)

.

Let us apply Itô’s formula (12) to compute H([Xk
t ]). We get, for 0 ≤ s ≤ t, such that −η ≤ H([Xk

u ]) ≤
−1/k on [s, t],

H([Xk
t ]) = H([Xk

s ]) +

∫ t

s

E
[

|DµH([Xk
u ])(Xk

u)|2
]

ψk(u, [Xk
u ]) du

+

∫ t

s

E
[

DµH([Xk
u ])(Xk

u) · b(u,Xk
u)
]

du+
1

2

∫ t

s

E
[

Tr
(

∂xDµH([Xk
u ])(Xk

u)σσ∗(u,Xk
u)
)]

du

≥ H([Xk
s ]) + β2

∫ t

s

r(u)du − C

∫ t

s

(

1+
(

E

[

∣

∣Xk
u

∣

∣

2
])1/2

)

du, (45)

for some constant C ≥ 0 independent of k and r. In the above inequality, we used the fact that
x 7−→ DµH(µ)(x) is Lipschitz uniformly in µ, that σ is bounded, that β2 ≤ E

[

|DµH([X ])(X)|2
]

≤ M2

for any X such that −η ≤ H([X ]) ≤ 0 and that b has a linear growth while σ is bounded. We deduce
from (44) that,

H([Xk
t ]) ≥ H([Xk

s ]) +

∫ t

s

(

β2r(u) − C

(

1 +

(

C1(T ) +M2
∫ u

0
eC0(u−v)r2(v)dv

)1/2
))

du

≥ H([Xk
s ]) +

∫ t

s

(

β2r(u) − C

(

1 + C1(T ) +M2eC0u

∫ u

0
r2(v)dv

)1/2
)

du. (46)

We can then choose the map t → r(t), independent of k, such that ρ(t) :=
∫ t

0 r
2(v)dv satisfies the ODE

ρ′(u) = C2β−4 (1 + C1(T ) +M2eC0uρ(u)
)

, ∀u ≥ 0,

so that

r2(u) = C2β−4
(

1 + C1(T ) +M2eC0u

∫ u

0
r2(v)dv

)

, ∀u ≥ 0. (47)

With this choice of r, we claim that

∀k ≥ 1, ∀t ≤ Tk, H([Xk
t ]) ≥ − 1

k
. (48)

Indeed, if H([Xk
t0

]) < −1/k for some t0 > 0, let

s = sup
{

u ≤ t0 : H([Xk
u ]) ≥ −1/k

}

and t = inf
{

u ≥ s : H([Xk
u ]) ≤ H([Xk

t0
]) ∨ (−η)

}

.
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Since H([X0]) ≥ 0, we have 0 < s < t ≤ t0 and −η ≤ H([Xk
u ]) ≤ −1/k for s ≤ u ≤ t. Hence, by (46) and

(47), we get

H([Xk
t0

]) ∨ (−η) = H([Xk
t ]) ≥ H([Xk

s ]) = − 1

k
.

This is a contradiction and (48) holds. Note that, with this choice of r(·), we have Tk = T and

sup
k
Kk

t ≤ C(t) ∀t ∈ [0, T ]. (49)

Let k,m ∈ N
∗, with k,m>1/η. By Itô’s formula we have, for t ≥ 0,

|Xk
t −Xm

t |2 = 2

∫ t

0
(Xk

s −Xm
s ) · (b(s,Xk

s ) − b(s,Xm
s )) ds

+

∫ t

0
Tr((σ(s,Xk

s ) − σ(s,Xm
s ))(σ(s,Xk

s ) − σ(s,Xm
s ))∗) ds

+ 2

∫ t

0
(Xk

s −Xm
s ) · (σ(s,Xk

s ) − σ(s,Xm
s )) dBs

+ 2

∫ t

0
(Xk

s −Xm
s ) · (DµH([Xk

s ])(Xk
s ) dKk

s − DµH([Xm
s ])(Xm

s ) dKm
s ).

Using the fact that b and σ are LT −Lipschitz continuous, we get

|Xk
t −Xm

t |2 ≤ (2LT + L2
T )

∫ t

0
|Xk

s −Xm
s |2 ds+ 2

∫ t

0
(Xk

s −Xm
s ) · (σ(s,Xk

s ) − σ(s,Xm
s )) dBs

+ 2

∫ t

0
(Xk

s −Xm
s ) · (DµH([Xk

s ])(Xk
s ) dKk

s − DµH([Xm
s ])(Xm

s ) dKm
s ). (50)

Arguing as in the proof of uniqueness, taking the expectation, we have, since H satisfies (38),

E

[∫ t

0
(Xk

s −Xm
s ) · (DµH([Xk

s ])(Xk
s ) dKk

s − DµH([Xm
s ])(Xm

s ) dKm
s )

]

≤
∫ t

0
(H([Xk

s ]) −H([Xm
s ]))( dKk

s − dKm
s ) + C

∫ t

0
E
[

|Xk
s −Xm

s |2
]

( dKk
s + dKm

s )

=

∫ t

0
(H([Xk

s ])−H([Xm
s ]))(ψk(s,H([Xk

s ])−ψm(s,H([Xm
s ])) ds+C

∫ t

0
E
[

|Xk
s −Xm

s |2
]

( dKk
s + dKm

s ).

From (48), since xψk(t, x) ≤ 0, H([Xk
t ]) ≥ −1/k and ψk(s,H([Xk

s ]) and ψm(s,H([Xm
s ]) are in [0, r(t)]

for s ∈ [0, t], we obtain that

E

[∫ t

0
(Xk

s −Xm
s ) · (DµH([Xk

s ])(Xk
s ) dKk

s − DµH([Xm
s ])(Xm

s ) dKm
s )

]

≤ t(
r(t)

k
+
r(t)

m
) + C

∫ t

0
E
[

|Xk
s −Xm

s |2
]

( dKk
s + dKm

s ).

Therefore

E
[

|Xk
t −Xm

t |2
]

≤ C

∫ t

0
E
[

|Xk
s −Xm

s |2
]

(ds+ dKk
s + dKm

s ) + t(
r(t)

k
+
r(t)

m
).

We conclude using Gronwall’s lemma and the bound on (Kk) in (49) that, for any T > 0,

sup
t∈[0,T ]

E
[

|Xk
t −Xm

t |2
]

≤ T

(

r(T )

k
+
r(T )

m

)

exp{C(T + Kk
T +Km

T )} ≤ C
(1

k
+

1

m

)

.

Coming back to (50), we derive, from (34), (49), the BDG and Cauchy-Schwarz inequalities, the estimate

E

[

sup
t≤T

|Xk
t −Xm

t |2
]

≤ C
( 1√

k
+

1√
m

)

,

where the constant C does not depend on k and m. Thus, {Xk}k≥1 is a Cauchy sequence in S2. Let us
denote by X its limit. Since ψk is bounded on [0, T ] by r(T ) for all k, Kk is Lipschitz continuous with
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a Lipschitz constant bounded by r(T ) on [0, T ]. By Ascoli-Arzela theorem, up to a subsequence, (Kk)
converges locally uniformly to a non decreasing, locally Lipschitz continuous function K.

It is straightforward to check that (X,K) solves (3). Indeed,

• H([Xt]) = limk→∞ H([Xk
t ]) ≥ 0 by (48),

• the Skorokhod condition is also satisfied : since xψk(t, x) ≤ 0,

0 ≤
∫ t

0
H([Xs])dKs = lim

k→∞

∫ t

0
H([Xk

s ])ψk(s,H([Xk
s ]))ds ≤ 0.

�

3. SDEs with normal reflexion in conditional law.

In this section, we consider the reflected SDE:


















Xt = X0 +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ0(s,Xs) dBs +

∫ t

0
σ1(s,Xs)dWs +

∫ t

0
DµH([Xs|W ])(Xs) dKs,

H([Xt|W ]) ≥ 0,

∫ t

0
H([Xs|W ]) dKs = 0, t ≥ 0,

(51)

where now B and W are independent Brownian motions and (Ks) is a continuous nondecreasing process
adapted to the filtration FW associated with W . As before, H is a map from P2(Rn) to R. The notation
[Xt|W ] stands for the conditional probability of Xt given W . We assume that the initial condition of the
process, X0, is independent of B and of W and in L2. As explained below, this reflected process is the
limit of a reflected particle system with a common noise.

We assume in this part that the following conditions (Hcl) hold:

(HΩ): The probability space is (Ω,P) = (Ω0 ×Ω1,P0 ⊗P
1), where Ω0 supports the X0 and B, while

Ω1 supports W with associated filtration FW = F1.
(Hc): The functions b : Ω × R+ × R

n −→ R
n and σ0, σ1 : Ω × R+ × R

n −→ R
n×d are measurable

with respect to E ⊗ B (Rn) and
(i) For all T > 0, there exists LT such that, P-a.s., for each t ∈ [0, T ],

∀x ∈ R
n, ∀y ∈ R

n, |b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ LT |x− y|;
(ii) b, σ0, σ1 are globally bounded: for all T > 0, there exists CT such that, P-a.s.,

sup
t≤T, x∈Rn

{|b(t, x)| + |σ0(t, x)| + |σ1(t, x)|} ≤ CT .

(H0): The initial condition is X0 is independent of B and W , in L2(Ω0) and with H([X0]) ≥ 0;
(HH): The function H : P2(Rn) −→ R is globally C2 and

(i) there exists M > 0 such that: ∀µ ∈ P2(Rn),

|H(µ)| +

∫

Rn

|DµH(µ)|2(x)µ(dx) +

∫

Rn

|∂yDµH(µ)(y)|µ(dy)

+

∫

Rn×Rn

∣

∣D2
µµH(µ)(x, y)

∣

∣µ(dx)µ(dy) ≤ M2, (52)

(ii) there exist β > 0 and η > 0 such that

∀µ ∈ P2(Rn) with − η ≤ H(µ) ≤ 0,

∫

Rn

|DµH(µ)|2(x)µ(dx) ≥ β2, (53)

(iii) there exists C1 ≥ 0 such that

∀X,Y ∈ L2
P
, E

[

|DµH([X ])(X) − DµH([Y ])(Y )|2
]

≤ C1 E
[

|X − Y |2
]

. (54)

Examples. They are the same as in the previous section. For the first example, let f1 : Rn → R be of
class C2 and such that the set {f1 = 0} is compact and 0 is a noncritical value of f1. We also assume,
without loss of generality, that f1 is bounded and that ∇f1 and ∇2f1 have compact support. We set

H1(µ) = f1

(∫

Rn

yµ(dy)

)

∀µ ∈ P2(Rn).
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Then

DµH1(µ)(x) = ∇f1

(∫

Rn

yµ(dy)

)

and D2
µµH1(µ)(x, x′) = ∇2f1

(∫

Rn

yµ(dy)

)

.

So conditions (Hcl) hold as in the previous section.

For the second example, we assume that H2 is given by

H2(µ) = f2

(∫

Rn

xx∗µ(dx)

)

∀µ ∈ P2(Rn),

where f2 is as in the previous section. Then one can show with the same argument as in the previous
section that H2 is bounded and that its first and second order derivatives have bounded support and that
(53) holds. This easily implies that H2 satisfies conditions (Hcl).

3.1. Existence and uniqueness of the solution.

Definition 10. We say that (X,K) is a solution to (51) if (X,K) is a continuous and progressively
measurable process such that Xt is square integrable for any t ≥ 0 and such that K is nondecreasing and
adapted to the filtration FW with K0 = 0.

Note that, under the above assumptions, the equation has a meaning since (denoting by E
0 the conditional

expectation with respect to W ) we have, for any t ≥ 0 and P
1−a.s.,

E
0
[∫ t

0
|DµH([Xs|W ])(Xs)| dKs

]

=

∫ t

0
E

0 [|DµH([Xs|W ])(Xs)|] dKs

≤
(

sup
µ∈P2

∫

Rd

|DµH(µ)(x)|2µ(dx)

)1/2

Kt < +∞.

Theorem 11. Under assumptions (Hcl), the SDE (51) has a unique square integrable solution. In
addition, we have, for any T > 0 and for any θ > 0,

E

[

sup
0≤s≤T

|Xs|2
]

≤ C(T ), E

[

exp{θKT }
]

≤ Cθ(T ), (55)

for some constants C(T ) and Cθ(T ) depending on the data, T and, for Cθ(T ), θ.

Remark 12. We emphasize that weak uniqueness also holds for (3) and for (51). We explain why at the
end of the proof of Theorem 11.

Remark 13. In contrast with the previous section (without “common noise”) the process K is neither
deterministic nor Lipschitz continuous in general. For this reason, the assumptions under which we work
here are much stronger than the ones in Section 2.

From the proof of the Theorem (see estimate (66) below), we also deduce the following result.

Corollary 14. Let p ≥ 2 and T > 0. Assume that in addition to (Hcl) we have Mp([X0]) + Hp < +∞.
Then, there exists a positive constant Cp(T ) := C ((p, T,Mp([X0]),Hp) > 0 such that

E

[

sup
0≤s≤T

∣

∣E
0 [|Xs|2

]∣

∣

p
]

≤ Cp(T ). (56)

One can also show that the process depends in a continuous way of the initial condition:

Proposition 15. Let X0 and Y0 be two initial conditions with H([X0]) ≥ 0 and H([Y0]) ≥ 0. Let
(X,KX) and (Y,KY ) be solutions of (51) with initial conditions X0 and Y0, respectively. Then, for any
T > 0,

E

[

sup
0≤t≤T

E
0[|Xt − Yt|2]

]

≤ CE
[

|X0 − Y0|2
]

while

E

[

sup
0≤t≤T

|Xt − Yt|2
]

≤ C
(

E
[

|X0 − Y0|2
]

+ E
[

|X0 − Y0|2
]1/2

)

.
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Eventually, we have the following regularity estimate on the continuity of the path K and X .

Proposition 16. Let (X,K) be the unique solution of SDE (51). Assume in addition to (Hcl) that
there exists p ≥ 2 such that Mp([X0]) + Hp < +∞.

Then, there exists a constant Cp(T ) := C ((p, T,Mp([X0]),Hp) > 0 such that

E [|Kt −Ks|p] ≤ Cp,T |t− s|p/4, (57)

and if moreover p is in N

E [|Xt −Xs|p] + E

[

sup
u∈[s,t]

∣

∣E
0 [|Xu −Xs|2

]∣

∣

p/2

]

≤ Cp,T |t− s|p/4. (58)

Proof of Theorem 11: Existence under an additional moment condition. The structure of proof is roughly
the same as for Theorem 8. However, because the process K is no longer Lipschitz continuous nor deter-
ministic, we have to pay extra attention in the various estimates. Here we address the existence of the
solution under the additional condition that X0 has a moment of order 4: E[|X0|4] < +∞. This extra
condition is removed after the proof of Proposition 15. The uniqueness is a straightforward consequence
of Proposition 15.

Step 1: Approximate solutions. We build the solution on the time interval [0, T ] (for an arbitrary
T > 0). All the constants below depend on this horizon T . As before we argue by penalization. We
consider, for k ≥ 1/η, Xk solution to the following McKean-Vlasov SDE:

Xk
t = X0 +

∫ t

0
b(s,Xk

s ) ds+

∫ t

0
σ0(s,Xk

s ) dBs +

∫ t

0
σ1(s,Xk

s ) dWs

+

∫ t

0
DµH([Xk

s |W ])(Xk
s )ψk(H([Xk

s |W ]) ds, t ≥ 0, (59)

where the function ψk is defined as

ψk(x) = k2 if x ≤ −1/k, ψk(x) = −k3x, if − 1/k ≤ x ≤ 0, ψk(x) = 0, if x ≥ 0.

We set µk
t = [Xk

t |W ] and Kk
t =

∫ t

0
ψk(H([Xk

s |W ]) ds =

∫ t

0
ψk(H(µk

s)) ds and define the FW −stopping

time τk by

τk := T ∧ inf{t ≥ 0, H(µk
t ) ≤ −η}.

We note for a later use that µk
t∧τ k = [Xk

t∧τ k |W ] since τk is an FW -stopping time. We also stress that

H(µk
s) ∈ [−1/k, 0] for dKk−a.e. s ∈ [0, τk], so that, by (53) and for any nonnegative process ϕs adapted

to FW ,

∫ t∧τ k

0
ϕsE

0
[

∣

∣DµH(µk
s)(Xk

s )
∣

∣

2
]

dKk
s ≥ β2

∫ t∧τ k

0
ϕs dK

k
s∧τ k . (60)

We finally note that (59) can be rewritten as

Xk
t = X0 +

∫ t

0
b(s,Xk

s ) ds+

∫ t

0
σ0(s,Xk

s ) dBs +

∫ t

0
σ1(s,Xk

s ) dWs

+

∫ t

0
DµH([Xk

s |W ])(Xk
s ) dKk

s , t ≥ 0.
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Step 2: Estimate on Kk. For 0 ≤ s ≤ t ≤ T and by Itô’s formula (13), we have

H(µk
t∧τ k) = H(µk

s∧τ k) +

∫ t∧τ k

s∧τ k

E
0 [DµH(µk

u)(Xk
u) · b(u,Xk

u)
]

du

+

∫ t∧τ k

s∧τ k

E
0
[

∣

∣DµH(µk
u)(Xk

u)
∣

∣

2
]

dKk
u

+
1

2

∫ t∧τ k

s∧τ k

E
0 [Tr

(

∂xDµH(µk
u)(Xk

u)(a1(u,Xk
u) + a2(u,Xk

u))
)]

du

+
1

2

∫ t∧τ k

s∧τ k

E
0
Ẽ

0 [Tr
(

D2
µµH(µk

u)(Xk
u , X̃

k
u)σ1(u,Xk

u)σ∗
1(u, X̃k

u

)]

du

+

∫ t∧τ k

s∧τ k

E
0 [σ∗

1(u,Xk
u)DµH(µk

u)(Xk
u)
]

· dWu. (61)

We use (60) to bound below the term

∫ t∧τ k

s∧τ k

E
0
[

∣

∣DµH(µk
u)(Xk

u)
∣

∣

2
]

dKk
u . We also use our bounds on H

in (52) and the L∞ bounds on b and σi to estimate the other terms and obtain:

H(µk
t∧τ k) ≥ H(µk

s∧τ k) − C(t ∧ τk − s ∧ τk) + β2(Kk
t∧τ k −Kk

s∧τ k)

+

∫ t∧τ k

s∧τ k

E
0 [σ∗

1(u,Xk
u)DµH(µk

u)(Xk
u)
]

· dWu. (62)

Taking s = 0 and t = T and using once again the fact that σ1 is bounded and (52), we infer that the Kk

have uniformly bounded exponential moments:

sup
k

E
[

exp{θKk
τ k}
]

≤ C(θ), ∀θ > 0. (63)

Step 3: Some estimates on the (p)-moments of Xk
t . We claim that:

E

[

sup
0≤t≤τ k

|Xk
t |2
]

≤ C2,T (E
[

|X0|2
]

+ 1); (64)

and, assuming in addition to the current assumption that there exists p ≥ 2 such that Mp([X0]) + Hp <
+∞, it holds:

E

[

sup
0≤t≤τ k

E
0 [|Xk

t |p
]

]

≤ Cp,T , (65)

E

[

(E0)p/2

[

sup
0≤t≤τ k

|Xk
t |2
]]

≤ Cp,T , (66)

where Cp,T := Cp,T (Mp([X0]) + Hp) > 0.

Let us set γk
t := exp{−α(δt + H(µk

t ))} for α, δ ≥ 1 to be chosen below. We note for later use that,
because of our boundedness assumption on H , γk

t is bounded above and below by positive constants. We
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have, by Itô’s formula (13),

γk
t∧τ k |Xk

t∧τ k |p = γk
0 |X0|p +

∫ t∧τ k

0
γk

s p|Xk
s |p−2Xk

s · b(s,Xk
s ) ds

+
1

2

∫ t∧τ k

0
γk

s Tr[a(s,Xk
s )(p|Xk

s |p−2Id + p(p− 2)|Xk
s |p−4Xk

s ⊗Xk
s )] ds

+

∫ t∧τ k

0
pγk

s σ
∗
0(s,Xk

s )|Xk
s |p−2Xk

s · dBs +

∫ t∧τ k

0
pγk

sσ
∗
1(s,Xk

s )|Xk
s |p−2Xk

s · dWs

+

∫ t∧τ k

0
pγk

s DµH(µk
s)(Xk

s ) · |Xk
s |p−2Xk

s dK
k
s − αδ

∫ t∧τ k

0
γk

s |Xk
s |pds

−α
∫ t∧τ k

0
γk

s |Xk
s |pE0 [DµH(µk

s)(Xk
s ) · b(s,Xk

s )
]

ds

−α
∫ t∧τ k

0
γk

s |Xk
s |pE0 [σ∗

1(s,Xk
s )DµH(µk

s)(Xk
s )
]

· dWs

−α

2

∫ t∧τ k

0
γk

s |Xk
s |pE0 [Tr

(

a0(s,Xk
s )∂yDµH(µk

s)(Xk
s ))
)]

ds

−α

2

∫ t∧τ k

0
γk

s |Xk
s |pE0

Ẽ
0 [Tr

(

D2
µµH(µk

s)(Xk
s , X̃

k
s )σ1(s,Xk

s )σ∗
1(s, X̃k

s )
)]

ds

−pα
∫ t∧τ k

0
γk

s Tr
(

σ∗
1(s,Xk

s )|Xk
s |p−2Xk

s (E0 [σ∗
1(s,Xk

s )DµH(µk
s)(Xk

s ))∗
)]

ds

+
α2

2

∫ t∧τ k

0
γk

s |Xk
s |pTr

(

E
0 [σ∗

1(s,Xk
s )DµH(µk

s)(Xk
s )
]

(E0 [σ∗
1(s,Xk

s )DµH(µk
s)(Xk

s )
]

)∗
)

ds

−α
∫ t∧τ k

0
γk

s |Xk
s |pE0 [|DµH(µk

s)(Xk
s )|2

]

dKk
s . (67)

From Young’s inequality, we have

E
0

[

∫ t∧τ k

0
pγk

s DµH(µk
s)(Xk

s ) · |Xk
s |p−2Xk

s dK
k
s

]

≤
∫ t∧τ k

0
pγk

s

(

E
0
[

p− 1

p
|Xk

s |p
]

+ E
0
[

1

p
|DµH(µk

s)(Xk
s )|p

])

dKk
s . (68)

By (52), the terms E
0
[

|DµH(µk
s)(Xk

s )|
]

, E
0
[

|∂yDµH(µk
s)(Xk

s )|
]

and E
0
Ẽ

0
[∣

∣D2
µµH(µk

s)(Xk
s , X̃

k
s )
∣

∣

]

are
a.s. bounded. So, by (60) applied to the last term and for α large enough (to absorb partially the first
term in dKk

s ) and then δ large enough (to absorb partially all the terms in ds), we have

E
0 [γk

t∧τ k |Xk
t∧τ k |p

]

≤ E
0 [γk

0 |X0|p
]

+ Cα,δT + CHpK
k
T

+

∫ t∧τ k

0
pγk

sE
0 [σ∗

1(s,Xk
s )|Xk

s |p−2Xk
s

]

· dWs

− α

∫ t∧τ k

0
E

0 [γk
s |Xk

s |p
]

E
0 [σ∗

1(s,Xk
s )DµH(µk

s)(Xk
s )
]

· dWs. (69)

Taking expectation and using the bound on Kk in (63) we find

sup
t∈[0,T ]

E
[

|Xk
t∧τ k |p

]

≤ C(E [|X0|p] + Hp) + C(T ). (70)
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We come back to (69) and use the boundedness of Kk in (63) and BDG inequality to find

E

[

sup
s≤T

E
0 [γk

t∧τ k |Xk
t∧τ k |p

]

]

≤ CE [|X0|p] + Cα,δ(T,Hp) + CE





(

∫ T

0
(γk

s∧τ k)2(E0)2 [|Xk
s∧τ k |p

]

ds

)1/2




≤ CE [|X0|p] + Cα,δ(T,Hp) + CE





(

sup
s≤T

E
0 [γk

t∧τ k |Xk
s∧τ k |p

]

)1/2
(

∫ T

0
γk

t∧τ kE
0 [|Xk

s∧τ k |p
]

ds

)1/2




≤ CE [|X0|p] + Cα,δ(T,Hp) +
1

2
E

[

sup
s≤T

E
0 [γk

t∧τ k |Xk
s∧τ k |p

]

]

+ CE

[

∫ T

0
E

0 [γk
t∧τ k |Xk

s∧τ k |p
]

ds

]

. (71)

Using (70), this proves (65).
Now, from Itô’s formula on |Xk

t∧τ k |2 we obtain an expression similar to (67) (with p = 2 therein and
α = δ = 0) without the last eight terms. Taking first the supremum, then the expectation E and using
the fact that

E
1 ⊗ E

0

[

sup
s≤t

∫ s∧τ k

0
|DµH(µk

s)(Xk
s )| |Xk

s | dKk
s

]

≤ E
1

[

∫ T ∧τ k

0
(E0)1/2 [|DµH(µk

s)(Xk
s )|2

]

(E0)1/2 [|Xk
s |2
]

dKk
s

]

≤ C(M)(E1)1/2

[

sup
0≤t≤T ∧τ k

{

E
0 [|Xk

t |2
]}

]

(E1)1/2 [(Kk
T )2] ,

thanks to Cauchy-Schwarz inequality we deduce, from (65) with p = 2, estimates on the moment of
K and BDG’s inequality that (64) holds. Also, still working with the Itô’s expansion of |Xk

t∧τ k |2, we

obtain, taking first the supremum of this expression, then the expectation E
0, taking the p power of this

expression, taking next the expectation E, using BDG inequality, and Gronwall’s lemma that (66) holds.

Step 4: Estimate of the difference Xk − Xm, first part. Let τk,m := τk ∧ τm and let us set
γt := exp{−α(δt + H(µk

t ) + H(µm
t ))} for α, δ ≥ 1 to be chosen below. By Itô’s formula (13), by using

the Lipschitz continuity of b and σi and absorbing the terms in dt as in Step 3, using the bounds on the
derivatives of H and on σ1 as well as (60), we get, for δ large enough:

γt∧τ k,m |Xk
t∧τ k,m −Xm

t∧τ k,m |2

≤
∫ t∧τ k,m

0
2γs(Xk

s −Xm
s ) · DµH(µk

s)(Xk
s ) dKk

s −
∫ t∧τ k,m

0
2γs(Xk

s −Xm
s ) · DµH(µm

s )(Xm
s ) dKm

s

+

∫ t∧τ k,m

0
2γs(Xk

s −Xm
s ) · (σ0(s,Xk

s ) − σ0(s,Xm
s )) dBs

+

∫ t∧τ k,m

0
2γs(Xk

s −Xm
s ) · (σ1(s,Xk

s ) − σ1(s,Xm
s )) dWs − αδ

2

∫ t∧τ k,m

0
γs|Xk

s −Xm
s |2 ds

− α

∫ t∧τ k,m

0
γs|Xk

s −Xm
s |2(E0 [σ∗

1(s,Xk
s )DµH(µk

s)(Xk
s )
]

+ E
0 [σ∗

1(s,Xm
s )DµH(µm

s )(Xm
s )] · dWs

− αβ2
∫ t∧τ k,m

0
γs|Xk

s −Xm
s |2(dKk

s + dKm
s ). (72)
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Let us now estimate the first two terms in the right-hand side: by (38), we have, for 0 ≤ s ≤ t ∧ τk,m

and P
1−a.s.,

E
0 [(Xk

s −Xm
s ) · DµH(µk

s)(Xk
s )ψk(H(µk

s))
]

≤
(

H(µk
s) −H(µm

s ) + CE0 [|Xk
s −Xm

s |2
])

ψk(H(µk
s))

≤
(

−H(µm
s )(1{inf

u≤t∧τk,m H(µm
u )>−2/m} + 1{inf

u≤t∧τk,m H(µm
u )≤−2/m})

+ CE0 [|Xk
s −Xm

s |2
]

)

ψk(H(µk
s))

≤
(

2

m
+ C1{inf

u≤t∧τk,m H(µm
u )≤−2/m} + CE0 [|Xk

s −Xm
s |2
]

)

ψk(H(µk
s)),

where we used that zψk(z) ≤ 0 and that H is bounded. The symmetric inequality holds when exchanging
the roles of k and m. Therefore, taking the conditional expectation with respect to E

0 in (72), we obtain:

γt∧τ k,mE
0 [|Xk

t∧τ k,m −Xm
t∧τ k,m |2

]

≤ C

∫ t∧τ k,m

0
γs

(

(1/m) + 1{inf
u≤t∧τk,m H(µm

u )≤−2/m} + E
0 [|Xk

s −Xm
s |2
]

)

dKk
s

+ C

∫ t∧τ k,m

0
γs

(

(1/k) + 1{inf
u≤t∧τk,m H(µk

u)≤−2/k} + E
0 [|Xk

s −Xm
s |2
]

)

dKm
s

+

∫ t∧τ k,m

0
2γsE

0 [(Xk
s −Xm

s ) · (σ1(s,Xk
s ) − σ1(s,Xm

s ))
]

dWs − αδ

2

∫ t∧τ k,m

0
γsE

0 [|Xk
s −Xm

s |2
]

ds

− α

∫ t∧τ k,m

0
γsE

0 [|Xk
s −Xm

s |2
]

× (E0 [σ∗
1(s,Xk

s )DµH(µk
s)(Xk

s )
]

+ E
0 [σ∗

1(s,Xm
s )DµH(µm

s )(Xm
s )]) · dWs

− αβ2
∫ t∧τ k,m

0
γsE

0 [|Xk
s −Xm

s |2
] {

dKk
s + dKm

s

}

.

So, for α large enough, we find (recalling that γt is positive and bounded),

γt∧τ k,mE
0 [|Xk

t∧τ k,m −Xm
t∧τ k,m |2

]

≤ C
(

(1/k) + (1/m) + 1{inf
u≤t∧τk,m H(µm

u )≤−2/m} + 1{inf
u≤t∧τk,m H(µk

u)≤−2/k}

)

(Kk
t∧τ k,m +Km

t∧τ k,m)

+

∫ t∧τ k,m

0
2γsE

0 [(Xk
s −Xm

s ) · (σ1(s,Xk
s ) − σ1(s,Xm

s ))
]

dWs − αδ

2

∫ t∧τ k,m

0
γsE

0 [|Xk
s −Xm

s |2
]

ds

− α

∫ t∧τ k,m

0
γsE

0 [|Xk
s −Xm

s |2
]

(

E
0 [σ∗

1(s,Xk
s )DµH(µk

s)(Xk
s )
]

+ E
0 [σ∗

1(s,Xm
s )DµH(µm

s )(Xm
s )]
)

· dWs. (73)

In order to proceed, we need to control the probability of the events {infu≤t∧τ k,m H(µk
u) ≤ −2/k}. This

is the aim of the next step.

Step 5: Estimate of the probability P
[

{infu≤T H(µk
u) ≤ −2/k}

]

. As H([X0]) ≥ 0 and the map

u → µk
u is continuous on P2(Rn), on the event

{

infu≤T H(µk
u) ≤ −2/k

}

, there exist 0 ≤ s ≤ t′ ≤ τk such

that H([Xk
s |W ]) = −1/k, H(µk

u) ≤ −1/k on [s, t′] and H([Xk
t′ |W ]) ≤ −2/k. Then (62) (applied between

s and t′) implies that

−(2/k) ≥ −(1/k) + β2k2(t′ − s) +

∫ t′

s

∫

Rn

σT
1 (u, x)DµH

k(µk
u)(x)µk

u( dx) · dWu,
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from which we derive that, for any γ ∈ (1/3, 1/2),

sup
0≤s<t′≤T

∣

∣

∣

∣

∣

1

(t′ − s)γ

∫ t′

s

∫

Rn

σT
1 (u, x)DµH

k(µk
u)(x)µk

u( dx) · dWu

∣

∣

∣

∣

∣

≥ inf
0≤s<t′≤T

(

1

k(t′ − s)γ
+ β2k2(t′ − s)1−γ

)

≥ C−1k3γ−1.

If we set

Mk
t :=

∫ t

0

∫

Rn

σT
1 (u, x)DµH

k(µk
u)(x)µk

u( dx) · dWu,

then, by Dubin-Schwarz, there is a standard 1−dimensional Brownian motion W̃ k such that Mk
t =

W̃ k
〈Mk〉t

. Hence

sup
0≤s<t≤T

∣

∣

∣

∣

1

(t− s)γ

(

Mk
t −Mk

s

)

∣

∣

∣

∣

= sup
0≤s<t≤T

∣

∣

∣

∣

1

(t− s)γ

(

W̃ k
〈Mk〉t

− W̃ k
〈Mk〉s

)

∣

∣

∣

∣

≤ C sup
0≤s<t≤CT

∣

∣

∣

∣

1

(t− s)γ

(

W̃ k
t − W̃ k

s

)

∣

∣

∣

∣

,

because
∣

∣〈Mk〉t − 〈Mk〉s

∣

∣ ≤ C(t− s),

since σ1 is bounded and (52) holds. This proves that

P
[

τk < T
]

≤ P

[

{

inf
u≤T

H(µk
u) ≤ −2/k

}

]

≤ P

[

sup
0≤s<t≤CT

∣

∣

∣

∣

1

(t− s)γ

(

W̃ k
t − W̃ k

s

)

∣

∣

∣

∣

≥ C−1k3γ−1
]

=: εk,

(74)

where εk → 0 since γ ∈ (1/3, 1/2) by standard properties of the Brownian motion.

Step 6: Estimate of the difference Xk−Xm, second part. We come back to (73): taking expectation
we obtain, by (63) and (74),

E
[

γt∧τ k,m |Xk
t∧τ k,m −Xm

t∧τ k,m |2
]

≤ C
(1

k
+

1

m

)

+ C
(

P
1/2
[

{ inf
u≤t∧τ k,m

H(µm
u ) ≤ −2/m}

]

+ P
1/2
[

{ inf
u≤t∧τ k,m

H(µk
u) ≤ −2/k}

]

)

× E
1/2 [(Kk

t∧τ k,m +Km
t∧τ k,m)2]

≤ C
(

(1/k) + (1/m) + ε
1/2
k + ε1/2

m

)

.

Therefore

sup
t∈[0,T ]

E
[

|Xk
t∧τ k,m −Xm

t∧τ k,m |2
]

≤ C
(

(1/k) + (1/m) + ε
1/2
k + ε1/2

m

)

. (75)

Coming back once again to (73), we have by the BDG inequality, (63) and (74),

E

[

sup
0≤s≤t

γs∧τ k,mE
0 [|Xk

s∧τ k,m −Xm
s∧τ k,m |2

]

]

≤ C
(

(1/k) + (1/m) + ε
1/2
k + ε1/2

m

)

+ C(α+ 1)E
[(

∫ t∧τ k,m

0

∣

∣E
0 [|Xk

s −Xm
s |2
]∣

∣

2
ds
)1/2]

.
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Hence by Jensen’s inequality

E

[

sup
0≤s≤t

γs∧τ k,mE
0 [|Xk

s∧τ k,m −Xm
s∧τ k,m |2

]

]

≤ C
(

(1/k) + (1/m) + ε1/2
m + ε

1/2
k

)

+ CαE

[

sup
0≤s≤t

(γs∧τ k,mE
0 [|Xk

s∧τ k,m −Xm
s∧τ k,m |2

]

)1/2
(

∫ t∧τ k,m

0
E

0 [|Xk
s −Xm

s |2
]

ds
)1/2]

≤ C
(

(1/k) + (1/m) + ε1/2
m + ε

1/2
k

)

+
1

2
E

[

sup
0≤s≤t

γs∧τ k,mE
0 [|Xk

s∧τ k,m −Xm
s∧τ k,m |2

]

]

+ CE

[∫ t

0
|Xk

s∧τ k,m −Xm
s∧τ k,m |2

]

ds,

from which we derive, by (75),

E

[

sup
0≤s≤T

E
0 [|Xk

s∧τ k,m −Xm
s∧τ k,m |2

]

]

≤ C
(

(1/k) + (1/m) + ε1/2
m + ε

1/2
k

)

. (76)

We finally need to remove the E
0 in the left-hand side. For this we come back to (72). Taking the

supremum in time and the expectation therein we find, by the BDG inequality, since γ is bounded below
and above by positive constants,

E

[

sup
0≤s≤T

|Xk
s∧τ k,m −Xm

s∧τ k,m |2
]

≤ CE

[

∫ τ k,m

0
E

0 [|Xk
s −Xm

s |2
]1/2

E
0 [|DµH([Xk

s |W ])(Xk
s )|2

]1/2
dKk

s

]

+ CE

[

∫ τ k,m

0
E

0 [|Xk
s −Xm

s |2
]1/2

E
0 [|DµH([Xm

s |W ])(Xm
s )|2

]1/2
dKm

s

]

+ CE





(

∫ τ k,m

0
|Xk

s −Xm
s |4 ds

)1/2




≤ CE

[

sup
0≤s≤τ k,m

E
0 [|Xk

s −Xm
s |2
]1/2 (

Kk
τ k,m +Km

τ k,m

)

]

+ CE



 sup
0≤s≤τ k,m

|Xk
s −Xm

s |
(

∫ τ k,m

0
|Xk

s −Xm
s |2 ds

)1/2




≤ CE1/2

[

sup
0≤s≤τ k,m

E
0 [|Xk

s −Xm
s |2
]

]

E
1/2 [(Kk

τ k,m +Km
τ k,m)2]

+
1

2
E

[

sup
0≤s≤τ k,m

|Xk
s −Xm

s |2
]

+ CE

[

∫ τ k,m

0
|Xk

s −Xm
s |2 ds

]

,

from which we obtain, in view of our bounds on Kk and Km in (63) and by (75) and (76),

E

[

sup
0≤s≤T

|Xk
s∧τ k,m −Xm

s∧τ k,m |2
]

≤ C
(

(1/k1/2) + (1/m1/2) + ε1/4
m + ε

1/4
k

)

.
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We finally need to replace the stopping time τk,m by the stopping times τk and τm in the above inequality.
We have

E

[

sup
0≤s≤T

|Xk
s∧τ k −Xm

s∧τ m |2
]

≤ E

[

E
0
[

sup
0≤s≤T

γs|Xk
s∧τ k,m −Xm

s∧τ k,m |2
]

1{τ k,m=T }

]

+ 2E

[(

E
0
[

sup
0≤s≤T

|Xk
s∧τ k |2

]

+ E
0
[

sup
0≤s≤t

|Xm
s∧τ m |2

])

(1{τ k<T } + 1{τ m<T })

]

≤ C
(

(1/k1/2) + (1/m1/2) + ε1/4
m + ε

1/4
k

)

+ CE1/2
[

(E0)2
[

sup
0≤s≤T

|Xk
s∧τ k |2

]

+ (E0)2
[

sup
0≤s≤t

|Xm
s∧τ m |2

]]

(

P
1/2 [{τk < T }

]

+ P
1/2 [{τm < T }]

)

.

By the estimate (66) and the estimate of P
[

{τk < T }
]

in (74) we conclude that

E

[

sup
0≤s≤T

|Xk
s∧τ k −Xm

s∧τ m |2
]

≤ C
(

(1/k1/2) + (1/m1/2) + ε1/4
m + ε

1/4
k

)

.

Step 7: Analysis of the limit process. We infer from the above inequality that (Xk
·∧τ k) is a Cauchy

sequence in S2. We denote by X the limit of this sequence and set µs = [Xs|W ]. We note that

E

[

sup
0≤s≤T

W 2
2 (µk

s∧τ k , µs)

]

≤ E

[

sup
0≤s≤T

|Xk
s∧τ k −Xs|2

]

→ 0.

Next we remove the stopping time in the above inequality. By (74),

P
[

τk < T
]

≤ P

[

{

inf
u≤T

H(µk
u) ≤ −2/k

}

]

≤ εk,

where (εk) tends to zero as k → +∞. We can choose a subsequence (k′), such that sup0≤s≤T W
2
2 (µk′

s∧τ k′ , µs)

tends to 0 a.s.. and, by the Borel-Cantelli Lemma, such that, a.s. and for k′ large enough, H([Xk′

t |W ]) ≥
−2/k′ on [0, T ]. In particular, this implies that, a.s. and for k′ large enough, τk′

= T and

sup
0≤s≤T

W 2
2 (µk′

s , µs) → 0.

Thus H(µt) ≥ 0 a.s. on [0, T ]. Moreover, by (61) and the convergence of Xk, there exists a continuous
process (Lt) such that

E

[

sup
0≤t≤T

∣

∣

∣

∣

∫ t

0

∫

Rn

∣

∣

∣DµH([Xk′

s |W ])(x)
∣

∣

∣

2
ψk(H([Xk′

s |W ])) dµk′

s ( dx) ds − Lt

∣

∣

∣

∣

2
]

→ 0.

Note that L is nondecreasing and adapted to FW . Let us set

h(µ) :=

[

β2 ∨
∫

Rn

|DµH(µ)(x)|2 µ( dx)

]−1

, ∀µ ∈ P2(Rn)

and

Lk
t =

∫ t

0

∫

Rn

∣

∣DµH(µk
s)(x)

∣

∣

2
dµk

s( dx) dKk
s .

Then h is continuous and bounded on P2(Rn) and, as (53) holds and −(1/k′) ≤ H(µk′

s ) ≤ 0 dKk′

s −a.s.
for k′ large enough,

lim
k′

∫ t

0
DµH([Xk′

s |W ])(Xk′

s ) dKk′

s = lim
k′

∫ t

0
DµH(µk′

s )(Xk′

s )h(µk′

s ) dLk′

s

=

∫ t

0
DµH([Xs|W ])(Xs)h([Xs|W ]) dLs.

Let us set

Kt =

∫ t

0
h([Xs|W ]) dLs.
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Then K is nondecreasing and FW adapted and we have, passing to the limit in (59),

Xt = X0 +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ0(s,Xs) dBs +

∫ t

0
σ1(s,Xs) dWs

+

∫ t

0
DµH([Xs|W ])(Xs) dKs, t ≥ 0.

Moreover, for any continuous and bounded map φ : R → R such that φ(z) = 0 on [0,+∞), one has

0 = lim
k′

∫ T

0
φ(H([Xk′

t |W ]))ψk′ ([Xk′

t |W ]) dt = lim
k′

∫ T

0
φ(H([Xk′

t |W ]))h([Xk′

t |W ]) dLk′

t

=

∫ T

0
φ(H([Xt|W ]))h([Xt|W ]) dLt =

∫ T

0
φ(H([Xt|W ])) dKt.

Therefore

∫ T

0
1{H([Xt|W ])>0} dKt = 0. Note finally that (55) can be derived from (63) and (64). �

Proof of Proposition 15. The proof goes along the same lines as the estimate of the difference Xk −Xm

in the proof of Theorem 11 (Step 4). Let (X,KX) and (Y,KY ) be two solutions, let us set µX
t = [Xt|W ],

µY
t = [Yt|W ] and γt := exp{−α(δt+H(µX

t ) +H(µY
t ))} for α, δ ≥ 1 to be chosen below. By Itô’s formula

(16) (which holds because (15) is satisfied thanks to assumption (52)), we have, using the Lipschitz
continuity of b and σi and for δ > 0 large enough:

γt|Xt − Yt|2 ≤ |X0 − Y0|2

+

∫ t

0
2γs(Xs − Ys) · (DµH(µX

s )(Xs) dKX
s − DµH(µY

s )(Ys) dKY
s )

+

∫ t

0
2γs(Xs − Ys) · (σ0(s,Xs) − σ0(s, Ys)) dBs

+

∫ t

0
2γs(Xs − Ys) · (σ1(s,Xs) − σ1(s, Ys)) dWs − αδ

2

∫ t

0
γs|Xs − Ys|2 ds

− α

∫ t

0
γs|Xs − Ys|2(E0 [(σ1(s,Xs))∗DµH(µX

s )(Xs)
]

+ E
0 [(σ1(s, Ys))∗DµH(µY

s )(Ys)
]

· dWs

− α

∫ t

0
γs|Xs − Ys|2

{

E
0 [|DµH(µX

s )(Xs)|2
]

dKX
s + E

0 [|DµH(µY
s )(Ys)|2

]

dKY
s

}

. (77)

As H satisfies (38), we have, for dKX−a.e. s,

E
0 [(Xs − Ys) · DµH(µX

s )(Xs)
]

≤ H(µX
s ) −H(µY

s ) + CE0 [|Xs − Ys|2
]

≤ CE0 [|Xs − Ys|2
]

.

The symmetric inequality holds when exchanging the roles of X and Y . Therefore, taking the conditional
expectation with respect to E

0 in (77), we obtain, for α and δ large enough and by (53) (recalling that
γt is positive and bounded):

γtE
0 [|Xt − Yt|2

]

≤ E
0 [|X0 − Y0|2

]

+

∫ t

0
2γsE

0 [(Xs − Ys) · (σ1(s,Xs) − σ1(s, Ys))] dWs − αδ

4

∫ t

0
γsE

0 [|Xs − Ys|2
]

ds (78)

− α

∫ t

0
γsE

0 [|Xs − Ys|2
]

(

E
0 [(σ1(s,Xs))∗DµH(µX

s )(Xs)
]

+ E
0 [(σ1(s, Ys))∗DµH(µY

s )(Ys)
]

)

· dWs.

Taking expectation, we obtain:

sup
0≤t≤T

E
[

|Xt − Yt|2
]

≤ E
[

|X0 − Y0|2
]

. (79)

Coming back to (78), we have by the BDG inequality

E

[

sup
0≤s≤t

γsE
0 [|Xs − Ys|2

]

]

≤ E
[

|X0 − Y0|2
]

+ C(α + 1)E
[(

∫ t

0

∣

∣E
0 [|Xs − Ys|2

]∣

∣

2
ds
)1/2]

,
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from which we easily conclude using (79) that

E

[

sup
0≤s≤t

E
0 [|Xs − Ys|2

]

]

≤ CαE
[

|X0 − Y0|2
]

. (80)

We finally remove the E
0 in the left-hand side. For this we come back to (77), take the sup in time and

the expectation to find, again for δ large enough,

E

[

sup
0≤s≤t

γs|Xs − Ys|2
]

≤ E
[

|X0 − Y0|2
]

+ CE

[∫ t

0
(E0 [|Xs − Ys|2

)1/2
(E0 [|DµH(µX

s )(Xs)|2
]

)1/2dKX
s

]

+ CE

[∫ t

0
(E0 [|Xs − Ys|2

)1/2
(E0 [|DµH(µY

s )(Ys)|2
]

)1/2dKY
s

]

+ C(α+ 1)E

[

(∫ t

0
γ2

s |Xs − Ys|4 ds
)1/2

]

≤ E
[

|X0 − Y0|2
]

+ CE

[

sup
0≤s≤t

(E0 [|Xs − Ys|2
]

)1/2(KX
t +KY

t )

]

+ C(α+ 1)E

[

sup
0≤s≤t

(γ1/2
s |Xs − Ys|)

(∫ t

0
γs|Xs − Ys|2 ds

)1/2
]

≤ E
[

|X0 − Y0|2
]

+ CE1/2
[

sup
0≤s≤t

E
0 [|Xs − Ys|2

]

]

E
1/2 [(KX

t +KY
t )2]

+
1

2
E

[

sup
0≤s≤t

γs|Xs − Ys|2
]

+ C(α+ 1)E

[∫ t

0
|Xs − Ys|2 ds

]

.

In conclusion, by our bounds on KX and KY , (79) and (80), we have

E

[

sup
0≤s≤t

|Xs − Ys|2
]

≤ C
(

E
1/2 [|X0 − Y0|2

]

+ E
[

|X0 − Y0|2
]

)

.

�

We are now ready to show the existence of a solution without the extra moment assumption on the initial
condition:

Proof of Theorem 11: existence in the general case. Let Xk
0 := X01{|X0|≤k}. Then (Xk

0 ) has a moment

of order 4 and converges in L2(Ω) to X0. Let (Xk,Kk) be the solution to (51) associated with the initial
condition Xk

0 . Proposition 15 states that (Xk) is a Cauchy sequence in S2. Then we can complete the
proof exactly as before. �

Proof of Theorem 11: uniqueness. Uniqueness of the path X follows from Proposition 15 so that unique-
ness of the process K can be deduced by reproducing the proof done in Theorem 8.

We finally explain why the weak uniqueness also holds for (51). Let (X,K,B,W ) and (X ′,K ′, B′,W ′)
be two weak solutions of (51). Let us now built a pair of processes (X̃, K̃) from the data (B′,W ′) as
we did for (X,K). It is hence clear that (X,K,B,W ) and (X̃, K̃, B′,W ′) have the same law. But from
pathwise uniqueness we have (X ′,K ′) = (X̃, K̃) so that weak uniqueness holds. �

Proof of Proposition 16. On the one hand we apply Itô’s formula to H(µt) and then proceed as in (61)
to obtain similarly to (62) that

β−2
{

|H(µt) −H(µs)| + C(t− s) −
∫ t

s

E
0 [σ∗

1(u,Xu)DµH(µu)(Xu)] · dWu

}

≥ Kt −Ks,

since u 7→ Ku is non-decreasing. Also, from boundedness of DµH we have thanks to Cauchy-Schwartz’s
inequality that P

1-a.s.

|H(µt) −H(µs)| ≤ M(E0)1/2 [|Xt −Xs|2
]

.
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On the other hand, applying Itô’s formula on γ(t)|Xt −Xs|2 where γ(t) = exp{−αH(µt)} for some α > 0,
then taking expectation E

0 and using the boundedness of the coefficients and estimate (55) we obtain
that

E
0 [γ(t)|Xt −Xs|2

]

≤ C(t− s) + 2

∫ t

s

γ(u)E0 [(Xu −Xs) ·DµH(µu)(Xu)] dKu

−α
∫ t

s

γ(u)E0[|Xu −Xs|2]E0[|DµH(µu)(Xu)|2]dKu

+2

∫ t

s

γuE
0 [σ∗

1(u,Xu)(Xu −Xs)] · dWu

−α
∫ t

s

E
0 [γu|Xu −Xs|2

]

E
0 [σ∗

1(u,Xu)DµH(µu)(Xu)] · dWu,

provided that α is large enough. Since H is semi-convex we have

∫ t

s

γ(u)E0 [(Xu −Xs) ·DµH(µu)(Xu)] dKu

≤
∫ t

s

γ(u)
(

H(µu) −H(µs) + E
0[|Xt −Xs|2]

)

dKu ≤
∫ t

s

γ(u)E0[|Xt −Xs|2]dKu,

according to the Skorokhod condition. Hence we have, for α large enough,

E
0 [γ(t)|Xt −Xs|2

]

≤ C(t− s) + 2

∫ t

s

γuE
0 [σ∗

1(u,Xu)(Xu −Xs)] · dWu

−α
∫ t

s

E
0 [γu|Xu −Xs|2

]

E
0 [σ∗

1(u,Xu)DµH(µu)(Xu)] · dWu. (81)

Recalling that γ is bounded from below away from 0, then using the above estimate we have

Kt −Ks ≤ C
{

(t− s) −
∫ t

s

E
0 [σ∗

1(u,Xk
u)DµH(µk

u)(Xk
u)
]

· dWu

+
(

C(t− s) − α

∫ t

s

E
0 [γu|Xu −Xs|2

]

E
0 [σ∗

1(u,Xu)DµH(µu)(Xu)] · dWu

+

∫ t

s

γuE
0 [σ∗

1(u,Xu)(Xu −Xs)] · dWu

)1/2}

.

Taking the expectation E, using boundedness of the coefficients, (66) and BDG’s inequality we deduce
(57).

To obtain estimate on the first term in the left hand side of (58) one just has to use standard computations
and the following estimate:

E
0
[(

∫ t

s

DµH(µu)(Xu)dKu

)p]

=

∫ s

t

. . .

∫ s

t

E
0[DµH(µu1

)(Xu1
) · · ·DµH(µup

)(Xup
)
]

dKu1
· · ·dKup

≤
∫ s

t

. . .

∫ s

t

E
0

[

p−1
p
∑

ℓ=1

|DµH(µuℓ
)(Xuℓ

)|p
]

dKu1
· · · dKup

≤ Hp|Kt −Ks|p.

To conclude, let us precise that the second term in the left hand side of (58) is controlled starting from
the difference of the processes Xt −Xs. Then, standards computations give

E

[

sup
s≤r≤t

|E0
[

|Xr −Xs|2|p/2
]

]

≤ CT,p







1 + E

[

(

sup
s≤r≤t

E
0
[∣

∣

∣

∫ r

s

DµH(µu)(Xu)dKu

∣

∣

∣

2]
)p/2

]

+ E



 sup
s≤r≤t

(

E
0

[

∣

∣

∣

∣

∫ r

s

σ1(u,Xu)dWu

∣

∣

∣

∣

2
])p/2










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The second term in the above r.h.s is dealt using similar arguments as above while the third one can be
estimated by using the boundedness of σ1 and writing, provided p/2 is an integer,

(

E
0

[

∣

∣

∣

∣

∫ r

s

σ1(u,Xu)dWu

∣

∣

∣

∣

2
])p/2

=

(

∣

∣

∣

∣

∫ r

s

∫ u

s

E
0 [σ1(u′, Xu′)(σ1)∗(u,Xu)

]

dWu′dWu

+

∫ r

s

∫ u′

s

E
0 [σ1(u′, Xu′)(σ1)∗(u,Xu)

]

dWudWu′

∣

∣

∣

∣

)p/2

.

�

3.2. The mean field limit. We consider the particle system (for i = 1, . . . , N)






















X i
t = X i

0 +

∫ t

0
b(s,X i

s) ds+

∫ t

0
σ0(s,X i

s) dBi
s +

∫ t

0
σ1(s,X i

s) dWs +

∫ t

0
DµH

(

µN
s

)

(X i
s) dKN

s ,

µN
t =

1

N

N
∑

i=1

δXi
t
, H

(

µN
t

)

≥ 0,

∫ t

0
H
(

µN
s

)

dKN
s = 0, t ≥ 0.

(82)

Here the data b, σ and H satisfy conditions (Hcl) at the beginning of the section and, in addition, b, σ0

and σ1 are deterministic. The Bi and W are independent Brownian motions. The initial conditions of
the particles X i

0 are i.i.d. random variable with law µ0 and are independent of the Bi and of W . KN is
a continuous, nondecreasing process adapted to the filtration FN generated by the X i

0, the Bi and W .
We still assume that the probability space is (Ω,P) = (Ω0 × Ω1,P0 ⊗ P

1), where Ω0 supports the X i
0 and

the Bi, while Ω1 supports W with associated filtration FW = F1. We work on the set

ΩN :=

{

H

(

1

N

N
∑

i=1

δXi
0

)

≥ 0

}

.

Let us remark that (82) reads as a classical reflected SDE in (Rn)N , with normal reflexion in the constraint

ON =

{

(x1, . . . , xN ) ∈ (Rn)N , H

(

1

N

N
∑

i=1

δxi

)

> 0

}

.

Indeed, let us recall that, if

g(x1, . . . , xN ) = H

(

1

N

N
∑

i=1

δxi

)

,

then (see [11])

∂xi
g(x1, . . . , xN ) =

1

N
DµH

(

1

N

N
∑

i=1

δxi

)

(xi).

Therefore the vector −(DµH
(

1
N

∑N
i=1 δxi

)

(x1), . . . ,DµH
(

1
N

∑N
i=1 δxi

)

(xN )) is an outward normal to

the set ON at the point (x1, . . . , xN ) ∈ ∂ON . Existence and uniqueness of the solution are therefore
immediate under our standing assumptions (cf. [25]).

Our aim is to show the convergence, on ΩN , of the X i to the solution X̄ i to


















X̄ i
t = X i

0 +

∫ t

0
b(s, X̄ i

s) ds+

∫ t

0
σ0(s, X̄ i

s) dBi
s +

∫ t

0
σ1(s, X̄ i

s) dWs +

∫ t

0
DµH (µ̄s) (X̄ i

s) dKs,

µ̄t = [X i
t |W ], H (µ̄t) ≥ 0,

∫ t

0
H (µ̄s) dKs = 0, t ≥ 0.

Note that the processes µ̄ and K do not depend on i and N : this is obvious by the uniqueness in law,
see Remark 12. The X̄ i are no longer i.i.d., but they are i.i.d. given W . In particular, if µ̄N

s stands for
the empirical measure of (X̄ i

s)1≤i≤N , then we will show later that

lim
N→+∞

E

[

sup
0≤s≤T

W 2
2 (µ̄N

s , µ̄s)

]

= 0.
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As the initial conditions X i
0 of the particles are i.i.d. and distributed according to µ0, ΩN (the set of

events for which the initial condition belongs to ON and for which for which system (82) has a meaning)
has not a full probability in general. There are several solutions to overcome this issue. We illustrate
two of them in this paper. One can, for instance, modify the initial position and “project” it onto ON .
We shall follow this approach in Subsection 4.2 when we analyze the particle system associated with
backward SDEs with normal reflexion in law. Here we simply concentrate on the set ΩN . If one assumes,
for instance, that H(µ0) is positive, this event occurs with a probability which tends to 1 as N → +∞.

Theorem 17. For T ≥ 0, there exists a constant C(T ) independent of N such that

sup
i=1,...,N

sup
t∈[0,T ]

E
[

|X i
t − X̄ i

t |21ΩN

]

≤ C(T )E1/2
[

sup
0≤t≤T

W 2
2 (µ̄N

s , µ̄s)

]

and, for N large enough,

sup
i=1,...,N

E

[

sup
0≤t≤T

|X i
t − X̄ i

t |21ΩN

]

≤ C(T )E1/4
[

sup
0≤s≤T

W 2
2 (µ̄N

s , µ̄s)

]

.

Lemma 18. Assume that the initial data satisfies the following moment condition: there exists an integer
p ≥ 8 such that Mp([X0]) + Hp is finite. Then, there exists CT := C

(

T, (Hcl),Mp([ξ]),Hp

)

> 0 such
that

E

[

sup
0≤t≤T

W 2
2 (µ̄N

s , µ̄s)

]

≤ CT ǫN ,

where ǫN is given in Lemma 1.

Proof. Since p ≥ 8 we have, thanks to Proposition 16 and Corollary 14, that the assumptions of Lemma
1 are satisfied. �

Before proving Theorem 17, let us point out some consequences of (38) and (39). Let (xi)1≤i≤N and
(yi)1≤i≤N be two sequences of points of Rn. We set

µN
y =

1

N

N
∑

i=1

δyi
, µN

x =
1

N

N
∑

i=1

δxi
.

Inequality (38) becomes in this case

H
(

µN
y

)

−H
(

µN
x

)

≤ E
[

DµH
(

µN
x

)

(X) · (Y −X)
]

+ CE
[

|X − Y |2
]

,

where [X ] = µN
x and [Y ] = µN

y . Of course, this inequality is true for any pair (X,Y ) with [X ] = µN
x and

[Y ] = µN
y so that we can choose a specific law for (X,Y ). If all (xi) are distinct, let us pick Y = f(X)

with f(xi) = yi. We get

E
[

DµH
(

µN
x

)

(X) · (f(X) −X)
]

+CE
[

|X − f(X)|2
]

=
1

N

N
∑

i=1

DµH
(

µN
x

)

(xi)·(yi −xi)+
C

N

N
∑

i=1

|yi−xi|2.

Therefore,

1

N

N
∑

i=1

DµH(µN
x )(xi) · (xi − yi) ≤ H

(

µN
x

)

−H
(

µN
y

)

+
C

N

N
∑

i=1

|yi − xi|2. (83)

This inequality also holds when the (xi) are not necessarily distinct by approximation. Moreover, in-
equality (39) becomes, with [X ] = µN

x and for any ν ∈ P2(Rn),

E
[

|DµH(µN
x )(X) − DµH(ν)(X)|2

]

=
1

N

N
∑

i=1

|DµH(µN
x )(xi) − DµH(ν)(xi)|2| ≤ CW 2

2 (µN
X , ν). (84)
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We will also need below a few points on the L-derivative. For x = (x1, . . . , xN ) ∈ (Rn)N , we set

HN(x) = H( 1
N

∑N
i=1 δxi

). We know from [11] that

Dxi
HN(x) =

1

N
DµH(

1

N

N
∑

i=1

δxi
)(xi),

D2
xixi

HN(x) =
1

N
∂yDµH(

1

N

N
∑

i=1

δxi
)(xi) +

1

N2D
2
µµH(

1

N

N
∑

i=1

δxi
)(xi, xi),

D2
xixj

HN (x) =
1

N2D
2
µµH(

1

N

N
∑

i=1

δxi
)(xi, xj) i 6= j.

So, if (X i) and µN satisfies the reflected SDE (82), we have, by Itô’s formula,

dH(µN
s ) =

1

N

N
∑

i=1

DµH(µN
s )(X i

s) · b(s,X i
s)ds

+
1

2N

N
∑

i=1

Tr
(

(σ0σ
∗
0(s,X i

s) + σ1σ
∗
1(s,X i

s))∂yDµH(µN
s )(X i

s)
)

ds

+
1

2N2

N
∑

i=1

Tr
(

σ0σ
∗
0(s,X i

s)D2
µµH(µN

s )(X i
s, X

i
s)
)

ds

+
1

2N2

N
∑

i,j=1

Tr
(

σ1(s,Xj
s)σ∗

1(s,X i
s)D2

µµH(µN
s )(Xj

s , X
i
s)
)

ds

+
1

N

N
∑

i=1

DµH(µN
s )(X i

s) · σ0(s,X i
s)dBi

s (85)

+
1

N

N
∑

i=1

DµH(µN
s )(X i

s) · σ1(s,X i
s)dWs +

1

N

N
∑

i=1

∣

∣DµH(µN
s )(X i

s)
∣

∣

2
dKN

s .

We also note that, by Assumption (52),

1

N

N
∑

i=1

|DµH(µN
s )(X i

s)| =

∫

Rn

|DµH(µN
s )(x)|µN

s (dx) ≤ M, (86)

and

1

N2

N
∑

i,j=1

∣

∣D2
µµH(µN

s )(Xj
s , X

i
s)
∣

∣ =

∫

R2n

∣

∣D2
µµH(µN

s )(x, y)
∣

∣µN
s (dx)µN

s (dy) ≤ M. (87)

Proof of Theorem 17. We work on ΩN . Let us set ∆X i
t = X i

t − X̄ i
t . For α, δ ≥ 1 to be chosen below,

we set γt = exp{−α(δt + H(µN
s ) + H(µ̄s))}. We note that γt is bounded above and below by positive

constant on bounded time intervals. Choosing α and δ large enough, we have, by Itô’s formula (16) and
(85) and by the Lipschitz continuity of b, σ0 and σ1 as well as the bounds on the coefficients (see also
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(86) and (87)):

γt|∆X i
t |2 ≤ 2

∫ t

0
γs∆X i

s · DµH
(

µN
s

)

(X i
s) dKN

s − 2

∫ t

0
γs∆X i

s · DµH (µ̄s) (X̄ i
s) dKs

− αδ

2

∫ t

0
γs|∆X i

s|2 ds+ 2

∫ t

0
γs∆X i

s ·
(

σ0(s,X i
s) − σ0(s, X̄ i

s)
)

dBi
s (88)

+ 2

∫ t

0
γs∆X i

s ·
(

σ1(s,X i
s) − σ1(s, X̄ i

s)
)

dWs − α

N

N
∑

j=1

∫ t

0
γs|∆X i

s|2DµH(µN
s )(Xj

s ) · σ0(s,Xj
s)dBj

s

− α

∫ t

0
γs|∆X i

s|2




1

N

N
∑

j=1

σ∗
1(s,Xj

s )DµH(µN
s )(Xj

s ) + E
0 [σ∗

1(s, X̄ i
s)DµH(µ̄s)(X̄ i

s)
]



 · dWs

− α

∫ t

0
γs|∆X i

s|2




1

N

N
∑

j=1

∣

∣DµH(µN
s )(Xj

s )
∣

∣

2



 dKN
s − α

∫ t

0
γs|∆X i

s|2E0
[

∣

∣DµH(µ̄s)(X̄ i
s)
∣

∣

2
]

dKs.

Using (83), we have, since H
(

µN
s

)

= 0 dK-a.e. and H [µ̄s] = H([X̄ i
s|W ]) ≥ 0,

2

N

N
∑

i=1

∫ t

0
γs∆X i

s · DµH
(

µN
s

)

(X i
s) dKN

s

≤ 2

∫ t

0
γs

(

H
(

µN
s

)

−H
(

µ̄N
s

))

dKN
s +

C

N

N
∑

i=1

∫ t

0
γs|∆X i

s|2 dKN
s

≤ 2

∫ t

0
γs

(

H(µ̄s) −H
(

µ̄N
s

))

dKN
s +

C

N

N
∑

i=1

∫ t

0
γs|∆X i

s|2 dKN
s .

Since H is M -Lipschitz for W2, we get

2

N

N
∑

i=1

∫ t

0
γs∆X i

s · DµH
(

µN
s

)

(X i
s) dKN

s

≤ 2M sup
0≤s≤t

W2
(

µ̄N
s , µ̄s

)

KN
t +

C

N

N
∑

i=1

∫ t

0
γs|∆X i

s|2 dKN
s . (89)

We split the term − 2

N

N
∑

i=1

∫ t

0
γs∆X i

s · DµH (µ̄s) (X̄ i
s) dKs into two parts:

A := − 2

N

N
∑

i=1

∫ t

0
γs∆X i

s · DµH
(

µ̄N
s

)

(X̄ i
s) dKs,

B := − 2

N

N
∑

i=1

∫ t

0
γs∆X i

s ·
{

DµH
(

µ̄N
s

)

(X̄ i
s) − DµH (µ̄s) (X̄ i

s)
}

dKs.

We use (83) for the first one: since H(µN
s ) ≥ 0 and H(µ̄s) = 0 dKs-a.e.

A =
2

N

N
∑

i=1

∫ t

0
γs

(

X̄ i
s −X i

s

)

· DµH
(

µ̄N
s

)

(X̄ i
s) dKs

≤ 2

∫ t

0
γs

(

H
(

µ̄N
s

)

−H (µ̄s)
)

dKs +
C

N

N
∑

i=1

∫ t

0
γs|∆X i

s|2 dKs,

and using the Lipschitz continuity of H , we get

A ≤ 2M sup
0≤s≤t

W2(µ̄N
s , µ̄s)Kt +

C

N

N
∑

i=1

∫ t

0
γs|∆X i

s|2 dKs. (90)
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Finally, we have, using Cauchy-Schwarz inequality, the global bound on
∫

Rn |DµH(µ)|dµ (given by as-
sumption (52)) and (84),

B ≤ 2

∫ t

0
γs

(

1

N

N
∑

i=1

|∆X i
s|2
)1/2(

1

N

N
∑

i=1

∣

∣DµH
(

µ̄N
s

)

(X̄ i
s) − DµH (µ̄s) (X̄ i

s)
∣

∣

2

)1/2

dKs

≤ C

∫ t

0
γs

(

1

N

N
∑

i=1

|∆X i
s|2
)1/2(

1

N

N
∑

i=1

∣

∣DµH
(

µ̄N
s

)

(X̄ i
s) − DµH (µ̄s) (X̄ i

s)
∣

∣

2

)1/4

dKs

≤ C

∫ t

0
γs

(

1

N

N
∑

i=1

|∆X i
s|2
)1/2

W
1/2
2

(

µ̄N
s , µ̄s

)

dKs,

from which we deduce

B ≤ C

N

N
∑

i=1

∫ t

0
γs|∆X i

s|2 dKs + C sup
0≤s≤t

W2(µ̄N
s , µ̄s)Kt. (91)

Inserting Assumption (53), estimates (89), (90) and (91) into (88), we get, for α and δ large enough,

γt

N

N
∑

i=1

|∆X i
t |2 ≤ C

(

KN
t +Kt

)

sup
0≤s≤t

W2(µ̄N
s , µ̄s) +

2

N

N
∑

i=1

∫ t

0
γs∆X i

s ·
(

σ0(X i
s) − σ0(X̄ i

s)
)

dBi
s

+
2

N

N
∑

i=1

∫ t

0
γs∆X i

s ·
(

σ1(s,X i
s) − σ1(s, X̄ i

s)
)

dWs − α

N2

N
∑

i,j=1

∫ t

0
γs|∆X i

s|2DµH(µN
s )(Xj

s) · σ0(s,Xj
s )dBj

s

− α

N

N
∑

i=1

∫ t

0
γs|∆X i

s|2




1

N

N
∑

j=1

σ∗
1(s,Xj

s)DµH(µN
s )(Xj

s ) + E
0 [σ∗

1(s, X̄ i
s)DµH(µ̄s)(X̄ i

s)
]



 · dWs. (92)

We prove below the following exponential moment estimate on KN :

sup
N≥1

E
[

exp{θKN
t }1ΩN

]

≤ Cθ(t), ∀θ > 0. (93)

Then, taking expectation in (92) and using the Cauchy-Schwarz inequality, (93) and the fact that (Kt)
has also exponential moments (Theorem 11), we get, as ΩN is independent of Bi and W ,

E

[

1

N

N
∑

i=1

|∆X i
t |21ΩN

]

≤ C (E1/2 [(KN
t )21ΩN

]

+ E
1/2 [K2

t

]

)E1/2
[

sup
0≤s≤t

W 2
2 (µ̄N

s , µ̄s)

]

≤ C(t)E1/2
[

sup
0≤s≤t

W 2
2 (µ̄N

s , µ̄s)

]

. (94)

Note that, by the exchangeability of the (X i), this implies that, for any T > 0,

sup
t∈[0,T ]

sup
i=1,...,N

E
[

|∆X i
t |21ΩN

]

≤ C(T )E1/2
[

sup
0≤s≤T

W 2
2 (µ̄N

s , µ̄s)

]

. (95)

In order to improve this inequality and have the sup in time into the expectation, we come back to (92)
and obtain, by the BDG inequality,

E

[

sup
0≤t≤T

1

N

N
∑

i=1

E
0 [|X i

t − X̄ i
t |2
]

1ΩN

]

≤ C E

[

(

KN
T 1ΩN

+KT

)

sup
0≤s≤T

W2(µ̄N
s , µ̄s)

]

+ CE





(

∫ T

0

1

N

N
∑

i=1

(

E
0 [|∆X i

s|2
])2

ds

)1/2

1ΩN



 ,

from which we infer by the estimate on K in Theorem 11 and on KN in (93), by (94) and by the usual
argument, that

E

[

sup
0≤t≤T

1

N

N
∑

i=1

E
0 [|X i

t − X̄ i
t |2
]

1ΩN

]

≤ C(T )E1/2
[

sup
0≤s≤T

W 2
2 (µ̄N

s , µ̄s)

]

. (96)
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Then we come back to the corresponding version of (88) with γt = exp(−δt) therein, take the sup in time
and use the BDG inequality, the bound on DµH (through (86) in particular) to get

E

[

sup
0≤s≤t

γt|∆X i
s|21ΩN

]

≤ CE

[∫ t

0
(E0 [|∆X i

s|2
]

)1/2{ dKN
s + dKs}1ΩN

]

+ C E

[

(∫ t

0
γs|∆X i

s|2 ds
)1/2

1ΩN

]

.

By exchangeability, the first term in the right-hand side does not depend on i. Thus

E

[∫ t

0
(E0 [|∆X i

s|2
]

)1/2{ dKN
s + dKs}1ΩN

]

= E

[

∫ t

0

1

N

N
∑

i=1

(E0 [|∆X i
s|2
]

)1/2{ dKN
s + dKs}1ΩN

]

≤ E





∫ t

0

(

1

N

N
∑

i=1

E
0 [|∆X i

s|2
]

)1/2

{ dKN
s + dKs}1ΩN





≤ E
1/2

[

sup
0≤s≤t

1

N

N
∑

i=1

E
0 [|∆X i

s|2
]

1ΩN

]

E
1/2 [(KN

t 1ΩN
+Kt)

2] .

By (95), (96) and the bounds on KN and K, this finally implies that

E

[

sup
0≤s≤T

|∆X i
s|21ΩN

]

≤ C(T )

(

E
1/4
[

sup
0≤s≤T

W 2
2 (µ̄N

s , µ̄s)

]

+ E
1/2
[

sup
0≤s≤T

W 2
2 (µ̄N

s , µ̄s)

])

.

To complete the proof, it remains to show that (93) holds. We have, by Itô’s formula (85),

H(µN
T ) =H(µN

0 ) +
1

N

N
∑

i=1

∫ T

0
DµH(µN

s )(X i
s) · b(s,X i

s)ds

+
1

2N

N
∑

i=1

∫ T

0
Tr
(

(σ0σ
∗
0(s,X i

s) + σ1σ
∗
1(s,X i

s))∂yDµH(µN
s )(X i

s)
)

ds

+
1

2N2

N
∑

i=1

∫ T

0
Tr
(

σ0σ
∗
0(s,X i

s)D2
µµH(µN

s )(X i
s, X

i
s)
)

ds

+
1

2N2

N
∑

i,j=1

∫ T

0
Tr
(

σ1(s,Xj
s)σ∗

1(s,X i
s)D2

µµH(µN
s )(Xj

s , X
i
s)
)

ds

+
1

N

N
∑

i=1

∫ T

0
DµH(µN

s )(X i
s) · σ0(s,X i

s)dBi
s

+
1

N

N
∑

i=1

∫ T

0
DµH(µN

s )(X i
s) · σ1(s,X i

s)dWs +
1

N

N
∑

i=1

∫ T

0

∣

∣DµH(µN
s )(X i

s)
∣

∣

2
dKN

s .

Note that, by (53) and on {H(µN
s ) = 0}, one has

1

N

N
∑

i=1

∣

∣DµH(µN
s (X i

s)
∣

∣

2
=

∫

Rn

∣

∣DµH(µN
s )(x)

∣

∣

2
µN

s (dx) ≥ β2.

On the other hand, by (52) and the L∞ bound on b,

∣

∣

∣

∣

∣

1

N

N
∑

i=1

DµH(µN
s )(X i

s) · b(s,X i
s)

∣

∣

∣

∣

∣

≤ C

N

N
∑

i=1

∣

∣DµH(µN
s )(X i

s)
∣

∣ ≤ C.
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As σ0 and σ1 are bounded and (52) holds, we obtain in the same way
∣

∣

∣

∣

∣

1

N

N
∑

i=1

DµH(µN
s )(X i

s) · b(s,X i
s)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

2N

N
∑

i=1

Tr
(

σ0σ
∗
0(s,X i

s) + σ1σ
∗
1(s,X i

s))∂yDµH(µN
s )(X i

s)
)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

2N2

N
∑

i=1

Tr
(

σ0σ
∗
0(s,X i

s)D2
µµH(µN

s )(X i
s, X

i
s)
)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

2N2

N
∑

i,j=1

∫ T

0
Tr
(

σ1(s,Xj
s)σ∗

1(s,X i
s)D2

µµH(µN
s )(Xj

s , X
i
s)
)

ds

∣

∣

∣

∣

∣

∣

≤ C.

As, in addition, H is bounded, we finally have

β2KN
T ≤ C − 1

N

N
∑

i=1

∫ T

0
DµH(µN

s )(X i
s) · σ0(s,X i

s)dBi
s − 1

N

N
∑

i=1

∫ T

0
DµH(µN

s )(X i
s) · σ1(s,X i

s)dWs,

which yield (93). �

3.3. Neumann Problem on Wasserstein space and Feynman-Kac formula. We connect here
our reflected process with a PDE on the Wasserstein space. For this we assume in addition to (Hcl) that
b and σ are deterministic , continuous in time and let O := {µ ∈ P2(Rn), H(µ) > 0}. Given a bounded,
continuous map G : O → R we consider the map u : [0, T ] × O → R defined by

u(t0, µ0) = E

[

G([Xt0,X0

T |W ])
]

, (97)

where (Xt0,X0
s ,Kt0,X0

s ) solves the reflected SDE (51) on [t0, T ] with initial condition Xt0,X0

t0
= X0 and

[X0] = µ0. Thanks to Remark 12, the uniqueness in law holds for (51) so that (97) is defined without
ambiguity. By the semi-group property, we have, for any FW -stopping time τ ≥ t0,

u(t0, µ0) = E
[

u(τ, [Xt0,X0

τ |W ])
]

. (98)

So we can expect that u is, in a suitable sense, a solution to the following Neumann problem on the
Wasserstein space:



















(i) (∂t + A)u(t, µ) = 0 in (0, T ) × O,

(ii)

∫

Rn

Dµu(t, µ)(y) · DµH(µ)(y)µ(dy) = 0, in (0, T ) × ∂O,

(iii) u(T, µ) = G(µ), in O,

(99)

where the operator A is given, for any smooth function φ : [0, T ] × P2(Rn) → R, by

Aφ(t, µ) :=

∫

Rn

b(t, z) · Dµφ(t, µ)(z)dµ(z) +
1

2

∫

Rn

Tr[(a0(t, z) + a1(t, z))∂zDµφ(t, µ)(z)]dµ(z)

+
1

2

∫

Rn×Rn

Tr
(

D2
µµu(t, µ)(z, z′)σ1(t, z)σ∗

1(t, z′)
)

µ( dz)µ( dz′),
(100)

with ai = σiσ
∗
i (i = 0, 1).

Our results are the following : we first show that the map u given by (97) satisfies (99) in the viscosity
sense. Then we provide a Feynman-Kac formula showing that any classical solution of (99), if it exists, is
given by (97). Note that the question of the uniqueness of the viscosity solution of (99) is not considered
in this work.

In order to show that the map u given by (97) satisfies (99) in a viscosity sense, let us introduce the
following definition (inspired from Definition 11.17 of [13]).

Definition 19. We say that a continuous function u is a viscosity solution of (99) if

(i) u is continuous on [0, T ] × O;
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(ii) for any (t, µ) in (0, T ) × P2(Rn), for any test function ϕ : [0, T ] × P2(Rn) → R (see Definition
11.17 of [13] for the class of test functions) such that u− ϕ has a local minimum (resp. max) in
(t, µ) we have







(∂t + A)ϕ(t, µ) ≤ 0, (resp. ≥ 0) in O,
min

{

(∂t + A)ϕ(t, µ) ;

∫

Rn

DµH(µ)(z) · Dµϕ(t, µ)(z) dµ(z)

}

≤ 0, (resp. ≥ 0) in ∂O;
(101)

(iii) u(T, µ) = G(µ) in O.

Theorem 20. If (Hcl) holds and if, in addition, the coefficients b and σ are continuous in time and
deterministic, then the map u defined by (97) is a viscosity solution of (99) in the sense of Definition 19.

Proof. Let us first check that u is continuous. Let µ0, ν0 ∈ P2(Rn) and let [X0] = µ0 and [Y0] = ν0. By
Proposition 15, there exists a C > 0 such that:

E[|Xt0,X0

t −Xt0,Y0

t |2] ≤ CE
[

|X0 − Y0|2
]

.

Combining this inequality with the dynamic programming principle in (98), it is easy to see that the map
u is a continuous function.

Let us now prove that u solves (99) in the viscosity sense. Suppose that ϕ : [0, T ] × P2(Rn) → R is a
test function such that u− ϕ have a local minimum in (t, µ). We can assume, without loss of generality,
that: ϕ(t, µ) = u(t, µ) (which can be done by translating ϕ). Let r > 0 be such that u(s, ν) ≥ ϕ(s, ν) for
s ∈ [t, t+ r] and W2(ν, µ) ≤ r. Let us set µs := [Xt,µ

s |W ] and let τ be the FW -stopping time

τ = inf{s ≥ t, W2(µs, µ) ≤ r}.
Finally, for h ∈ (0, r], we set τh = τ ∧ (t + h). Note that, in view of the exponential estimate in
Theorem 11 and our assumptions on the coefficients of the reflected SDE, it is not difficult to check that
E[τh − t)/h] → 1. On the one hand we have from (98):

ϕ(t, µ) = u(t, µ) = E [u(τh, µτh
)] ≥ E [ϕ(τh, µτh

)] . (102)

On the other hand, by applying Itô’s formula (16), we get:

ϕ(τh, µτh
) = ϕ(t, µ)+

∫ τh

t

(∂t + A)ϕ(r, µr)dr

+

∫ τh

t

∫

Rn

DµH(µr)(z) · Dµϕ(r, µr)(z)µr( dz)dKr

+

∫ τh

t0

∫

Rn

σT
1 (s, z)Dµϕ(r, µr)(z)µr( dz) · dWr.

Plugging this equality into (102) and taking expectation we find:

0 ≥ E

[

∫ τh

t

(∂t + A)ϕ(r, µr)dr +

∫ τh

t

∫

Rn

DµH(µr)(z) · Dµϕ(r, µr)(z)µr( dz)dKr

]

.

Assume now that µ is such that H(µ) > 0. Then choosing r > 0 small enough we have H(µs) > 0 a.s. in
[t, τ ], so that dK([t, τh]) = 0. Hence

E

[

∫ τh

t

(∂t + A)ϕ(r, µr)dr
]

≤ 0.

Dividing by h > 0, letting h → 0 and using that E[τh − t)/h] → 1, we eventually have

(∂t + A)ϕ(t, µ) ≤ 0. (103)

Assume now that µ is such that H(µ) = 0 and that

min

{

(∂t + A)ϕ(t, µ) ;

∫

Dµϕ(t, µ)(z)dµ(z)

}

> 0.

Changing r > 0 if necessary, there exists α > 0 such that, for any s ∈ [t, t+ r] and W2(ν, µ) ≤ r, we have

min

{

(∂t + A)ϕ(s, ν) ;

∫

Dµϕ(s, ν)(z)dν(z)

}

≥ α.
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Then

0 ≥ E

[

∫ τh

t

(∂t + A)ϕ(r, µr)dr +

∫ τh

t

∫

Rn

DµH(µr)(z) · Dµϕ(r, µr)(z) dµr(z)dKr

]

≥ αE [(τh − t)] .

As E[τh − t)/h] → 1, we find a contradiction. �

In order to establish a kind of reverse statement, we now prove a Feynman-Kac formula.

Proposition 21. Assume that u is a classical solution to (99). Then u is given by (97).

Proof. Let us set µs := [Xt0,X0
s |W ]. Then, by Itô’s formula (16):

u(T, µT ) = u(t0, µt0
) +

∫ T

t0

(∂t + A)u(s, µs) +

∫ T

t0

∫

Rn

Dµu(s, µs)(y) · DµH(µs)(y)µs(dy)dKs

+

∫ T

t0

∫

Rn

σT
1 (s, x)DµH(µs)(x)µs( dx) · dWs,

where, by (99)-(ii),
∫ T

t0

∫

Rn

Dµu(s, µs)(y) · DµH(µs)(y)µs(dy)dKs

=

∫ T

t0

1{µs∈∂O}

(∫

Rn

Dµu(s, µs)(y) · DµH(µs)(y)µs(dy)

)

dKs = 0.

From the equation satisfied by u, we obtain

u(t0, µ0) = u(t0, µt0
) = E [u(T, µT )] = E [G(µT )] .

�

4. Backward SDEs with normal reflexion in law.

In this part, we are interested in Backward SDE constrained in law with normal reflexion. Namely, on
[0, T ], T > 0 we consider the following problem:















Yt = ξ +

∫ T

t

f(s, Ys, Zs) ds−
∫ T

t

Zs dBs +

∫ T

t

DµH([Ys])(Ys)dKs, 0 ≤ t ≤ T,

H([Yt]) ≥ 0, 0 ≤ t ≤ T,

∫ T

0
H([Ys])dKs = 0,

(104)

where B is a Brownian motion on a given probability space (Ω,F ,P) endowed with the natural filtration
FB, the processes Y, Z are of dimension n and n× d respectively, f : Ω × R+ × R

n × R
n×d −→ R

n and
H : P2(Rn) −→ R.

We call solution of (104) a triple of progressively measurable processes (Y, Z,K) taking values in R
n ×

R
n×d ×R such that K is deterministic, continuous and nondecreasing with K0 = 0. We study the system

under the following assumptions, referred as assumptions (A) in the following:

(A1) The functions f : Ω × R+ × R
n × R

n×d −→ R
n is Lipschitz w.r.t. (y, z) uniformly in time and ω

and adapted to the filtration FB for fixed (y, z) and:

E

[

∫ T

0
|f(s, 0, 0)|2ds

]

< +∞.

(A2) The function H : P(Rn) −→ R is fully C2 (see the introduction for the definition) and

• there exist 0 < β ≤ M and η > 0 such that

∀µ ∈ P2(Rn),

∫

Rn

|DµH(µ)|2(x)µ(dx) ≤ M2, (105)

and

∀µ ∈ P2(Rn) with − η ≤ H(µ) ≤ 0, β2 ≤
∫

Rn

|DµH(µ)|2(x)µ(dx), (106)
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• there exists C ≥ 0 such that

∀X ∈ L2, E
[

|DµH([X ])(X) − DµH([Y ])(Y )|2
]

≤ C E
[

|X − Y |2
]

. (107)

(A3) The function H is concave: for all µ, ν in P2(Rn)

∀X ∼ µ, Y ∼ ν, H(ν) −H(µ) − E [DµH([X ])(X) · (Y −X)] ≤ 0. (108)

(A4) The terminal value ξ is FT -measurable and

H([ξ]) ≥ 0, M2([ξ]) < +∞.

Remark 22. Let us note that:

(i) It follows from (106) and (A4) that there exists λ̃ in P2(Rn) such that H(λ̃) > 0;

(ii) “Conversely”, if {H ≥ −η} is bounded and if there exists λ̃ ∈ P2(Rn) such that H(λ̃) > 0 then (106)
holds.

Remark 23. In the following, we often use a r.v. Λ̃ with law λ̃ as a pivotal point to obtain certain
estimates. This leads us to use several times Itô’s formula on quantities like |Yt − Λ̃|2. To do so, we work

as follows: we pick a r.v. Λ̃ ∼ λ̃ independent of FB on an atomless probability space (Ω̃, F̃ , (F̃t)t≥0, P̃).

Then, we apply Itô’s formula on the space (Ω̄, F̄ , (F̄t)t≥0, P̄) = (Ω × Ω̃,F ⊗ F̃ , (Ft ⊗ F̃t)t≥0,P ⊗ P̃) and

denote by Ẽ and Ē the associated expectations.

In the following, this framework will be referred as we work on the enlarged filtered probability space of
Remark 23.

Proof of Remark 22. The first assertion is obvious pushing forward the measure [ξ] along DµH . Con-
cerning the second assertion, let λ be such that −η ≤ H(λ) ≤ 0. Let X,X0 ∈ L2 be such that [X ] = λ,
[X0] = λ̃. Then, by the concavity of H ,

H(λ̃) ≤ H(λ) + E [∂µH(λ)(X) · (X0 −X)]

≤ E
1/2
[

|∂µH(λ)(X)|2
]

E
1/2 [|X0 −X |2

]

.

As X is bounded in L2 by some constant C and H(λ̃) > 0, this proves (106) with β = H(λ̃)/C > 0.

Next, let us come back to the concavity assumption (A3). Let now x = (x1, . . . , xN ) ∈ (Rn)N and HN

be the finite dimensional projection of H :

HN(x) := H(
1

N

N
∑

i=1

δxi
).

We have that for all x,y in (Rn)N :

HN(y) −HN (x) − 1

N

N
∑

i=1

DµH(µN
x )(xi)(xi − yi) ≤ 0, (109)

since

∂xi
HN(x) =

1

N
DµH

(

1

N

N
∑

ℓ=1

δxi

)

(xi), (110)

this means that the mapping x 7→ HN (x) is concave in the classical sense. Hence, D2
x
HN (x) is non-

positive, where

∂2
xixj

HN(x) =
1

N
∂zDµH

(

1

N

N
∑

ℓ=1

δxi

)

(xi)δi,j +
1

N2D
2
µH(

1

N

N
∑

ℓ=1

δxi
)(xi, xj). (111)

�
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4.1. Existence and uniqueness of the solution.

Theorem 24. Under (A) the BSDE with normal reflexion in law (104) has a unique square integrable
solution such that K is deterministic.

Proposition 25. Let p ≥ 2. Assume that assumptions (A) hold true and assume in addition that

Mp([ξ]) + Hp is finite. Suppose further that E

[

∫ T

0 |f(s, 0, 0)|pds
]

< +∞. Then, there exists a constant

Cp,T := Cp,T

(

Mp([ξ]),Hp,E
[

∫ T

0 |f(s, 0, 0)|pds
])

> 0 such that

E

[

sup
0≤t≤T

|Yt|p
]

≤ Cp,T . (112)

Proof. Let us start with the uniqueness result. Set (Y, Z,K) and (Y ′, Z ′,K ′) two solutions of (104) and
let us denote ∆Yt = Yt − Y ′

t , ∆Zt = Zt − Z ′
t and ∆Kt = Kt −K ′

t. Let α ∈ R, applying Itô’s formula on
eαt|∆Yt|2 one obtains

eαt|∆Yt|2 =

∫ T

t

(

−αeαs|∆Ys|2 + 2eαs(∆Ys) · ∆f(s, Ys, Zs)
)

ds− 2

∫ T

t

eαs(∆Ys) · (∆ZsdBs)

−
∫ T

t

eαs|∆Zs|2ds+ 2

∫ T

t

eαs(∆Ys) · (∆[DµH([Ys])(Ys)dKs]),

where ∆[DµH([Ys])(Ys)dKs] = DµH([Ys])(Ys)dKs − DµH([Y ′
s ])(Y ′

s )dK ′
s. By using classical arguments

and assuming that α ≥ 2||f ||Lip + 2||f ||2Lip, we derive:

eαt|∆Yt|2 +
1

2

∫ T

t

eαs|∆Zs|2ds ≤ −2

∫ T

t

eαs(∆Ys) · (∆ZsdBs)

+2

∫ T

t

eαs(∆Ys) · (∆[DµH([Ys])(Ys)dKs]).

From the concavity on H , thanks to the Skorokhod condition and since ∀s ∈ [0, T ], H([Y ′
s ]) ≥ 0 we have

∫ T

t

eαs
E[(∆Ys) ·DµH([Ys])(Ys)]dKs ≤

∫ T

t

eαs(H([Ys]) −H([Y ′
s ]))dKs ≤ 0,

and the same arguments lead to

−
∫ T

t

eαs
E[(∆Ys) ·DµH([Y ′

s ])(Y ′
s )]dK ′

s ≤ 0.

Hence,

E

[

eαt|∆Yt|2 +
1

2

∫ T

t

eαs|∆Zs|2ds
]

≤ 0,

and uniqueness of {Y, Z} follows.

Let us now deal with the uniqueness of the processes K, K ′. We aim at reproducing the approach
implemented in the proof of Theorem 8. However, we cannot use the chain rule on the Wasserstein space
because of the lack of needed integrability of the processes Z and Z ′. To overcome this problem, we
are lead to apply classical Itô’s formula on i.i.d. copies of (Y, Z). Define {(Ȳ )i, (Z̄)i}1≤i≤N as N copies

of (Y, Z). Writing Ȳ = (Ȳ 1, . . . , Ȳ N )∗ , Z̄ = (Z̄1, . . . , Z̄N )∗ and µ̄N
t = N−1∑N

i=1 δ(Ȳt)i we have, from
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classical Itô’s formula

1

N

N
∑

i=1

∫ t

s

∣

∣DµH(µ̄N
u )(Ȳ i

u)
∣

∣

2
dKu = H(µ̄N

s ) −H(µ̄N
t ) − 1

N

N
∑

i=1

∫ t

s

DµH(µ̄N
u )(Ȳ i

u) · f(u, Yu, Zu)du

+
1

2

∫ t

s

Tr
[

D2
xH

N (Ȳu)Z̄u(Z̄u)∗
]

du

+
1

N

N
∑

i=1

∫ t

s

DµH(µ̄N
u )(Ȳ i

u) · (Z̄u)idBi
u

=
1

N

N
∑

i=1

∫ t

s

∣

∣DµH(µ̄N
u )(Ȳ i

u)
∣

∣

2
dK ′

u.

We have, passing to the limit N → +∞, that
∫ t

s

E

[

|DµH(µu)(Yu)|2
]

dKu =

∫ t

s

[

|DµH(µu)(Yu)|2
]

dK ′
u.

We can thus repeat the end of the proof of uniqueness in Theorem 8 to deduce that K = K ′. The result
follows.

Let us now handle the existence part. The proof is divided into three parts: we first assume that the
driver f is space independent and bounded and construct a solution thanks to a penalization approxima-
tion; we then extend the result thanks to a truncation argument when it is in L

2(Ω,L2 ([0, T ],Rn)); we
finally show, thanks to a Picard iteration, that the result holds true under (A1).

Step 1 : Existence for bounded and space independent generator. In what follows we start by assuming
that

(T1), ∀(ω, s, y, z) ∈ Ω × [0, T ] × R
n × R

n×d, f(ω, s, y, z) = f(ω, s), ∃κ > 0, |f(ω, s)| ≤ κ, P − a.s..

In this case, we construct a solution through a penalization approach. For k ≥ 1, let ψk : R −→ R+ be
the function defined by

ψk(x) = r if x ≤ −1/k, ψk(x) = −krx, if − 1/k ≤ x ≤ 0, ψk(x) = 0, if x ≥ 0.

Note that the function ψk depends on the constant r > 0 which will be chosen later. Let
(

Y k, Zk
)

be
the solution to the following BSDE:

Y k
t = ξ +

∫ T

t

f(s)ds−
∫ T

t

Zk
s dBs +

∫ T

t

DµH([Y k
s ])(Y k

s )ψk(H([Y k
s ]))ds, 0 ≤ t ≤ T. (113)

We have the following Proposition whose proof will be given at the end of this Step.

Proposition 26. Under (A), for any k ≥ 1 there exists a unique solution of (113) satisfying

E

[

sup
0≤t≤T

|Y k
t |2 +

∫ T

0
|Zk

s |2 ds
]

≤ Cr.

Moreover, under (T1), there exists r > 0 such that for all k ≥ 1 and 0 ≤ t ≤ T we have

H([Y k
t ]) ≥ −1/k. (114)

Introducing

Kk
t =

∫ t

0
ψk(H([Y k

s ]))ds,

we rewrite the previous BSDE as

Y k
t = ξ +

∫ T

t

f(s)ds−
∫ T

t

Zk
s dBs +

∫ T

t

DµH([Y k
s ])(Y k

s )dKk
s , 0 ≤ t ≤ T.

Let k, ℓ in N
∗ be fixed and set ∆Yt := Y k

t − Y ℓ
t and ∆Zt = Zk

t − Zℓ
t . Applying Itô’s formula to |∆Yt|2,

and using Young’s inequality, we obtain:
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|∆Yt|2 +

∫ T

t

|∆Zs|2ds ≤ 2

∫ T

t

∆Ys ·DµH([Y k
s ])(Y k

s )dKk
s (115)

−2

∫ T

t

∆Ys ·DµH([Y ℓ
s ])(Y ℓ

s )dKℓ
s − 2

∫ T

t

∆Ys · ∆ZsdBs.

From the L-concavity of H , Proposition 26 and the definition of Kk we have

E

[

∫ T

t

∆Ys ·DµH([Y k
s ])(Y k

s )dKk
s

]

≤ E

[

∫ T

t

(H([Y k
s ]) −H([Y ℓ

s ]))ψk(H([Y k
s ])ds

]

≤ 0 +
r

ℓ
(T − t),

since xψk(x) ≤ 0 and ψk is bounded by r. Arguing similarly we have

−E

[

∫ T

t

∆Ys ·DµH([Y ℓ
s ])(Y ℓ

s )dKℓ
s

]

≤ r

k
(T − t).

Hence we deduce that for some CT,r > 0:

sup
0≤t≤T

E

[

|∆Yt|2 +

∫ T

0
|∆Zs|2ds

]

≤ CT,r

(

1

k
+

1

ℓ

)

,

and coming back to (115), we get from BDG’s inequality together with the fact that supk ψk ≤ r that
there exists C′

T,r > 0 such that

E

[

sup
0≤t≤T

|∆Yt|2 +

∫ T

0
|∆Zs|2ds

]

≤ C′
T,r

(

1√
k

+
1√
ℓ

)

.

Thus, {(Y k, Zk)}k≥1 is a Cauchy sequence in S2 × M2. Let us denote by (Y, Z) its limit. Since ψk is
bounded by r for all k, Kk is Lipschitz with |Kk|Lip ≤ r. Hence, by Ascoli-Arzela theorem, up to a
subsequence, (Kk) converges towards a non decreasing, Lipschitz continuous function K in C([0, T ],R).

It is straightforward to check that (Y, Z,K) solves (104). Indeed,

• H([Yt]) = limk→∞ H([Y k
t ]) ≥ 0 by Proposition 26.

• the Skorokhod condition is also satisfied : since xψk(x) ≤ 0,

0 ≤
∫ T

0
H([Ys])dKs = lim

k→∞

∫ T

0
H([Y k

s ])dKk
s = lim

k→∞

∫ T

0
H([Y k

s ])ψk(H([Y k
s ]))ds ≤ 0.

Proof of Proposition 26. First note that existence and uniqueness of a solution follows from [8]. We work
on the enlarged filtered probability space of Remark 23. Arguing as in the proof of uniqueness, for α large
enough, we have, for 0 ≤ t ≤ T ,

eαt|Y k
t − Λ̃|2 +

1

2

∫ T

t

eαs|Zk
s |2ds

≤ eαT |ξ−Λ̃|2+

∫ T

t

eαs|f(s, Λ̃, 0)|2 ds+2

∫ T

t

eαs(Y k
s −Λ̃)·DµH([Y k

s ])(Y k
s )dKk

s −2

∫ T

t

eαs(Y k
s −Λ̃)·Zk

s dBs.

(116)

Using the L-concavity of H together with the fact that H(λ̃) ≥ 0 we have,

Ē

[

∫ T

t

eαs(Y k
s − Λ̃) ·DµH([Y k

s ])(Y k
s )dKk

s

]

≤
∫ T

t

eαs
(

H([Y k
s ]) −H(λ̃)

)

ψk(H([Y k
s ]))ds ≤ 0,

since xψk(x) ≤ 0. It follows that there exists Cλ̃ := C(M2(λ̃), T, (A)) > 0 independent of k and r such
that

sup
0≤t≤T

E

[

|Y k
t |2 +

∫ T

0
|Zk

s |2 ds
]

≤ Cλ̃. (117)
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Coming back to the estimate (116) and using BDG’s inequality, we deduce that, for some constant
Ca,r := C(a, T, r, (A)) > 0 independent of k,

E

[

sup
0≤t≤T

|Y k
t |2 +

∫ T

0
|Zk

s |2 ds
]

≤ Ca,r,

in other words, the sequence {(Y k, Zk)}k≥1 is bounded in S2 ×H2.

Let us now prove (114). Our approach here is in the same spirit as the proof of estimate (48) in paragraph
2.2. Again, due to the lack of needed integrability of the process Zk, we apply classical Itô’s formula and
then use the concavity property of the function H , see the computations below.

Assume that there exists 0 < t0 < T such that H([Y k
t0

]) < −1/k. Define t = inf{u ≥ t0 : H([Y k
u ]) ≥

−1/k} and s = sup{u ≤ t : H([Y k
u ]) ≤ H([Y k

t0
]) ∨ −η}. Since H([ξ]) ≥ 0, and −η < −1/k we have that

0 < s < t < T and −η ≤ H([Y k
u ]) ≤ −1/k on [s, t].

Let {(Ȳ k)i, (Z̄k)i, f̄ i}1≤i≤N be N copies of (Y k, Zk, f). Writing Ȳk = ((Ȳ k)1, . . . , (Ȳ k)N )∗ and Z̄k =

((Z̄k)1, . . . , (Z̄k)N )∗ and µ̄N,k
t = N−1∑N

i=1 δ(Ȳ k
t )i we have, from classical Itô’s formula

H(µ̄N,k
s ) = H(µ̄N,k

t ) +
1

N

N
∑

i=1

∫ t

s

DµH(µ̄N,k
u )((Ȳ k

u )i) · f i(u)du

−1

2

∫ t

s

Tr
[

D2
x
HN (Ȳk

u
)Z̄k

u
(Z̄k

u
)∗
]

du

− 1

N

N
∑

i=1

∫ t

s

DµH(µ̄N,k
u )((Ȳ k

u )i) · (Z̄k
u)idBi

u

+
1

N

N
∑

i=1

∫ t

s

∣

∣DµH(µ̄N,k
u )((Ȳ k

u )i)
∣

∣

2
dKu.

Hence we have from (111):

H(µ̄N,k
s ) ≥ H(µ̄N,k

s ) +
1

2

∫ t

s

Tr
[

D2
xH

N,k(Ȳk

u)Z̄k

u(Z̄k

u)∗
]

du

= H(µ̄N,k
t ) +

1

N

N
∑

i=1

∫ t

s

DµH(µ̄N,k
u )((Ȳ k

u )i) · f i(u)du

− 1

N

N
∑

i=1

∫ t

s

DµH(µ̄N,k
u )((Ȳ k

u )i) · (Z̄k
u)idBi

u

+
1

N

N
∑

i=1

∫ t

s

∣

∣DµH(µ̄N,k
u )((Ȳ k

u )i)
∣

∣

2
dKk

u . (118)

Taking the expectation and then the limit over N on both sides leads, see the proof of Theorem 5.98 of
[12], to

H([Y k
s ]) ≥ H([Y k

t ]) +

∫ t

s

E
[

DµH([Y k
u ])(Y k

u ) · f(u)
]

du

+

∫ t

s

E[|DµH([Y k
u ])(Y k

u )|2]ψk(H([Y k
u ]))du.

From (A) we get that there exists a constant C := C(a, T, (A)) > 0 such that

H([Y k
s ]) ≥ H([Y k

t ]) − C(t− s) +

∫ t

s

E
[

|DµH([Y k
u ])(Y k

u )|2
]

ψk(H([Y k
u ]))du.
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Using now (T1) and the definition of ψk we get

H([Y k
s ]) ≥ H([Y k

t ]) − C(t− s) + β2(t− s)r.

Since H([Y k
s ]) ≤ H([Y k

t0
]) ∨ −η < −1/k ≤ H([Y k

t ]) this implies −C + β2r < 0 which cannot hold for all
r large enough and then leads to a contradiction. �

Remark 27. Note that from the proof of the above Proposition and Step1 remain true for a generator f
satisying supt≤T E[|f(t)|2] < +∞.

Step 2 : from space independent generator in L
∞ to H2. We now prove, using a truncation argument,

that the BSDE (104) admits a solution when

(T2), ∀(ω, s, y, z) ∈ Ω × [0, T ] × R
n × R

n×d, f(ω, s, y, z) = f(ω, s), E

[

∫ T

0
|f |2(s)ds

]

< +∞.

Let Y m
t be given by

Y m
t = ξ +

∫ T

t

f(s)1|f(s)|≤mds−
∫ T

t

Zm
s dBs +

∫ T

t

DµH([Y m
s ])(Y m

s )dKm
s .

For each m in N, this BSDE admits a unique solution from step 1. Moreover we have for any m, ℓ ≥ 0,
by applying Itô’s formula on eαt|Y ℓ

t − Y m
t |2, α ≥ 1, that:

eαt|Y ℓ
t − Y m

t |2 +

∫ T

t

eαs|Zℓ
s − Zm

s |2ds (119)

= 2

∫ T

t

eαs(Y ℓ
s − Y m

s ) · (f(s)1|f(s)|≤ℓ − f(s)1|f(s)|≤m)ds− 2

∫ T

t

eαs(Y ℓ
s − Y m

s ) · (Zℓ
s − Zm

s )dBs

+2

∫ T

t

eαs(Y ℓ
s − Y m

s ) ·DµH([Y ℓ
s ])(Y ℓ

s )dKℓ
s − 2

∫ T

t

eαs(Y ℓ
s − Y m

s ) ·DµH([Y m
s ])(Y m

s )dKm
s

−α
∫ T

t

eαs|Y ℓ
s − Y m

s |2ds.

Taking now the expectation, using L-concavity, Skorokhod property and the fact that for each k the
marginals {[Y k

t ]}0≤t≤T satisfy the constraint, we deduce that:
∫ T

t

E
[

eαs(Y ℓ
s − Y m

s ) ·DµH([Y ℓ
s ])(Y ℓ

s )
]

dKℓ
s −

∫ T

t

eαs
E
[

(Y ℓ
t − Y m

t ) ·DµH([Y m
s ])(Y m

s )
]

dKm
s

≤ 2E

[

∫ T

t

eαs
(

H([Y ℓ
s ]) −H([Y m

s ])
)

(dKℓ
s − dKm

s )

]

≤ 0, (120)

so that,

sup
t≤T

E

[

eαt|Y ℓ
t − Y m

t |2 +

∫ T

t

eαs|Zℓ
s − Zm

s |2ds
]

≤ C

∫ T

0
E
[

|f(s)1|f(s)|≤ℓ − f(s)1|f(s)|≤m|2
]

ds.

Let us now show that Km
T is bounded, uniformly in m. To do so, we work on the enlarged filtered

probability space of Remark 23. One has,

eαt|Y m
t − Λ̃|2 +

∫ T

t

eαs|Zm
s |2ds = eαT |ξ − Λ̃|2 + 2

∫ T

t

eαs(Y m
s − Λ̃) · f(s)1|f(s)|≤mds (121)

−2

∫ T

t

eαs(Y m
s − Λ̃) · Zm

s dBs + 2

∫ T

t

eαs(Y m
s − Λ̃) ·DµH([Y m

s ])(Y m
s )dKm

s

−α
∫ T

t

eαs|Y m
s − Λ̃|2ds.
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Taking the expectation on both side, using Young’s inequality and L-concavity together with the Sko-
rokhod condition, we obtain for α large enough that

sup
t≤T

Ē
[

eαt|Y m
t − Λ̃|2

]

+ E

[

∫ T

0
eαs|Zm

s |2ds
]

+ eαTH(λ̃)(Km
T −Km

t ) ≤ C

(

Ē
[

|ξ − Λ̃||2
]

+ E

[

∫ T

0
|f(s)|2ds

])

.

Hence, coming back to (119), taking the supremum in time, the expectation and choosing α large enough
lead to

E

[

sup
t≤T

eαt|Y ℓ
t − Y m

t |2 +

∫ T

0
eαs|Zℓ

s − Zm
s |2ds

]

(122)

≤ C

(

E

[

∫ T

0
|f(s)1|f(s)|≤ℓ − f(s)1|f(s)|≤m|2ds

]

+ E

[

sup
t≤T

∣

∣

∣

∣

∣

∫ T

t

eαs(Y ℓ
t − Y m

t ) · (Zℓ
s − Zm

s )dBs

∣

∣

∣

∣

∣

]

+

∫ T

0
E

1/2
[

∣

∣Y ℓ
s − Y m

s

∣

∣

2
]

E
1/2
[

∣

∣DµH([Y ℓ
s ])(Y ℓ

s )
∣

∣

2
]

dKℓ
s

+

∫ T

t

E
1/2 [|Y ℓ

t − Y m
t |2

]

E
1/2 [|DµH([Y m

s ])(Y m
s )|2

]

dKm
s

)

,

thanks to Cauchy-Schwarz’s inequality and since Km,Kℓ are deterministic. Since from BDG’s inequality
and Young’s inequality one has

E

[

sup
t≤T

∣

∣

∣

∣

∣

∫ T

t

eαs(Y ℓ
t − Y m

t ) · (Zℓ
s − Zm

s )dBs

∣

∣

∣

∣

∣

]

(123)

≤ ǫE

[

sup
t≤T

eαt|Y ℓ
t − Y m

t |2
]

+
C

ǫ
E

[

∫ T

0
eαs|Zℓ

s − Zm
s |2ds

]

,

we deduce that {Y m, Zm} is a Cauchy sequence in S2 × H2 that converges to some limit {Y, Z}.

Let us now deal with the convergence of the process Km. By the convergence of {Y m
t , Zm

t } it is clear
that the sequence of processes (Lm)m≥0 defined by

∀t ≥ 0, Lm
t :=

∫ t

0
DµH(µm

s )(Y m
s )dKm

s ,

converges in S2 to some process L. Set h(µ) :=
(∫

|DµH(µ)(·)|2dµ ∨ β2
)−1

, for all t ≥ 0, ϕt :=

[DµH(µt)(Yt)]
∗. Let us denote by

(

ϕM
t , hM (µt)

)

t≥0 the discretized version of
(

ϕt, h(µt)
)

t≥0 along a

subdivision (tk)0≤k≤M of [0, T ] of stepsize 1/M . Let M > 0, for l,m ≥ 0 we have

|Km
t −K l

t| =

∣

∣

∣

∣

E

[∫ t

0
h(µm

s )ϕm
s dL

m
s

]

− E

[∫ t

0
h(µl

s)ϕl
sdL

l
s

]∣

∣

∣

∣

=

∣

∣

∣

∣

∣

E

[∫ t

0
{h(µm

s )ϕm
s − h(µl

s)ϕl
s}dLm

s

]

+ E

[∫ t

0
{h(µl

s)ϕl
s − h(µs)ϕs}dLm

s

]

+E

[∫ t

0
{h(µs)ϕs − hM (µs)ϕM

s }dLm
s

]

+E

[∫ t

0
{hM (µs)ϕM

s }(dLm
s − dLl

s)

]

+ E

[∫ t

0
{hM (µs)ϕM

s − h(µl
s)ϕl

s}dLl
s

]

∣

∣

∣

∣

∣

.

Note now that for all k ≥ 0, we have dLk
s = DµH(µk

s)(Y k
s )dKk

s with Kk deterministic. Writing Lm and
Ll as this, one can inverse the integration and expectation operators in the first, second, third and fifth
terms of the above r.h.s. We can thus deduce, taking first the limit superior in m, l and then the limit
superior over M , that the process Km converges to some deterministic continuous process K.

It is not hard to see that this limit (Y, Z,K) is a solution of (104) under the standing assumption on the
generator f assumed in this part.
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Step 3: from space independent generator to space dependent generator. We now only assume that the
generator f satisfies our assumptions (A). We are now going to construct a solution to BSDE (104) by
using a Picard iteration. Set (Y 0, Z0) = (0, 0) and define recursively (Y m, Zm) as the unique solution of

Y m
t = ξ +

∫ T

t

f(s, Y m−1
s , Zm−1

s )ds−
∫ T

t

Zm
s dBs +

∫ T

t

DµH([Y m
s ])(Y m

s )dKm
s ,

∀t ≥ 0, H([Y m
t ]) ≥ 0,

∫ T

t

H([Y m
s ])dKm

s = 0, m ≥ 1.

Let us denote for any m ≥ 0: ∆Y m+1 = Y m+1 − Y m and ∆Zm+1 = Zm+1 − Zm.

On the one hand, applying Itô’s formula on eαt|∆Y m+1
t |2, α ≥ 1, we have

eαt|∆Y m+1
t |2 +

∫ T

t

eαs|∆Zm+1
s |2ds

= −α
∫ T

t

eαs|∆Y m+1
s |2ds+ 2

∫ T

t

eαs(∆Y m+1
s ) · (f(s, Y m

s , Zm
s ) − f(s, Y m−1

s , Zm−1
s ))ds

−2

∫ T

t

eαs(∆Y m+1
s ) · (∆Zm+1

s )dBs +

∫ T

t

eαs(∆Y m+1
s )DµH([Y m+1

s ])(Y m+1
s )dKm+1

s

−
∫ T

t

eαs(∆Y m+1
s )DµH([Y m

s ])(Y m
s )dKm

s . (124)

Then, using Young’s inequality and arguing as in (120) it can be deduced that for a suitable choice of α
that

E

[

eαt|∆Y m+1
t |2 +

∫ T

t

eαs|∆Zm+1
s |2ds

]

≤ 1

4
E

[

∫ T

t

eαs
(

|∆Y m
t |2 + |∆Zm

s |2
)

ds

]

. (125)

Let us now work on the enlarged filtered probability space of Remark 23. We get that

eαt|Y m
t − Λ̃|2 +

∫ T

t

eαs|Zm
s |2ds = eαT |ξ − Λ̃|2 + 2

∫ T

t

eαs(Y m
s − Λ̃) · f(s, Y m−1

s , Zm−1
s )ds

−α
∫ T

t

eαs|Y m
s − Λ̃|2ds− 2

∫ T

t

eαs(Y m
s − Λ̃) · Zm

s dBs

+2

∫ T

t

eαs(Y m
s − Λ̃) ·DµH([Y m

s ])(Y m
s )dKm

s .

By using the Lipschitz property of f together with Young’s inequality and the Skorokhod condition, we
derive, for α large enough:

sup
t≤T

Ē
[

eαt|Y m
t − Λ̃|2

]

+ E

[

∫ T

0
eαs|Zm

s |2ds
]

+ eαTH(λ̃)(Km
T −Km

t )

≤ C

(

Ē
[

|ξ − Λ̃|2
]

+ Ē

[

∫ T

0
|f(s, Λ̃, 0)|2ds

])

, (126)

so that Km
T is uniformly bounded.

Finally, coming back to (124), we can argue as in (120) (122) to deduce from (125) and (126) that
{Y m

t , Zm
t } is a converging sequence in S2 × H2 that converges to some limit {Y, Z}. We obtain that Km

converges to some process K by using the same scheme as we did at the end of step 2. Again, it follows
from standard computations that the limit {Y, Z,K} is a solution (104).

�
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Proof of Proposition 25. Applying Itô’s formula to eαt|Yt|p for some p ≥ 2 we have

eαt|Yt|p +
p(p− 1)

2

∫ T

t

eαs|Ys|p−2|Zs|2ds

= |ξ|p + p

∫ T

t

eαs|Ys|p−2(Ys) · f(s, Ys, Zs)ds− p

∫ T

t

eαs|Ys|p−2(Ys) · ZsdBs

+p

∫ T

t

eαs|Ys|p−2(Ys) ·DµH([Ys])(Ys)dKs − α

∫ T

t

eαs|Ys|pds.

On the one hand, Lipschitz continuity assumption on f together with Young’s inequality yields
∫ T

t

eαs|Ys|p−2(Ys) · f(s, Ys, Zs)ds

≤ Cp

{

∫ T

t

|f(s, 0, 0)|pds+

∫ T

t

(

1 +
1

ǫ

)

eαs|Ys|p + ǫeαs|Ys|p−2|Zs|2ds
}

,

for any ǫ > 0. On the other hand, still from Young’s inequality we have

sup
t≤T

∫ T

t

eαs|Ys|p−2(Ys) ·DµH([Ys])(Ys)dKs ≤
∫ T

0
eαs p

p− 1
|Ys|p +

1

p
|DµH([Ys])(Ys)|pdKs.

Choosing ǫ small enough and then α large enough gives

eαt|Yt|p +
p(p− 1)

4

∫ T

t

eαs|Ys|p−2|Zs|2ds

≤ |ξ|p + Cp

{∫ T

t

eαs|Ys|p + |DµH([Ys])(Ys)|pdKs +

∫ T

t

|f(s, 0, 0)|pds
}

(127)

−p
∫ T

t

eαs|Ys|p−2(Ys) · ZsdBs.

Taking the expectation in the above inequality and using Gronwall’s lemma applied to the continuous
maps s 7→ Ks (see Lemma 4 in [21] or Theorem 17.1 in [2]) eventually lead to

sup
t≤T

E

[

eαt|Yt|p +
p(p− 1)

4

∫ T

t

eαs|Ys|p−2|Zs|2ds
]

≤ Cp,T

{

E[|ξ|p] + HpKT + E

[

∫ T

0
|f(s, 0, 0)|pds

]

}

.

Coming back to (127), taking the supremum in time, the expectation and using then BDG’ inequality
and Young’s inequality yield, together with the above estimate, to the result.

�

4.2. Interacting particle system constrained in mean field. Let us consider the following Sko-
rokhod problem in mean field:























Y i
t = ξ̃i +

∫ T

t

f(s, Y i
s , Z

i,i
s )ds−

∫ T

t

N
∑

j=1

Zi,j
s dBj

s +

∫ T

t

DµH(µN
s )(Y i

s )dKN
s ,

∀t ∈ [0, T ] : µN
t =

1

N

N
∑

i=1

δY i
t
, H(µN

t ) ≥ 0,

∫ T

0
H(µN

s )dKN
s = 0, 1 ≤ i ≤ N,

(128)

where for each i, j, Zi,j
s is a n×d matrix, {Bi}1≤i≤N are N independent d-dimensional Brownian motions

and KN is a continuous non decreasing process. The terminal conditions {ξ̃i}1≤i≤N are F i
T -measurable

({F i
t } being the augmented natural filtration of Bi) independent r.v. having second order moment and

satisfying H
(

N−1∑N
i=1 δξ̃i

)

≥ 0.
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Remark 28. Making the analogy with classical mean field approximation of McKean-Vlasov processes,
a natural choice for the family of terminal conditions {ξ̃i} is the family {ξi} of copies of the r.v. ξ in
(104). Nevertheless, the condition H([ξ]) ≥ 0 is not sufficient to ensure that (128) is indeed a solution

of the Skorokhod problem in mean field since it does not imply H
(

N−1∑N
i=1 δξi

)

≥ 0. To overcome

the problem, we may work only on the set ΩN =
{

H
(

N−1∑N
i=1 δξi

)

≥ −ηN

}

which becomes, for a

suitable choice of ηN , of full measure when N → +∞. This hence leads to obtain an asymptotic solution
to the Skorokhod problem in mean field, but not for any N (see the approach in paragraph 3.2). In this
part, we decide to tackle the problem from a different point of view: we show how to construct, from the
family of {ξi}, a family {ξ̃i} satisfying the Skorokhod condition and whose empirical measure tends to
[ξ], provided some additional integrability conditions on the data.

By “some additional integrability conditions”, we mean that we assume fourth-order moment on the data
ξ and DµH . In comparison with the assumptions needed in the forward case (see paragraph 3.2), such
conditions may appear to be the price to pay to solve the Skorokhod problem for each N . It seems to
us that this is not the case, but something more related to the backward setting. For instance, still in
comparison with the result obtained in the forward case, the set ΩN is not independent of the Bi and
it is a priori quite intricate to obtain higher order moment on the process KN without any additional
assumptions on DµH (recalling the lack of integrability of Z).

Initialization, well posedness of the particle system constrained in mean field and estimates.
We first state the following Lemma which shows how to construct the {ξ̃i} from the {ξi}.

Lemma 29. Suppose that assumptions (A) hold. Given N copies {ξi} of ξ, there exists a family of
random variable {ξ̃i} satisfying

H

(

1

N

N
∑

i=1

δξ̃i

)

≥ 0,

and if we assume in addition that M4([ξ]) + H4 is finite then there exists C := C((A),M4([ξ]),H4) > 0
such that

E

[

1

N

N
∑

i=1

|ξ̃i − ξi|2
]

≤ CE1/2 [W 2
2 (µ̄N

T , [ξ])
]

, µ̄N
T :=

1

N

N
∑

i=1

δξi . (129)

Proof. To guarantee that the constraint is satisfied, the main idea consists in transporting the initial
condition along the normal vector up to the set of constraint. Since we only assumed that the normal
vector is non zero around the zero of H we have to proceed in two steps : consider first the case
where the empirical measure is not "too far" from the constraint set and when it is too far away. Let
ΩN = {H(µ̄N

0 ) ≥ ηN } where ηN → 0 and η−2
N E

[

W2(µ̄N
0 , [ξ])

]

→ 0 and let us push forward the empirical

measure µ̄N
T along the flow of dlxt = DµH(µN

lx
t
)(lxt )dt, lx0 = x, x ∈ R

nN , where µN
lx
t

= N−1∑N
i=1 δli,x

t
and

li,xt denotes the ith n-dimensional component of lxt . For N large enough we have −ηN ≥ −η so that on
ΩN (106) is satisfied and it is therefore possible to find a positive t̄ ≤ ηN/β

2 such that H(µN
T ) ≥ 0 where

µN
T :=

(

R
nN ∋ x 7→ lx

t̄
∈ R

nN
)

♯µ̄N
T . We write {ζi} the family of associated r.v.

Let us now handle the case when we are in Ωc
N . From Remark 22 there exists λ̃ such that H(λ̃) ≥ 0. We

then set ξ̃i = ζi1ΩN
+ Λ̃1Ωc

N
. We have

E

[

1

N

N
∑

i=1

|ξ̃i − ξi|2
]

≤ M
η2

N

β4 + E
1/2 [1Ωc

N

] 1

N

N
∑

i=1

E
1/2 [|Λ̃ − ξi|4

]

,

thanks to Cauchy-Schwarz inequality. Since H([ξ]) ≥ 0,

P(Ωc
N ) ≤ P

(

|H(µ̄N
T ) −H([ξ])| ≥ ηN

)

≤ E
[

W 2
2 (µ̄N

T , [ξ])
]

η2
N

,

we have, choosing η2
N = E

1/2
[

W 2
2 (µ̄N

T , [ξ])
]

, that there exists a C := C ((A),M4([ξ]),H4) > 0 such that

E

[

1

N

N
∑

i=1

|ξ̃i − ξi|2
]

≤ CE1/2 [W 2
2 (µ̄N

0 , [ξ])
]

.

�
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Next, we have the following result.

Proposition 30. Suppose that assumptions (A) hold and that the initial data {ξ̃i} in (128) are given
by Lemma 29. Then, the system (128) is well posed.

Proof. The proof of this result is not new and relies on classical results. Let us indeed remark that (128)
reads as a classical reflected BSDE in R

nN , with normal reflexion in the constraint

K =

{

x = (x1, . . . , xN ) ∈ (Rn)N , H

(

1

N

N
∑

i=1

δxi

)

≥ 0

}

.

Indeed, let us recall that, if

HN(x) = H

(

1

N

N
∑

i=1

δxi

)

,

then (see [11])

∂xi
HN (x) =

1

N
DµH

(

1

N

N
∑

i=1

δxi

)

(xi).

Therefore the vector −
(

DµH
(

1
N

∑N
i=1 δxi

)

(x1), . . . ,DµH
(

1
N

∑N
i=1 δxi

)

(xN )
)

is proportional to the

outward normal to the set K at the point (x1, . . . , xN ) ∈ ∂K. Existence and uniqueness of the solution
are therefore immediate under our standing assumptions (cf. [18]).

�

Lemma 31 (Moment estimates). Under assumption (A), for any T > 0, there exists C := C((A), T ) > 0
such that

E





1

N

N
∑

i=1

|Y i
t |2 +

1

N

N
∑

i=1

∫ T

0

N
∑

j=1

|Zi,j
s |2ds



+ E[KN
T ] ≤ C,

and

sup
N≥1

E[(KN
T )2] ≤ C.

Proof. Let p ≥ 2, and let us work on the enlarged filtered probability space of Remark 23 (recalling that
here, the filtration has also being enlarged to take into account the N independent Brownian motions).

Applying Itô’s formula on eαt|Y i
t − Λ̃|2 we obtain, after summing over all the particles, that

1

N

N
∑

i=1

eαt|Y i
t − Λ̃|2 +

1

N

N
∑

i=1

∫ T

t

eαs
N
∑

j=1

|Zi,j
s |2ds

=
1

N

N
∑

i=1

|ξ̃i − Λ̃|2 +
2

N

N
∑

i=1

∫ T

t

eαs(Y i
s − Λ̃) · f(s, Y i

s , Z
i,i
s )ds

− 2

N

N
∑

i=1

∫ T

t

eαs(Y i
s − Λ̃) ·

N
∑

j=1

Zi,j
s dBj

s +
2

N

N
∑

i=1

∫ T

t

eαs(Y i
s − Λ̃) ·DµH(µN

s )(Y i
s )dKN

s

− α

N

N
∑

i=1

∫ T

t

eαs|Y i
s − Λ̃|2ds.

From L-concavity and Skorokhod condition we have,

Ẽ

[

1

N

N
∑

i=1

∫ T

t

eαs(Y i
s − Λ̃) · DµH(µN

s )(Y i
s )dKN

s

]

≤ − 1

N

N
∑

i=1

∫ T

t

eαsH(λ̃)dKN
s , (130)
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while Lipschitz continuity assumption on f together with Young’s inequality yield

2

∫ T

t

eαs(Y i
s − Λ̃) · f(s, Y i

s , Z
i,i
s )ds

≤ C

{

∫ T

t

eαs|f(s, Λ̃, 0)|2ds+

∫ T

t

(

1 +
1

ǫ

)

eαs|Y i
s − Λ̃|2 + ǫeαs|Zi,i

s |2ds
}

, (131)

for any ǫ > 0. Also, thanks to the construction in Lemma 29 we have

1

N

N
∑

i=1

|ξ̃i − Λ̃|2 ≤ |ξi|2 + |Λ̃|2 + t̄M2. (132)

Choosing ǫ small enough and α large enough hence gives

1

N

N
∑

i=1

eαt
Ẽ[|Y i

t − Λ̃|2] +
1

2N

N
∑

i=1

∫ T

t

eαs
N
∑

j=1

|Zi,j
s |2ds+ 2H(λ̃)(KN

T −KN
t )

≤ eαT

N

N
∑

i=1

Ẽ[|ξ̃i − Λ̃|2] + C

∫ T

t

eαs
Ẽ[|f(s, Λ̃, 0)|2]ds− 2

N

N
∑

i=1

∫ T

t

eαs(Y i
s − Λ̃) ·

N
∑

j=1

Zi,j
s dBj

s .(133)

Taking expectation on both side of the above estimate we can deduce the first estimate. Let us now prove
the second assertion. We come back to (118) and obtain

H(µN
t ) −H(µN

0 ) − 1

N

N
∑

i=1

∫ t

0
DµH(µN

u )(Y i
u) · f(u, Y i

u, Z
i,i
u )du

+
1

N

N
∑

i=1

∫ t

0
DµH(µN

u )(Y i
u) ·

N
∑

j=1

Zi,j
u dBj

u ≥ 1

N

N
∑

i=1

∫ t

0

∣

∣DµH(µN
u )(Y i

u)
∣

∣

2
dKN

u . (134)

Note that dKN ({s, s.t.H(µN
s ) > 0}) = 0 so that by (106) we obtain

β2KN
t ≤ H(µN

t ) −H(µN
0 ) − 1

N

N
∑

i=1

∫ t

0
DµH(µN

u )(Y i
u) · f(u, Y i

u, Z
i,i
u )du

+
1

N

N
∑

i=1

∫ t

0
DµH(µN

u )(Y i
u) ·

N
∑

j=1

Zi,j
u dBj

u. (135)

On the one hand

E






sup
t≤T





1

N

N
∑

i=1

∫ t

0
DµH(µN

u )(Y i
u) ·

N
∑

j=1

Zi,j
u dBj

u





2






≤ E





4

N2

∫ T

0

N
∑

j=1

∣

∣

∣

∣

∣

N
∑

i=1

|DµH(µN
u )(Y i

u)||Zi,j
u |
∣

∣

∣

∣

∣

2

du





≤ E





4

N2

∫ T

0

N
∑

j=1

N
∑

i=1

{

|DµH(µN
u )(Y i

u)|2
}

N
∑

i=1

{

|Zi,j
u |2

}

du





≤ 4H2E





1

N

N
∑

i=1

∫ T

0

N
∑

j=1

|Zi,j
u |2du



 .
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On the other hand, using the Lipschitz continuity of f and Cauchy-Schwarz’s inequality,

(

∫ T

0

1

N

N
∑

i=1

DµH(µN
u )(Y i

u) · f(s, Y i
s , Z

i,i
s )du

)2

≤ C(H2)

{

∫ T

0
|f(s, 0, 0)|2ds+

∫ T

0

1

N

N
∑

i=1

|Y i
s |2 +

1

N

N
∑

i=1

|Zi,i
s |2ds

}

.

Hence, choosing t = T , then squaring the expression and eventually taking the expectation lead, thanks
to the two above estimates as well as the first assertion of this Lemma (using also (107)), to the result.

�

The mean field limit Let {Bi}1≤i≤N be N independent d-dimensional Brownian motions, {ξi}1≤i≤N

be N independent copies of ξ and set {(Ȳ i, Z̄i,K)}1≤i≤N the solution of (104) with data {(Bi, ξi)}1≤i≤N

(note that K does not depend on i since it only depends on the law of the data, which are identically
distributed thanks to Remark 12). Let {(Y i, Zi,KN)}1≤i≤N be the solution of (128) where the terminal

data {ξ̃i} therein are built from the {ξi}1≤i≤N thanks to Lemma 29. We aim at showing that the solution

{(Y i, Zi,KN) is close to {(Ȳ i, Z̄i,K)}.

Let us denote by ∆Y i := Y i − Ȳ i and ∆Zi,j := Zi,j − Z̄i,j where Z̄i,j = 0Rn×d when i 6= j. We have:

Theorem 32. Suppose that assumptions (A) hold. Then, there exist CT := C(T, (A)) > 0 such that

E



sup
t≤T

1

N

N
∑

i=1

{

|∆Y i
t |2 +

∫ T

t

N
∑

j=1

|∆Zi,j
s |2ds

}





≤ CT

{

E
1/2
[

sup
0≤s≤T

W 2
2 (µs, µ̄

N
s )

]

+ E

[

1

N

N
∑

i=1

|ξ̃i − ξi|2
]}

,

E



sup
s≤t

{

|∆Y i
s |2 +

∫ T

s

N
∑

j=1

|∆Zi,j
u |2du

}





≤ CT

{

E
1/4
[

sup
t≤T

W 2
2 (µs, µ̄

N
s )

]

+ E
1/2

[

1

N

N
∑

i=1

|ξ̃i − ξi|2
]}

.

Lemma 33. Suppose that assumptions (A) hold. Assume further that there exists q > 4 such that

Mq([ξ]) is finite as well as Hq and
∫ T

0 E [|f(s, 0, 0)|q] ds. Assume moreover that the data of the system
are such that there exists p ≥ 4 and Cp,Z > 0 such that supt≤T E[|Zt|p] ≤ Cp,Z . Then, there exists

CT := C
(

T, (A),Mq([ξ]),Hq , Cp,Z

)

> 0 such that
(

E

[

1

N

N
∑

i=1

|ξ̃i − ξi|2
])2

+ E

[

sup
0≤s≤T

W 2
2 (µs, µ̄

N
s )

]

≤ CT ǫN ,

where ǫN is given in Lemma 1 (see Remark 2).

Remark 34. The assumption on the integrability of Z could seems strange at first sight, especially because
this process is part of the solution and not an input of the problem. This assumption relies on the control
done for the discretization of the process Y to handle the convergence of the supremum in time of the
Wasserstein distance. For instance, such property is satisfied when the terminal condition ξ and the
driver f are Malliavin differentiable (see also Lemma 4.4 in [6] for further details).

Proof of Lemma 33. Let us first emphasize that the result is straightforward for the first term in the
l.h.s. of the above estimate: it follows from Lemma 29 and Theorem 2 in [17] (see also Theorem 5.8 and
Remark 5.9 in [12]).

Let us now deal with the second term in the above l.h.s. To handle this part, we have to check that
assumptions in Lemma 1 are satisfied. Note first that, under our considered assumption, one can apply
Proposition 25. It thus remains to check that (19) hold after taking into account Remark 2. These are
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straightforward consequences of our standing assumptions provided the processK is Lipschitz continuous.
Let us now explain why this is latter fact is true.

Let (Y, Z) be a given (part of) the unique solution of (104). It then holds that supt≤T E[|f(t, Yt, Zt)|2] <
+∞ so that one can come back to Step 1 of the proof of Theorem 24 and build the process K in such a
way it is Lipschitz. By uniqueness, this proves that K is Lipschitz. The result then follows. �

Proof of Theorem 32. For α large enough we have

eαt|∆Y i
t |2 +

1

2

∫ T

t

eαs
N
∑

j=1

|∆Zi,j
s |2ds (136)

≤ eαT |ξ̃i − ξi|2 + 2

∫ T

t

eαs∆Y i
s ·DµH(µN

s )(Y i
s )dKN

s

−2

∫ T

t

eαs∆Y i
s ·DµH(µs)(Ȳ i

s )dKs − 2

∫ T

t

eαs∆Y i
s ·

N
∑

j=1

∆Zi,j
s dBj

s .

So that, summing over i leads to

1

N

N
∑

i=1







eαt|∆Y i
t |2 +

1

2

∫ T

t

eαs
N
∑

j=1

|∆Zi,j
s |2ds







≤ eαT

N

N
∑

i=1

|ξ̃i − ξi|2 + 2

∫ T

t

eαs 1

N

N
∑

i=1

{

∆Y i
s ·DµH(µN

s )(Y i
s )
}

dKN
s

−2

∫ T

t

eαs 1

N

N
∑

i=1

{

∆Y i
s ·DµH(µs)(Ȳ i

s )
}

dKs − 2
1

N

N
∑

i=1

∫ T

t

eαs∆Y i
s ·

N
∑

j=1

∆Zi,j
s dBj

s

=: JN
1 + JN

2 (t, T ) + JN
3 (t, T ) +MN (t, T ). (137)

We first deal with the second term in the r.h.s. of (137). We have

JN
2 (t, T ) =

∫ T

t

eαs 1

N

N
∑

i=1

∆Y i
s ·DµH(µN

s )(Y i
s )dKN

s ≤
∫ T

t

eαs
(

H(µN
s ) −H(µ̄N

s )
)

dKN
s (138)

≤
∫ T

t

eαs
(

H(µs) −H(µ̄N
s )
)

dKN
s

from Skorokhod condition and since H(µs) ≥ 0 for all 0 ≤ s ≤ T . Thus,

JN
2 (t, T ) ≤ CeαT sup

t≤s≤T
W2(µs, µ̄

N
s )(KN

T −KN
t ).

Next we handle the third term in the right hand side of (137) and split it into two parts

JN
3 (t, T ) = −2

∫ T

t

eαs 1

N

N
∑

i=1

∆Y i
s ·DµH(µs)(Ȳ i

s )dKs

= −2

∫ T

t

eαs 1

N

N
∑

i=1

∆Y i
s ·
(

DµH(µs)(Ȳ i
s ) −

(

DµH(µ̄N
s )(Ȳ i

s )
)

dKs

−2

∫ T

t

eαs 1

N

N
∑

i=1

∆Y i
s ·DµH(µ̄N

s )(Ȳ i
s )dKs =: IN

1 (t, T ) + IN
2 (t, T ).
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On the one hand we have from Cauchy-Schwarz’s inequality, (84) and Young’s inequality

IN
1 (t, T ) ≤ C

∫ T

t

eαs

(

1

N

N
∑

i=1

|∆Y i
s |2
)1/2

W2(µ̄N
s , µs)dKs

≤ C

∫ T

t

(

1

N

N
∑

i=1

eαs|∆Y i
s |2
)1/2

W2(µ̄N
s , µs)dKs

≤ C

∫ T

t

{

1

N

N
∑

i=1

eαs|∆Y i
s |2 +W 2

2 (µ̄N
s , µs)

}

dKs

≤ C

∫ T

t

1

N

N
∑

i=1

eαs|∆Y i
s |2dKs + C sup

t≤s≤T
W 2

2 (µ̄N
s , µs)KT .

On the other hand we have from L-concavity and since for all 0 ≤ s ≤ T , H(µN
s ) ≥ 0 and H(µs) = 0

dKs-a.e.

IN
2 (t, T ) ≤ 2

∫ T

t

eαs
(

H(µ̄N
s ) −H(µN

s )
)

dKs

≤ 2

∫ T

t

eαs
(

H(µ̄N
s ) −H(µs)

)

dKs

≤ 2eαT sup
t≤s≤T

W2(µ̄N
s , µs)KT .

Hence,

JN
3 (t, T ) ≤ C

∫ T

t

1

N

N
∑

i=1

eαs|∆Y i
s |2dKs + C sup

t≤s≤T

{

W 2
2 (µ̄N

s , µs) +W2(µ̄N
s , µs)

}

.

Bringing together the estimates on JN
i , 1 ≤ i ≤ 3 in (137), we obtain

1

N

N
∑

i=1

{

eαt|∆Y i
t |2 +

1

2

∫ T

t

eαs
N
∑

j=1

|∆Zi,j
s |2ds

}

(139)

≤ eαT

N

N
∑

i=1

|ξ̃i − ξi|2 + CeαT sup
t≤s≤T

W2(µs, µ̄
N
s )(KN

T −KN
t )

+C

∫ T

t

1

N

N
∑

i=1

eαs|∆Y i
s |2dKs + C sup

t≤s≤T

{

W 2
2 (µ̄N

s , µs) +W2(µ̄N
s , µs)

}

+MN (t, T ).

Hence, taking the expectation in (139), using Cauchy-Schwarz’s inequality, Gronwall’s lemma and then
using Lemmas 29 and 31 lead to

E





1

N

N
∑

i=1

{

eαt|∆Y i
t |2 +

∫ T

t

eαs
N
∑

j=1

|∆Zi,j
s |2ds

}



 (140)

≤ CT

{

E

[

1

N

N
∑

i=1

|ξ̃i − ξi|2
]

+ E
1/2
[

sup
t≤s≤T

W 2
2 (µs, µ̄

N
s )

]

+ E

[

sup
t≤s≤T

{

W 2
2 (µ̄N

s , µs) +W2(µ̄N
s , µs)

}

]

}

.
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Now we have from BDG and Young inequality

E[sup
t≤T

MN (t)] ≤ CE











1

N2

∫ T

t

N
∑

j=1

e2αs

(

N
∑

i=1

|∆Y i
s ||∆Zi,j

s |
)2

ds





1/2






≤ CE









sup
t≤T

{

1

N

N
∑

i=1

{

eαt|∆Y i
s |2
}

}

1

N

N
∑

i=1







∫ T

t

eαs
N
∑

j=1

|∆Zi,j
s |2ds











1/2






≤ CεE

[

sup
t≤T

1

N

N
∑

i=1

{

eαt|∆Y i
s |2
}

]

+
C2

4ε

1

N

N
∑

i=1







E





∫ T

t

eαs
N
∑

j=1

|∆Zi,j
s |2ds











,(141)

for any ε > 0. Hence, coming back to (139) and taking first the supremum in time and then expectation
we deduce from the above estimate, Lemma 31 and Gronwall’s lemma that

E



sup
t≤T

1

N

N
∑

i=1

{

eαt|∆Y i
t |2 +

1

2

∫ T

0
eαs

N
∑

j=1

|∆Zi,j
s |2ds

}



 (142)

≤ CT

{

E

[

1

N

N
∑

i=1

|ξ̃i − ξi|2
]

+ E
1/2
[

sup
t≤T

W 2
2 (µs, µ̄

N
s )

]

+ E

[

sup
t≤s≤T

{

W 2
2 (µ̄N

s , µs) +W2(µ̄N
s , µs)

}

]

}

.

Note that we also have from above results, thanks to the exchangeability of the (Y i, Zi), that

E
[

eαt|∆Y i
t |2
]

+
1

2
E





∫ T

t

eαs
N
∑

j=1

|∆Zi,j
s |2ds



 ≤ CT

{

E

[

1

N

N
∑

i=1

|ξ̃i − ξi|2
]

+ E
1/2
[

sup
0≤t≤T

W 2
2 (µt, µ̄

N
t )

]

}

.

(143)
Coming back to (136), taking first the supremum then the expectation we get, thanks to BDG’s inequality
and (141), that

E



sup
t≤T

{

eαt|∆Y i
t |2 +

1

2

∫ T

t

eαs
N
∑

j=1

|∆Zi,j
s |2du

}



 (144)

≤ E
[

|ξ̃i − ξi|2
]

+ 2E

[

∫ T

0
eαs|∆Y i

s ||DµH(µN
s )(Y i

s )|(dKN
s + dKs)

]

+ E
1/2
[

sup
t≤T

W 2
2 (µt, µ̄

N
t )

]

.

Since by exchangeability of the (Y i, Zi), Cauchy-Schwarz’s inequality and (105)

E

[

∫ T

t

eαs|∆Y i
s ||DµH(µN

s )(Y i
s )|(dKN

s + dKs)

]

(145)

=
1

N

N
∑

i=1

E

[

∫ T

t

eαs|∆Y i
s ||DµH(µN

s )(Y i
s )|(dKN

s + dKs)

]

≤ M2
E



sup
s≤T

eαs

(

1

N

N
∑

i=1

|∆Y i
s |2
)1/2

(

(KN
T −Kt) + (KT −Kt)

)





≤ 2eαTM2
E

1/2

[

sup
s≤T

1

N

N
∑

i=1

|∆Y i
s |2
]

E
1/2 [((KN

T −Kt)
2 + (KT −Kt)

2)] ,

we obtain, thanks to estimate in Proposition 25 and (142) that

E



sup
s≤t

{

eαs|∆Y i
s |2 +

1

2

∫ T

s

eαu
N
∑

j=1

|∆Zi,j
u |2du

}



 ≤ C

{

E
1/4
[

sup
t≤T

W 2
2 (µs, µ̄

N
s )

]

+ E
1/2

[

1

N

N
∑

i=1

|ξ̃i − ξi|2
]}

.

�
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4.3. Associated Obstacle problem on the Wasserstein space. As we did for the (forward) nor-
mally constrained in law SDE, we aim at connecting our backward system with a PDE. To do so, we
consider the Markovian setup, where the final condition (104) is of the form φ(XT , [XT ]), for some
φ : Rn × P2(Rn) → R and where X is the solution of an SDE driven by Lipschitz coefficients. Namely we
consider for T > 0, for any r.v. X0 having second order moment, independent of the Brownian motion
and any t in [0, T ], the Mean-Reflected Forward-Backward SDE (MR-FBSDE):














































Xt,X0

s = X0 +

∫ s

t

b(r,Xt,X0

r ) dr +

∫ s

t

σ(r,Xt,X0

r ) dBr, s ∈ [t, T ], Xt,X0

s = X0, s ∈ [0, t)

Y t,X0

s = φ(Xt,X0

T , [Xt,X0

T ]) +

∫ T

s

f(r,Xt,X0

r , Y t,X0

r ) dr −
∫ T

s

Zt,X0

r dBr

+

∫ T

s

DµH([Y t,X0

s ])(Y t,X0

s ) dKt,X0

s , s ∈ [t, T ],

∀s ∈ [0, T ], H([Y t,X0

s ]) ≥ 0,

∫ T

0
H([Y t,X0

s ]) dKt,[X0]
s = 0, s ∈ [0, T ],

(146)

where the superscript (t,X0) stands for the initial condition of the SDE associated with X whose coeffi-
cients are supposed to be continuous in time and Lipschitz continuous in space (uniformly in time), where
the coefficients of the backward component satisfy (A) (with d = 1) and where φ : Rn ×P2(Rn) → R is a
continuous and bounded function. Also, in this section we further assume that the following assumptions
hold:

(A’1) The functions f : R+ ×R
n ×R −→ R is continuous and there exists a positive Cf such that for all

(s, x, y) in [0, T ] × R
n × R : |f(s, x, y)| ≤ Cf (1 + |x| + |y|),

(A’2) There exists β > 0 such that for all (x, µ) ∈ R
n × P2(Rn) we have β ≤ DµH(µ)(x).

In the following we say that assumptions (A’) are in force if assumptions (A’1), (A’2) and (A) hold.

We start by recalling that, according to Remark 12, uniqueness in law holds for (146). In this case, we
aim at proving that there exists a decoupling field u : [0, T ] × R

n × P2(Rn) ∋ (t, x, µ) 7→ u(t, x, µ) ∈ R

such that for any t in [0, T ], any r.v. X0 having second order moment and independent of the Brownian
motion, we have for all s in [t, T ] u(s,Xt,X0

s , [Xt,X0
s ]) = Y t,X0

s a.s..

Especially we are going to prove that u solves, in the viscosity sense, the following obstacle problem on
the Wasserstein space:























min

{

{

(∂t + L)u(t, x, µ) + f(t, x, u(t, x, µ))
}

;

H
(

u(t, ·, µ)♯µ
)

}

= 0, on [0, T ) × R
n × P2(Rn),

u(T, ·, ·) = φ,

(147)

where L is given by, for all smooth ϕ : [0, T ]×R
n × P2(Rn) → R

Lϕ(t, x, µ) =
1

2

∫

Rn

Tr [((σσ∗)(t, y))∂yDµϕ(µ)(t, x, µ)(y)] µ(dy) +

∫

Rn

Dµϕ(µ)(t, x, µ)(y) · b(t, y)µ(dy)

+
1

2
Tr
[

((σσ∗)(t, x))D2
xϕ(t, x, µ)

]

+Dxϕ(t, x, µ) · b(t, x).

Inspired from [13], we define a viscosity solution of (147) as follows.

Definition 35. We say that a continuous function u : [0, T ] × R
n × P2(Rn) → R is a viscosity solution

of (147) if

(i) The function u is jointly continuous and bounded;
(ii) for any (t, x, µ) in [0, T ] ×R

n × P2(Rn), for any test functions (see definition 11.18 of [13] for the
class of test functions) ϕ : (0, T ) × R

n × P2(Rn) → R such that u − ϕ have a global minimum
(resp. max) in (t, x, µ) we have















min

{

{

(∂t + L)ϕ(t, x, µ) + f(t, x, ϕ(t, x, µ))
}

;

H
(

u(t, ·, µ)♯µ
)

}

≤ 0, (resp. ≥ 0), [0,T) × R
n × P2(Rn);
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(iii) u(T, x, µ) = φ(x, µ) on R
n × P2(Rn).

The result is the following :

Theorem 36. Suppose that assumption (A) holds.

(1) Then there exists a decoupling field u : [0, T ] × R
n × P2(Rn) ∋ (t, x, µ) 7→ u(t, x, µ) ∈ R such that

for any t in [0, T ], any r.v. X0 having second order moment and independent of the Brownian
motion, we have for all s in [t, T ] u(s,Xt,X0

s , [Xt,X0
s ]) = Y t,X0

s a.s..
(2) Suppose in addition that assumption (A’) holds. Then, the mapping u : [0, T ] × R

n × P2(Rn) ∋
(t, x, µ) 7→ u(t, x, µ) ∈ R is a continuous function and solves, in the sense of Definition 35, the
obstacle problem on Wasserstein space (147).

Remark 37. In (146), the driver f does not depend on Z. This assumption again relies to the lack of
comparison principle for FBSDE (146) (see [8]) which is required to tackle driver depending on the Z
argument when investigating the existence of a viscosity solution connected with FBSDEs.

Proof. Let us first emphasize that strong uniqueness holds for (146) under our standing assumptions.
Considering the equation with the reflection process Kt,X0 as an entry, one can deduce from classical
FBSDEs results that for any given initial t in [0, T ] there exists a measurable function vt,X0

(t, ·) : Rn → R,

called a decoupling field, such that for any s in [t, T ], vt,X0
(s,Xt,X0

s ) = Y t,X0

t a.s. (see also chapter
4 of [12]). To make the connection between the classical decoupling field v with a decoupling field
u : [0, T ] ×R

n × P2(Rn) → R, let us first introduce the following decoupled flow of (146): for any x ∈ R
n,

we set on [0, T ]:































Xt,x,X0

s = x+

∫ s

t

b(r,Xt,x,X0

r ) dr +

∫ s

t

σ(r,Xt,x,X0

r ) dBr , s ≥ t, and Xt,x,X0

s = x, s < t,

Y t,x,X0

s = φ(Xt,x,X0

T , [Xt,X0

T ]) +

∫ T

s

f(r,Xt,x,X0

r , Y t,x,X0

r ) dr −
∫ T

s

Zt,x,X0

r dBr

+

∫ T

s

DµH([Y t,X0

s ])(Y t,x,X0

s ) dKt,[X0]
s .

(148)

Note that this equation is not of a MR-FBSDE and not of McKean-Vlasov type as well. Indeed the
coefficients do not depend on the law of the solution of the above system but on the law of the so-
lution of (146). Under our current assumptions, since the processes (XX0 , Y X0 ,KX0) are given, it
is not hard to see that this system is well posed. Moreover, from weak uniqueness, the solution
(Xt,x,X0, Y t,x,X0 , Zt,x,X0) only depends on X0 through its law. Denoting this law by µ, it is hence
possible to write the solution (Xt,x,µ, Y t,x,µ, Zt,x,µ) without specifying the choice of the lifted random

variable X0 with law µ. Defining the mapping u(t, x, µ) := Y t,x,µ
t : R

+ × R
n × P2(Rn) → R we can

show, arguing as in [14] (see proof of Proposition 2.2), that for any [X0] = µ, for all s in [t, T ] :

vt,µ(s, x) = u(s, x, [Xt,X0
s ]), u(s,X

t,x,[X0]
s , [X

t,[X0]
s ]) = Y

t,x,[X0]
s and u(s,Xt,X0

s , [Xt,X0
s ]) = Y t,X0

s a.s..

We now have the following lemma whose proof is postponed at the end of the current section.

Lemma 38. The decoupling field u defined above is a continuous function from [0, T ]×R
n×P2(Rn) → R.

It thus remains to check that this function solves, in the viscosity sense, (147). Let ϕ be a test function
and (t, x, µ) ∈ [0, T ) × R

n × P2(Rn) be such that u− ϕ has a global minimum at (t, x, µ). For any s > t
we have from the flow property that

Eu(s,Xt,x,µ
s , [Xt,µ

s ]) = u(t, x, µ) − E

∫ s

t

f(r,Xt,x,µ
r , Y t,x,µ

r ) dr − E

∫ s

t

DµH([Y t,µ
r ])(Y t,x,µ

r ) dKt,µ
r , (149)

and from Itô’s formula (12) that:

Eϕ(s,Xt,x,µ
s , [Xt,µ

s ]) = ϕ(t, x, µ) + E

∫ s

t

(∂t + L)ϕ(r,Xt,x,µ
r , [Xt,µ

r ]) dr. (150)

Up to a translation of ϕ we can assume that u(t, x, µ) = ϕ(t, x, µ). Since (t, x, µ) is a global minimum we
have

Eu(s,Xt,x,µ
s , [Xt,µ

s ]) − Eϕ(s,Xt,x,µ
s , [Xt,µ

s ]) ≥ 0, s ∈ [t, T ].
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Hence we have:

∀s ∈ [t, s̃], E

∫ s

t

(∂t + L)ϕ(r,Xt,x,µ
r , [Xt,µ

r ]) dr

+E

∫ s

t

f(r,Xt,x,µ
r , Y t,x,µ

r ) dr + E

∫ s

t

DµH([Y t,µ
r ])(Y t,x,µ

r ) dKt,µ
r ≤ 0.

Assume now that µ is such that H
(

u(t, ·, µ)♯µ
)

> 0 hence, by continuity, there exists s̃ > t such for s in

[t, s̃] we have H([u(s,Xt,µ
s , [Xt,µ

s ])]) = H([Y t,X0
s ]) > 0, s ∈ [t, s̃] so that dKt,µ([t, s]) = 0, s ∈ [t, s̃]. Thus

E

∫ s

t

(∂t + L)ϕ(r,Xt,x,µ
r , [Xt,µ

r ]) dr + E

∫ s

t

f(r,Xt,x,µ
r , Y t,x,µ

r ) dr ≤ 0.

Dividing by (s− t) and then letting s → t we deduce

(∂t + L)ϕ(t, x, µ) + f(t, x, ϕ(t, x, µ)) ≤ 0, (151)

and

min

{

(∂t + L)ϕ(t, x, µ) + f(t, x, ϕ(t, x, µ)) ; H
(

u(t, ·, µ)♯µ
)

}

≤ 0.

If µ is now such that H
(

u(t, ·, µ)♯µ
)

= 0 then

min

{

(∂t + L)ϕ(t, x, µ) + f(t, x, ϕ(t, x, µ)) ; H
(

u(t, ·, µ)♯µ
)

}

≤ 0.

�

Proof of Lemma 38. Let (t, x, µ) := (t0, x0, µ0) and (tm, xm, µm)m tends to (t, x, µ) as m → 0. Let Xm
0

and X0 be of law µm and µ respectively. Recall that


















X
tm,xm,Xm

0
s = xm +

∫ s

t b(r,X
tm,xm,Xm

0
r ) dr +

∫ s

t σ(r,X
tm,xm,Xm

0
r ) dBr, s ≥ t and

X
tm,xm,Xm

0
s = xm, s < t,

Y
tm,xm,Xm

0
s = φ(Xtm,xm

T , [X
tm,Xm

0

T ]) +
∫ T

s f(r,Xtm,xm

r , Y
tm,xm,Xm

0
r ) dr −

∫ T

s Z
tm,xm,Xm

0
r dBr

+
∫ T

s
DµH([Y

tm,Xm
0

s ])(Y
tm,xm,Xm

0
s ) dK

tm,[Xm
0 ]

s , s ∈ [0, T ].

(152)

It is straightforward to see that Xtm,xm,Xm
0 → Xt,x,X0 in S2. Denoting by (Y tm,Xm

0 , Ztm,Xm
0 ) the solu-

tion of (146) with initial condition (tm, Xm
0 ), it is also easily to see (see proof of the uniqueness part of

Theorem 24) that Y tm,Xm
0 → Y t,X0 in S2 and that Ztm,Xm

0 → Zt,X0 in M2. The tricky part here consists

in proving that the solution Y
tm,xm,Xm

0

t of (152) tends to the solution Y t,x,X0

t of (148). Recall indeed that
when considering the decoupled flow (148) of (146) we are not considering solutions of MR-FBSDE since
the process K is only an input in these equations so that the Skorokhod condition is not satisfied anymore.

To prove that Y
tm,xm,Xm

0

tm → Y t,x,X0

t we first notice that these quantities are deterministic so

Y
tm,xm,Xm

0

tm − Y t,x,X0

t = E

[

Y
tm,xm,Xm

0

tm − Y t,x,X0

t

]

≤
∣

∣

∣
E

[

Y
tm,xm,Xm

0

tm − Y
tm,xm,Xm

0

t

]∣

∣

∣
+
∣

∣

∣
E

[

Y
tm,xm,Xm

0

t − Y t,x,X0

t

]∣

∣

∣
. (153)

We have
∣

∣

∣
E

[

Y
tm,xm,Xm

0

tm − Y
tm,xm,Xm

0

t

]∣

∣

∣
≤

∣

∣

∣

∣

E

∫ t

tm

∣

∣

∣
f(r,X

tm,xm,Xm
0

r , Y
tm,xm,Xm

0
r )

∣

∣

∣
dr

∣

∣

∣

∣

+

∣

∣

∣

∣

E

∫ t

tm

|DµH([Y
tm,Xm

0
r ])(Y

tm,xm,Xm
0

r )|dKm
r

∣

∣

∣

∣

.

Note now that since f satisfies the linear growth assumption in (A’) (so that supt≤T E[|f(t,Xt, Yt)|2] <
+∞) we can deduce from the proof of Step 1 and Proposition 26 (see Remark 27) that the map [0, T ] ∋
r 7→ Km

r is Lispchitz continuous (uniformly in m). Hence, there exists km satisfying supr∈[0,T ] k
m
r ≤ c

(with c := c((A’)) > 0 independent of m) such that for all r in [0, T ] we have dKm
r = km

r dr. Using this
property, together with assumptions in (A) and (A’) it clear that the above contribution also tends to
0.
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It then remains to show that the second term in the right hand side of (153) also tends to 0. This last
fact is a little bit more involved. We start by setting for all s in [0, T ],

Lm
s =

∫ s

0
DµH([Y

tm,Xm
0

r ])(Y
tm,xm,Xm

0
r ) dK

tm,Xm
0

r ,

and

Ls =

∫ s

0
DµH([Y t,X0

r ])(Y t,x,X0

r ) dKt,X0

r .

From the FBSDE (146), we have, for all s in [0, T ],

Lm
s = −Y tm,Xm

0
s + Y

tm,Xm
0

tm +

∫ s

tm

f(r,X
tm,Xm

0
r , Y

tm,Xm
0

r ) dr −
∫ s

tm

Z
tm,xm,Xm

0
r dBr,

and

Ls = −Y t,X0

s + Y t,X0

t +

∫ s

t

f(r,Xt,X0

r , Y t,X0

r ) dr −
∫ s

t

Zt,X0

r dBr,

from which we deduce that for every s in [0, T ]:

lim
m→+∞

Lm
s = Ls. (154)

Let us now rewrite the BSDE (152) in the following form:

Y
tm,xm,Xm

0
s = φ(Xtm,xm

T , [X
tm,Xm

0

T ]) +

∫ T

s

f(r,Xtm,xm

r , Y
tm,xm,Xm

0
r ) dr −

∫ T

s

Z
tm,xm,Xm

0
r dBr

+

∫ T

s

DµH([Y
tm,Xm

0
s ])(Y

tm,xm,Xm
0

s )
(

DµH([Y
tm,Xm

0
s ])(Y

tm,xm,Xm
0

s )
)−1

dLm
s .(155)

Setting

Am
s =

∫ s

0
DµH([Y

tm,Xm
0

s ])(Y t,x,X0

s )
(

DµH([Y
tm,Xm

0
s ])(Y

tm,xm,Xm
0

s )
)−1

dLm
s

−
∫ s

0
DµH([Y t,X0

s ])(Y t,x,X0

s )
(

DµH([Y t,X0

s ])(Y t,x,X0

s )
)−1

dLs,

and

Um = Y tm,xm,Xm
0 − Y t,x,X0 +Am, Vm = Ztm,xm,Xm

0 − Zt,x,X0 ,

we deduce that (Um, V m) satisfy the following BSDE,

Um
s = ηm +

∫ T

s

(αm
r U

m
r dr + γm

r U
m
r dL

m
r ) −

∫ T

s

V m
r dBr +

∫ T

s

dFm
r , s ∈ [0, T ],

where:

Fm
r =

∫ r

0
((−αm

v A
m
v + βm

v ) dv − γm
v A

m
v dL

m
v ) ,
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with

ηm = φ(X
tm,xm,Xm

0

T , [X
tm,Xm

0

T ]) − φ(Xt,x,X0

T , [Xt,X0

T ])

+

∫ T

0
DµH([Y

tm,Xm
0

s ])(Y t,x,X0

s )
(

DµH([Y
tm,Xm

0
s ])(Y

tm,xm,Xm
0

s )
)−1

dLm
s

−
∫ T

0
DµH([Y t,X0

s ])(Y t,x,X0

s )
(

DµH([Y t,x,X0

s ])(Y t,x,X0

s )
)−1

dLs,

αm =
f(r,X

tm,xm,Xm
0

r , Y
tm,xm,Xm

0
r ) − f(r,X

tm,xm,Xm
0

r , Y t,x,X0
r )

Y
tm,xm,Xm

0
s − Y t,x,X0

s

,

βm = f(r,X
tm,xm,Xm

0
r , Y t,x,X0

r ) − f(r,Xt,x,X0

r , Y t,x,X0

r ),

γm =

(

DµH([Y
tm,Xm

0
s ])(Y

tm,xm,Xm
0

s ) − DµH([Y
tm,Xm

0
s ])(Y t,x,X0

s )
)

Y
tm,xm,Xm

0
s − Y t,x,X0

s

×
(

DµH([Y
tm,Xm

0
s ])(Y

tm,Xm
0

s )
)−1

,

using the convention 0/0 = 0. The definition of Lm and the Lipschitz property of Km yield

γm
r U

m
r dLm

r =

(

DµH([Y
tm,Xm

0
s ])(Y

tm,xm,Xm
0

s ) − DµH([Y
tm,Xm

0
s ])(Y t,x,X0

s )
)

Y
tm,xm,Xm

0
s − Y t,x,X0

s

Um
r km

r dr, (156)

with km
r ≤ c where c > 0 does not depend on m. Note also that αm, βm and γm are bounded uniformly

in m. We then obtain for every 1 < p < 2:

E|Um
s |p = E [|E[Um

s |Fs]|p] ≤ C

{

E|ηm|p +

∫ T

s

E|Um
r |pdr + E

[(

∫ T

0
d|Fm|r

)p]}

.

Hence, applying Gronwall’s inequality, we obtain that there exists c := c(T ) > 0 such that

E|Um
s |p ≤ c (E|ηm|p) + E

[(

∫ T

0
d|Fm|r

)p]

.

Let us now prove that the right hand side of the above equation tends to 0.

Note that from (154) we obtain that ηm → 0 and from Lipschitz property of r 7→ Km
r we know that there

exists C := C((A′), T ) > 0 such that E

[

∫ T

0

∣

∣

∣DµH([Y
tm,Xm

0
s ])(Y t,x,X0

s )dKm
r

∣

∣

∣

2
]

≤ C so that E [|ηm|p] → 0.

We consider now the term E [|Fm|pT ]. First note that from the Lispchitz property of r 7→ Km
r and the

definition of γm and Lm:

γm
r A

m
r dL

m
r =

(

DµH([Y
tm,Xm

0
s ])(Y

tm,xm,Xm
0

s ) − DµH([Y
tm,Xm

0
s ])(Y t,x,X0

s )
)

Y
tm,xm,Xm

0
s − Y t,x,X0

s

Am
r k

m
r dr, (157)

so that there exists C := C((A), T ) > 0 (that may change from line to line) such that

E [|Fm|pT ] ≤ C

{

E

[

∫ T

0
(|Am

r |p + |βm
r |p)dr

]

+ E

∣

∣

∣

∣

∣

∫ T

0
Am

r dK
m
r

∣

∣

∣

∣

∣

p}

≤ CE

[

∫ T

0
(|Am

r |p + |βm
r |p)dr

]

.
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It is clear that E[|βm
r |p] → 0. Let us now investigate the convergence of E[|Am

r |p]. We have from the
definition of Am

s and Lm
s that

Am
s =

∫ s

0
DµH([Y

tm,Xm
0

s ])(Y t,x,X0

s )dKm
r −

∫ s

0
DµH([Y t,X0

s ])(Y t,x,X0

s )dKr

=

∫ s

0

(

DµH([Y
tm,Xm

0
s ])(Y t,x,X0

s ) − DµH([Y t,X0

s ])(Y t,x,X0

s )
)

km
r dr

+

∫ s

0
DµH([Y t,X0

s ])(Y t,x,X0

s ) (dKm
r − dKr) . (158)

The first term in the right hand side tends to 0 by continuity and uniform boundedness of km
r . To prove

the convergence to 0 of the second term in the right hand side it is sufficient to prove, thanks to an
approximation argument, that this holds when the integrand is any step function. The problem hence
reduces to prove the convergence of Km

s to Ks for every s in [0, T ]. Recall

Km
s =

∫ s

0
[DµH([Y

tm,Xm
0

r ])(Y
tm,xm,Xm

0
r )]−1dLm

s , Ks =

∫ s

0
[DµH([Y t,X0

r ])(Y t,x,X0

r )]−1dLs.

We then have

Km
s −Ks =

∫ s

0
[DµH([Y

tm,Xm
0

r ])(Y
tm,xm,Xm

0
r )]−1 − [DµH([Y t,X0

r ])(Y t,x,X0

r )]−1dLm
r

+

∫ s

0
[DµH([Y t,X0

r ])(Y t,x,X0

r )]−1d(Lm
s − Ls).

On the one hand we have r 7→ [DµH([Y
tm,Xm

0
r ])(Y

tm,xm,Xm
0

r )]−1 is continuous and we also have that for
every step function ϕ,

∫ s

0 ϕ(s)d(Lm
s − Ls) → 0 so that

∫ s

0
[DµH([Y t,X0

r ])(Y t,x,X0

r )]−1d(Lm
s − Ls) → 0.

On the other hand,

E sup
s∈[0,T ]

∣

∣

∣

∣

∫ s

0
[DµH([Y

tm,Xm
0

r ])(Y
tm,xm,Xm

0
r )]−1 − [DµH([Y t,X0

r ])(Y t,x,X0

r )]−1dLm
r

∣

∣

∣

∣

≤ E

[

∫ T

0

∣

∣

∣[DµH([Y
tm,Xm

0
r ])(Y

tm,xm,Xm
0

r )]−1 − [DµH([Y t,X0

r ])(Y t,x,X0

r )]−1
∣

∣

∣ d|Lm|r
]

≤ CT

∫ T

0
E

1/2
[

∣

∣

∣[DµH([Y
tm,Xm

0
r ])(Y

tm,xm,Xm
0

r )]−1 − [DµH([Y t,X0

r ])(Y t,x,X0

r )]−1
∣

∣

∣

2
]

×E
1/2
[

∣

∣

∣DµH([Y
tm,Xm

0
r ])(Y

tm,xm,Xm
0

r )
∣

∣

∣

2
]

dr

≤ CT

∫ T

0
E

1/2
[

∣

∣

∣[DµH([Y
tm,Xm

0
r ])(Y

tm,xm,Xm
0

r )]−1 − [DµH([Y t,X0

r ])(Y t,x,X0

r )]−1
∣

∣

∣

2
]

Mdr,

and it is clear that the last term in the above right hand side also tends to 0.

For any subsequence (m′), there exists (m”) ⊂ (m′) such that for every s in [0, T ], Km”
s → Ks, and then

Am”
s → 0. Finally, we deduce from our assumptions and the Lipschitz regularity of K that the family

(Am”

)m”≥0 is uniformly bounded in L2([0, T ] × Ω) so that it converges to 0 in Lp([0, T ] × Ω) for any
1 < p < 2. This means that (Am)m≥0 converges to 0 in Lp([0, T ] × Ω) for any 1 < p < 2.

We obtain that for all s in [0, T ], 1 < p < 2: E[|Um
s |p] → 0, which means that in Lp, for every s in [0, T ],

Y
tm,xm,Xm

0
s → Y t,x,X0

s .

Using this in (153), this concludes the proof.

�
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