Ramsey for complete graphs with a dropped edge or a triangle
Luis Montejano, Jonathan Chappelon, Jorge Luis Ramírez Alfonsín

To cite this version:

HAL Id: hal-02053333
https://hal.archives-ouvertes.fr/hal-02053333
Submitted on 1 Mar 2019
Ramsey for complete graphs with a dropped edge or a triangle

Luis Pedro Montejano

Centro de Investigación en Matemáticas
CIMAT
Guanajuato, México

Jonathan Chappelon and Jorge Luis Ramírez Alfonsín

Institut de Mathématiques et de Modélisation de Montpellier
Université de Montpellier
Montpellier, France

Abstract

Let $K_{[k,t]}$ be the complete graph on k vertices from which a set of edges, induced by a clique of order t, has been dropped (note that $K_{[k,1]}$ is just K_k). In this paper we study $R(K_{[k_1,t_1]}, \ldots, K_{[k_r,t_r]})$ (the smallest integer n such that for any r-edge coloring of K_n there always occurs a monochromatic $K_{[k_i,t_i]}$ for some i).

We first present a general upper bound (containing the well-known Graham-Rödl upper bound for complete graphs in the particular case when $t_i = 1$ for all i). We then focus our attention when $r = 2$ and dropped cliques of order 2 and 3 (edges and triangles). We give the exact value for $R(K_{[n,2]}, K_{[4,3]})$ and $R(K_{[n,3]}, K_{[4,3]})$ for all $n \geq 2$.

Keywords: Ramsey number, recursive formula.
1 Introduction

Let K_n be a complete graph and let $r \geq 2$ be an integer. A r-edge coloring of a graph is a surjection from $E(G)$ to $\{0, \ldots, r - 1\}$ (and thus each color class is not empty). Let $k \geq t \geq 1$ be positive integers. We denote by $K_{[k,t]}$ the complete graph on k vertices from which a set of edges, induced by a clique of order t, has been dropped, see Figure 1.

![Fig. 1. (a) $K_{[5,3]}$ and (b) $K_{[4,2]}$](image)

Let k_1, \ldots, k_r and t_1, \ldots, t_r be positive integers with $k_i \geq t_i$ for all $i \in \{1, \ldots, r\}$. Let $R([k_1, t_1], \ldots, [k_r, t_r])$ be the smallest integer n such that for any r-edge coloring of K_n there always occurs a monochromatic $K_{[k_i,t_i]}$ for some i. In the case when $k_i = t_i$ for some i, we set

$$R([k_1, t_1], \ldots, [k_{i-1}, t_{i-1}], [t_i, t_i], [k_{i+1}, t_{i+1}], \ldots, [k_r, t_r]) \leq t_i.$$

We note that equality is reached at $\min \{t_i | t_i = k_i\}$. Since the set of all the edges of $K_{[t_i,t_i]}$ (which is empty) can always be colored with color i. We also notice that the case $R([k_1, 1], \ldots, [k_r, 1])$ is exactly the classical Ramsey number $r(k_1, \ldots, k_r)$ (the smallest integer n such that for any r-edge coloring of K_n there always occurs a monochromatic K_{k_i} for some i). We refer the reader to the excellent survey [6] on Ramsey numbers for small values. In this paper, we investigate $R([k_1, t_1], \ldots, [k_r, t_r])$.

2 General upper bound

In this section we present a recursive formula (Lemma 2.1) that yields to an explicit general upper bound (Theorem 2.2). The latter contains the well-known explicit general upper bound for $R([k_1, 1], \ldots, [k_r, 1])$ due to Graham and Rödl [3] (see Equation (4)).

1 Email: lmontejano@cimat.mx
2 Email: jramirez@um2.fr
3 Email: jonathan.chappelon@um2.fr
The following recursive inequality is classical in Ramsey theory

\[(1) \quad r(k_1, k_2, \ldots, k_r) \leq r(k_1 - 1, k_2, \ldots, k_r) + r(k_2 - 1, \ldots, k_r) + \cdots + r(k_1, k_2, \ldots, k_r - 1) - (r - 2)\]

In the same spirit, we have the following.

Lemma 2.1 Let \(r \geq 2 \) and let \(k_1, \ldots, k_r \) and \(t_1, \ldots, t_r \) be positive integers with \(k_i \geq t_i + 1 \geq 2 \) for all \(i \). Then,

\[
R([k_1, t_1], \ldots, [k_r, t_r]) \leq R([k_1 - 1, t_1], [k_2, t_2], \ldots, [k_r, t_r])
+ R([k_1, t_1], [k_2 - 1, t_2], \ldots, [k_r, t_r])
+ \cdots
+ R([k_1, t_1], [k_2, t_2], \ldots, [k_r - 1, t_r]) - (r - 2).
\]

A similar recursive inequality has been treated in [7] in a much more general setting in which a family of graphs are intrinsically constructed via two operations disjoin unions and joins (see also [4] for the case \(r = 2 \)). However, it is not clear how the latter could be used to obtain Lemma 2.1 that allows us to give the following general upper bound for \(R([k_1, t_1], \ldots, [k_r, t_r]) \) (which was not considered in [7]).

Theorem 2.2 Let \(r \geq 2 \) be a positive integer and let \(k_1, \ldots, k_r \) and \(t_1, \ldots, t_r \) be positive integers such that \(k_i \geq t_i \) for all \(i \in \{1, \ldots, r\} \). Then,

\[
R([k_1, t_1], \ldots, [k_r, t_r]) \leq \max_{1 \leq i \leq r} \left\{ t_i \right\} \binom{k_1 + \cdots + k_r - (t_1 + \cdots + t_r)}{k_1 - t_1, k_2 - t_2, \ldots, k_r - t_r}
\]

where \(\binom{n_1 + n_2 + \cdots + n_r}{n_1, n_2, \ldots, n_r} \) is the multinomial coefficient defined by \(\binom{n_1 + n_2 + \cdots + n_r}{n_1, n_2, \ldots, n_r} = \frac{(n_1 + n_2 + \cdots + n_r)!}{n_1! n_2! \cdots n_r!} \), for all nonnegative integers \(n_1, \ldots, n_r \).

Theorem 2.2 is a natural generalization of the well-known explicit upper bound for classical Ramsey numbers. Indeed, an immediate consequence of Theorem 2.2 (by taking \(t_i = 1 \) for all \(i \)) is the following classical upper bound due to Graham and Rödl [3, (2.48)]

\[(2) \quad R([k_1, 1], \ldots, [k_r, 1]) \leq \binom{k_1 + \cdots + k_r - r}{k_1 - 1, \ldots, k_r - 1}.
\]

Let \(k \geq t \geq 2 \) and \(r \geq 2 \) be integers and let \(R_r([k, t]) = R([k, t], \ldots, [k, t]) \).

An immediate consequence of Theorem 2.2 (by taking \(k = k_1 = \cdots = k_n \) and
$t = t_1 = \cdots = t_n$) is the following inequality

$$R_r([k,t]) \leq t \binom{r(k-t)}{k-t, \ldots, k-t}$$

Moreover, if $t = 1$ then

$$R_r([k,1]) \leq \frac{(rk-r)!}{((k-1)!)^r}.$$

3 Exact values

By the so-called Chvátal’s result [2], we know that the exact value of the Ramsey number of $K_{[4,3]}$ (a star) versus cliques is given by $R([n,1],[4,3]) = 3n-2$ for all $n \geq 1$. We then naturally focus our attention to the Ramsey number of $K_{[4,3]}$ versus cliques with either a dropped edge or a dropped triangle, see [1] where $R([m,1],[n,2])$ has been computed for numerous cases. We provide the new following exact values of Ramsey numbers.

Theorem 3.1 Let $n \geq 2$ be an integer. Then,

- $R([n,2],[4,3]) = 2$ for $n = 2$,
- $R([n,2],[4,3]) = 5$ for $n = 3$,
- $R([n,2],[4,3]) = 3n-5$ for $n \geq 4$.

Theorem 3.2 Let $n \geq 2$ be an integer. Then,

- $R([n,3],[4,3]) = 3$ for $n = 3$,
- $R([n,3],[4,3]) = 6$ for $n = 4$,
- $R([n,3],[4,3]) = 8$ for $n = 5$,
- $R([n,3],[4,3]) = 11$ for $n = 6$,
- $R([n,3],[4,3]) = 3n-8$ for $n \geq 7$.

3.1 An estimation for $R([n,2],[5,3])$

By considering $K_{[5,3]}$ as the book graph B_3, it was proved in [5,8] that

$$R([n,1],[5,3]) \leq \frac{3n^2}{\log(n/e)},$$

for all positive integers n.

The following result is a first estimation for the value $R([n,2],[5,3])$.

Theorem 3.3 Let $n \geq 2$ be an integer. Then,
• $R([n, 2], [5, 3]) = 2$ for $n = 2$,
• $R([n, 2], [5, 3]) = 7$ for $n = 3$,
• $R([n, 2], [5, 3]) \leq 3\binom{n+1}{2} - 5n + 4$ for $n \geq 4$.

References

