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A B S T R A C T

Monitoring activities in industry may require the use of wireless sensor networks, for instance due to

difficult access or hostile environment. But it is well known that this type of networks has various

limitations like the amount of disposable energy. Indeed, once a sensor node exhausts its resources, it will

be dropped from the network, stopping so to forward information about maybe relevant features towards

thesink. Thiswill result inbroken links and dataloss which impacts thediagnosticaccuracyat thesinklevel.

It is therefore important to keep the network's monitoring service as long as possible by preserving the

energy held by the nodes. As packet transfer consumes the highest amount of energy comparing to other

activities in the network, various topologies are usually implemented in wireless sensor networks to

increase the network lifetime. In this paper, we emphasize that it is more difficult to perform a good

diagnostic when data are gathered by a wireless sensor network instead of a wired one, due to broken links

and data loss on the one hand, and deployed network topologies on the other hand. Three strategies are

considered to reduce packet transfers: (1) sensor nodes send directly their data to the sink, (2) nodes are

divided by clusters, and the cluster heads send the average of their clusters directly to the sink, and (3)

averaged data are sent from cluster heads to cluster heads in a hop-by-hop mode, leading to an avalanche of

averages. Their impacton the diagnostic accuracy is then evaluated. We show that the use of random forests

is relevant for diagnostics when data are aggregated through the network and when sensors stop to

transmit their values when their batteries are emptied. This relevance is discussed qualitatively and

evaluated numerically by comparing the random forests performance to state-of-the-art PHM approaches,

namely: basic bagging of decision trees, support vector machine, multinomial naive Bayes, AdaBoost, and

Gradient Boosting. Finally, a way to couple the two best methods, namely the random forests and the

gradient boosting, is proposed by finding the best hyperparameters of the former by using the latter.

1. Introduction

During their life cycle, industrial systems are subjected to

failures, which can be irreversible or have undesirable outcomes

varying from minor to severe. From this context, it is important to

monitor a system, assess its health, and plan maintenance

activities. Over the past years, research in Prognostic and Health

Management (PHM) field has gained a great deal of attention. PHM

aims at defining a maintenance schedule and preventing system

shutdown. Yet, if the prediction model and the provided measure-

ments are not accurate, it is possible that the maintenance activity

will be performed either too soon or too late.

Health assessment is a key step for Remaining Useful Life (RUL)

estimation. Based on the analysis and the predefined thresholds,

the machine/component's health state is identified. Sensory data

is reported periodically to monitor critical components. This data

corresponds to measurements of monitoring parameters and is

useful to assess the machine/component's condition. Each

monitoring parameter has a threshold; once reached, the system

is considered to be in the corresponding state. Reliable health state

estimations depend on accurate measurements and fast data

processing. The information in question is often gathered by

means of individual sensor nodes or via a wired network of

sensors. Nevertheless, for some applications, the use of a Wireless

Sensor Network (WSN) can be a requirement rather than a choice.

For example, due to accessibility or extra weight issues,

connecting the sensors through physical wires is not feasible.

WSNs are designed for an efficient event detection. They consist of

a large number of sensor nodes deployed in a surveillance area to

detect the occurrence of possible events. Such an activity

necessitates efficiency, which is hard to achieve with the

constraints of WSNs [9].
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Available energy is a big limitation to WSN capabilities. In fact,

sensor nodes are small sized devices, resulting in tiny and non-

refillable batteries as energy supply [5]. Therefore, to keep the

network running for as long as possible, we need to preserve the

available energy. As reducing packet transfer distance and

frequency helps consume less energy, a possible solution would

be combining data into one packet and forward all the information

at once to the base station: this is called data aggregation.

Data gathering in WSNs can be either periodic or event-driven.

In periodic applications, data is gathered periodically while in

event-driven applications gathering depends on the occurrence of

some events. In both cases, the goal from aggregation is reducing

energy dissipation by holding packets for as long as possible in

intermediate nodes. All packets will be combined together then

forwarded in the network. It is obvious to see that a decrease in

energy consumption leads to an increase in the overall delay, and

vice versa. A reliable solution would aim at finding an acceptable

tradeoff between energy consumption and delay in WSNs [23].

Packet transfer consumes the highest amount of energy in the

network. The higher the distance of transfer gets, the more energy

is consumed. It is therefore preferable that the sensors communi-

cate within the shortest radio range possible. Several solutions to

preserve the network's energy have been investigated, and they

include the study of the topology. In this paper, we compare several

network topologies and study their impact on the quality of health

assessment.

The machine/component's health state goes through different

classes varying from healthy to degraded. Health assessment

consists in identifying the class corresponding to the current

health state. In this article, the use of random forests (RF) is

proposed for industrial functioning health assessment, particularly

in the context of devices being monitored using a WSN. A

prerequisite in prognostics and health management (PHM) is to

consider that data provided by sensors is either flawless or simply

noisy. WSNs monitoring is somehow unique in the sense that

sensors too are subjected to failures or energy exhaustion, leading

to a change in the network topology. Thus, the monitoring quality

is variable too and it depends on both time and location on the

device. To say this differently, to extend the life of WSN nodes will

increase the monitoring duration, but it may decrease the

diagnostic performance due to strategies deployed in the network

(aggregation, scheduling, etc.) that enlarges noise in a certain way.

Our aim is to show the effects of such strategies on the compromise

between monitoring duration and quality, and to propose a

diagnostic approach that is compatible with such strategies.

Indeed, various strategies can be deployed on the network to

achieve fault tolerance or to extend the WSN's lifetime, like nodes

scheduling or data aggregation. However, the diagnostic processes

must be compatible with these strategies, and with a coverage of a

changing quality [1,11]. The objective of this research work is to

show that RFs achieve a good compromise in that situation, being

compatible with a number of sensors which may be variable over

time, some of them being susceptible to errors. More precisely, we

will explain why random methods are relevant to achieve accurate

diagnostics of an industrial device being monitored using a WSN.

Algorithms will be provided, and an illustration on a simulated

WSN will finally be detailed.

The contributions of this article can be summarized as follows.

The functioning of RF is recalled and applied in the monitoring

context, when data are gathered by a wireless sensor network

instead of a wired one. We show that diagnostic is more difficult in

such networks, due to broken links, data loss, and deployed

network topologies. To do so, three aggregation strategies to

reduce packet transfers are considered, and their impact on the

diagnostic accuracy is discussed qualitatively. It is evaluated

numerically by comparing the random forests performance to

state-of-the-art PHM approaches. Finally, a hybridation of the two

best methods (random forests and gradient boosting) is proposed,

to achieve the best RF hyperparameters selection by using gradient

boosting.

The remainder of this paper is organized as follows. In Section 2

we give the state of the art. Section 3 presents the proposed

algorithm for WSN based diagnostics, namely the random forests.

Its performance on various sensor topologies is shown in the next

section, while the RF-based diagnostic is compared to other

machine learning methods in Section 5. This article ends by a

conclusion section, in which the contribution is summarized and

intended future work is outlined.

2. State-of-the-art review

To perform a periodic data gathering in a wireless sensor

network, data aggregation is achieved through organizing the

network according to a logical structure, mainly a tree or a

clustering [28]. When a tree is used, aggregators are the internal

nodes in the tree routed at the sink. With clustering structures,

aggregators are the Cluster Heads (CH). In [14,19], the authors

prove that clustering methods provide better results for data

aggregation, as they consume less energy. Defining a specific

cluster and choosing the CH (aggregator node in the cluster) have

an important impact on aggregation quality and energy consump-

tion. Besides, structured approaches incur high maintenance

overhead in event based applications. In fact, the source nodes

change when a new event occurs. In other words, when the

network starts running, the structure is fixed based on the

positions of nodes sensing the event (source nodes). For the next

round, the event may occur somewhere different in the network,

which results in a change in source nodes. Consequently, the fixed

structure will perform poorly [34].

Several WSN topologies were used in existing monitoring

applications, see Table 1 . In [21], Kait et al. propose a WSN-based

paddy growth monitoring system. Sensor nodes gather and send

field data, such as temperature, periodically to the Base Station

(BS). This is done by using multi-hop routing which is not

considered energy efficient. Sensor nodes transmit data through

the nearest neighbor which might lead to the longest path.

Moreover, this routing protocol does not consider the energy level

of the sensor nodes to generate transmission path. Another

interesting study by Yoo et al. [33] proposes a precision and

intelligence agricultural system referred to as the Automated

Agriculture System. The goal of this system is to monitor and

control the growing process of melon and cabbage in a greenhouse.

In the system, sensor nodes are organized in a parent-child tree

structure. The nodes join the network by broadcasting a parent

search packet. Furthermore, the nodes transmit data to the BS

using three gateway nodes. However, the tree structure has a single

point of failure. Yang et al. [32] developed an intensive WSN-based

Table 1

Comparison of WSN based monitoring. Note that none of them provide a

monitoring impact measurement of the WSN embedded protocol.

Reference Context Routing protocol WSN drawback

Kait et al. [21] Paddy growth Multi-hop rooting Inefficient energy

to nearest neighbor protocol

Yoo et al. [33] Growing process of Parent-child tree Single point

melon and cabbage failure

Yang et al. [32] Irrigation Through (widely Inefficient energy

separated) clusters protocol

Chiti et al. [7] Agro-food Dynamic flooding Inefficient energy

production protocol

Kabashi [20] Agriculture Shortest path graph Sensing holes

CNS [17] Agriculture Tree structure Single point

failure



irrigation monitoring system. Sensor nodes are placed by this

system in widely separated clusters. Thus, sensor nodes consume

much energy for transmitting data to remote nodes in other

clusters.

Chiti et al. [7] propose next generation firm for Agro-food

productions. This system uses Ambient Intelligence and WSNs. The

proposed system provides feedback and adaptability to increase

productions in Agro-food. However, the deployed WSN uses a

dynamic flooding inefficient-energy routing protocol. This is due to

the fact that a large number of messages are broadcasted. Village

eScience for Life [20] is a WSN-based agriculture project. It is

implemented in developing regions in Africa and uses dynamic

zone-based topology. This project initially deploys sensor nodes

into zones in such a way that each sensor node remains within the

transmission range of the nodes of at least two zones and each

node belonging to a zone elects nodes in neighboring zones to

which it can connect with a minimum transceiver power. Hence,

several graphs are generated and the graph requiring minimum

transmission power is selected for routing. However, this routing

protocol does not guarantee to eliminate sensing holes. COMMON-

Sense Net (CNS) [17] is another WSN-based agriculture monitoring

project developed for semiarid regions in developing countries.

The routing protocol of CNS uses tree structure which is not

reliable since a link failure or sensor node failure can make other

nodes unreachable to BS. Unlike the earlier works that focus

mainly on the WSN-based monitoring applications, recent

research [6] has significantly considered studying the actual

structure of WSN through graph theory. In particular, geometric

graphs are used in WSNs [22] to model the relationship between a

sensor node and its neighboring sensor nodes [13,24]. To sum up,

each of the state-of-the-art algorithms contains WSN drawbacks,

and none of them provide a monitoring impact measurement of

the WSN embedded protocol.

Before studying WSN network dependability, we focused on

finding an algorithm that is able to produce good diagnostics with

incomplete monitoring data [2]. As summarized in Fig. 1, mainte-

nance strategies evolved through time and became predictive and

condition based.

Condition-based maintenance (CBM) is a proactive process for

maintenance scheduling, based on real-time observations. It aims

at assessing machine's health through condition measurements. As

any maintenance strategy, CBM aims at increasing the system

reliability and availability. The benefits of this particular strategy

include avoiding unnecessary maintenance tasks and costs, as well

as not interrupting normal machine operations [15]. In order to be

efficient, a CBM program needs to go through the following steps

[18], as illustrated in Fig. 2.

In this study, we limit our work to diagnostics. Sensory data are

reported periodically to monitor critical components. These data

correspond to measurements of parameters (pressure, tempera-

ture, moisture...), and are useful to assess the machine's condition.

Thresholds related to the monitored parameters are fixed. Once a

threshold is reached, the system is considered to be in the

corresponding state. In Fig. 3, the successive steps of a diagnostic

process are illustrated.

! Fault detection is used to report an anomaly in the system

behavior.

! Fault isolation is charged of determining and locating the cause

(or source) of the problem. It identifies exactly which compo-

nent is responsible of the failure.

! Fault identification aims at determining the current failure

mode and how fast it can spread.

The diagnostics of a system's state of health is the equivalent of

a classification problem. In machine learning, classification refers

to identifying the class to which a new observation belongs, on the

basis of a training set and quantifiable observations, known as

properties. In ensemble learning, the classifiers are combined to

solve a particular computational intelligence problem. Many

research papers encourage adapting this solution to improve the

performance of a model, or reduce the likelihood of selecting a

weak classifier. For instance, Dietterich argued that averaging the

classifiers’ outputs guarantees a better performance than the worst

classifier [8]. This claim was theoretically proven correct by

Fumera and Roli [12]. In addition to this, and under particular

hypotheses, the fusion of multiple classifiers can improve the

performance of the best individual classifier [30].

Two of the early examples of ensemble classifiers are Boosting

and Bagging. In Boosting algorithm [26], the distribution of the

training set changes adaptively based on the errors generated by

the previous classifiers. In fact, at each step, a higher degree of

Fig. 1. History of maintenance strategies.

Fig. 2. CBM flowchart.

Fig. 3. Diagnostic's different steps.



importance is accorded to the misclassified instances. At the end of

the training, a weight is accorded to each classifier, regarding its

individual performance, indicating its importance in the voting

process. As for Bagging [3], the distribution of the training set

changes stochastically and equal votes are accorded to the

classifiers. For both classifiers, the error rate decreases when the

size of the committee increases.

In a comparison made by Tsymbal and Puuronen [29], it is

shown that Bagging is more consistent but unable to take into

account the heterogeneity of the instance space. In the highlight of

this conclusion, the authors emphasize the importance of

classifiers’ integration. Combining various techniques can provide

more accurate results as different classifiers will not behave in the

same manner faced to some particularities in the training set.

Nevertheless, if the classifiers give different results, a confusion

may be induced. It is not easy to ensure reasonable results while

combining the classifiers. In this context, the use of random

methods could be beneficial. Instead of combining different

classifiers, a random method uses the same classifier over different

distributions of the training set. A majority vote is then employed

to identify the class.

In this article, the use of random forests (RF) is proposed for

industrial functioning diagnostics, particularly in the context of

devices being monitored using a WSN. Up to now, a prerequisite in

diagnostics is to consider that data provided by sensors are either

flawless or simply noisy. This prerequisite must be relaxed in case

where sensed data come from a wireless sensor network, as data

aggregation, node scheduling, and other energy optimization

strategies in possibly hostile environments lead to incomplete or

totally erroneous sensed values. We will show that RF, detailed in

the next section, can get around these problems, leading to an

accurate diagnostics even in WSN harsh conditions, and even

without feature selection.

Finally, as the other ensemble learning methods, RF can indicate

the importance weights of predictors, which is a significant

advantages of such approaches in the determination of the failure

origin.

3. Proposed techniques

3.1. The research framework

As mentioned earlier in this article, the objective is to study the

possibility of using random forests for prognostic and health

management purposes. The latter have several advantages that

make their use interesting in this context, such as their

compatibility with time-varying feature vectors (which can

happen, for example, when the sensors are on battery power:

some batteries run out over time, and the associated feature

therefore disappears when the battery is empty).

Our framework therefore consists of an industrial device on

which predictive maintenance is deployed based on a wireless

sensor network. Each sensor sends, as long as it can communicate

(i.e., as longas it stillhasbattery), its measurement periodically tothe

sink. These measurements are potentially noisy: typically, we want

to deploy many sensors, therefore of poorquality, and in a potentially

hostile environment (high or very low temperature, etc.) And since

batteries can be drained or scheduling devices can be put in place to

extend the life of the network, we therefore potentially have features

missing over time. Finally, WSN-based PHM usually deploys data

aggregation techniques, always in order to extend the network's

lifetime, and this operation corresponds to feature aggregation.

Feature selection techniques are obviously to be implemented

at the sink level in the case where the industrial system is large,

leading to a large network of sensors (and therefore to a large

number of features). This selection can be done in various ways, e.g.

univariate feature selection or by using the spareness associated

with ‘1 norms to preprocess the features. However, improving this

feature selection step is not the objective of this article, and a great

deal of work has already been produced on this theme.

Finally, based on a pre-established basis of knowledge, our

framework consists in deploying random forests at the sink level,

in order to be able to predict the RUL of the device under

surveillance. This RF-based prediction is then compared to other

tools traditionally used in PHM, and includes a phase of discovery

of the best hyperparameters of each technique. These algorithms

are the Support Vector Machines (SVM), the Classification And

Regression Trees (CART), AdaBoost, Gradient Boosting, and

multinomial Naive Bayes.

3.2. The proposal

The RF algorithm is mainly the combination of Bagging [3] and

random subspace [16] algorithms, and was defined by Leo Breiman

as a combination of tree predictors such that each tree depends on

the values of a random vector sampled independently and with the

same distribution for all trees in the forest [4]. This method resulted

from a number of improvements in tree classifiers’ accuracy.

This classifier maximizes the variance by injecting randomness

in variable selection, and minimizes the bias by growing the tree to

a maximum depth (no pruning). For the sake of completeness, the

steps of constructing the forest are recalled in Algorithm 1.

Algorithm 1. Random forest algorithm

Input: Labeled training set S, Number of trees T, Number of features F.

Output: Learned random forest RF.

initialize RF as empty

for i in 1. . T do

S0i   bootstrap (S)

initialize the root of tree i

repeat

if current node is terminal then

affect a class

go to the next unvisited node if any

else

select the best feature f* among F

sub-tree   split(S0i ; f
$
)

add (leftChild, rightChild) to tree i

end if

until all nodes are visited

add tree i to the forest

end for

In a RF, the root of a tree i contains the instances from the

training subset S0i, sorted by their corresponding classes. A node is

terminal if it contains instances of one single class, or if the number

of instances representing each class is equal. In the alternative case,

it needs to be further developed (no pruning). For this purpose, at

each node, the feature that guarantees the best split is selected as

follows.

The information acquired by choosing a feature can be

computed through either the well-known entropy of Shannon,

which measures the quantity of information, or the reputed Gini

index, which measures the dispersion in a population. The best

split is then chosen by computing the gain of information from

growing the tree at given position, corresponding to each feature as

follows:

Gainðp; tÞ ¼ f ðpÞ (
Xn

j¼1

Pj ) f ðpjÞ ð1Þ

where p corresponds to the position in the tree, t denotes the test

at branch n, Pj is the proportion of elements at position p and that



go to position pj, f(p) corresponds to either Entropy(p) or Gini(p).

The feature that provides the higher Gain is selected to split the

node.

4. Experimental results

4.1. Proposed protocol

In order to illustrate the impact of topologies on the quality of

health estimations, we consider 90 sensor nodes; 30 nodes for each

of the monitoring parameters: temperature, pressure, and

humidity. The sensors are randomly placed in the simulation

window, and are equipped with batteries of 100j. The sink is also

placed randomly. With every data transfer, the energy of a sender is

reduced regarding its distance from the recipient.

Data simulation

! Under normal conditions, temperature sensors follow a

Gaussian law of parameter (20 ) (1 + 0.005t), 1), while these

parameters are mapped to (35, 1) in case of a malfunction of the

industrial device. These sensors return the value 0 when they

break down.

! The pressure sensors produce data following a Gaussian law of

parameter (5 ) (1 + 0.01t), 0.3) when they are sensing a well-

functioning area. The parameters changed to (20, 2.5) in case of

area failure in the location where the sensor is placed, as long as

the pressure sensors return 1 when they are broken down.

! The Gaussian parameters are (52.5 ) (1 + 0.001t), 12.5) when

both the area and the humidity sensors are in normal conditions.

These parameters are set to (80, 10) in case of area failure in the

range of this sensor, whereas malfunctioning humidity sensors

produce the value 3.

The probability that a failure occurs at time t follows an

exponential distribution of parameter 1–100.

In other words, the predictors are constituted by 30 tempera-

ture variables, 30 pressure variables, and 30 humidity ones, they

are all numerical. The dependent Y variable, for its part, is the

number of failures. Note that the predictors are correlated (their

Gaussian parameter depends on t), and that the reduced number of

features does not require a selection. Although low, this number of

features will still allow us to demonstrate the good performance of

our approach in relation to the state of the art.

Data is generated as follows.

Algorithm 2. Data generation

for each time unit t = 1. .200 during the industrial device monitoring do

for each category c (temperature, pressure, humidity) of sensors do

for each sensor s belonging to category c do

if s has not yet detected a device failure then

s picks a new data, according to the Gaussian law corresponding to a well-

functioning device, which depends on both t and c

a random draw from the exponential law detailed previously is realized, to

determine if a breakdown occurs on the location where s is placed

else

s picks a new datum according to the Bernoulli distribution of a category c

sensor observing a malfunctioning device

end if

end for

end for

end for

Each sensor received 100 units of battery, and 2000 units for

each aggregator. This energy decreases over time, proportionally to

the transmission distance (for both sensors and aggregators), and

proportionally to the times spent to periodically collect a new data

(i.e., computing a new random value according to the probabilistic

model) and for aggregating (averaging) a collection of data. This

duration is computed thanks to a call to the time function before

and after the operation. The final number of packets corresponds to

what have been definitively received at the sink level when all

nodes have emptied their batteries.

Considered topologies

We have considered 3 different topologies during these

simulations.

In the first scenario, we consider a default topology. When a

node senses new data, it forwards it directly to the BS. At the end of

each round, the sink will receive 30 different measures of

temperature, pressure, and humidity each. The sink will only

keep one value of each parameter. This is guaranteed by computing

an average using a Gaussian distribution.

In the second scenario depicted in Fig. 4(a), 9 sensors are added

to the topology. These sensors will be the aggregators (3 per

parameter). Therefore, the topology now presents 9 clusters and in

each, nodes send the sensed data to the CH. The CH aggregates the

data packets from each round and sends the computed value of the

relative parameter to the sink node. It should be noted that at this

step, the CHs are placed randomly and their distance to their

cluster members is not optimized.

Fig. 4. Different strategies to route aggregated data to the sink.



In the third and last topology, we also considered 9 clusters. This

time after all the sensors (CHs and regular nodes) are placed, each

regular nodes finds the closest CH to it by using the K-mean

algorithm, and adapts the same type (i.e., parameter). The

aggregated data are then routed from CHs to CHs in direction to

the sink, to reduce the communication cost. This topology is

depicted in Fig. 4(b).

Let us notice that the first situation corresponds to what is

usually considered in PHM. Conversely, the two other cases are

related to data collected within a wireless sensor network, which

thus embeds various strategies to increase the network lifetime,

namely the data aggregation in our considered scenarios.

Obviously, such aggregation may impact diagnostics, and usual

machine learning algorithms are not designed to face such data

manipulations.

4.2. Obtained results

We collect data in the network using the topologies described in

Section 4.1. After data collection step, health assessment is

performed through the RF algorithm described in Section 3. Nodes

that capture new data packets forward the information (according

to the corresponding network topology) towards the sink for

processing. The data is then fed to the RF algorithm to assess the

health of the monitored device.

We varied the number of trees in the forest from 1 to 100, and

obtained in total 18 different forests. For each forest, we repeated

the simulation 10 times. During the simulation, the sensors

communicate the data generated following the laws described in

Section 4.1. The simulations are timed, i.e., the simulation does not

end when the system fails, but when the simulation time is

reached. The decision for each tree is averaged over the 10

simulations, and the final decision is averaged over all the

decisions given by each tree in the forest. In the following, we

show the average number of errors in health estimation for each of

the 3 proposed topologies.

In Fig. 5 we plotted the average number of errors in health

estimation, when all nodes can communicate with the BS. The

error rate was maintained below 50% at all times. With the number

of trees increasing in the forest, the error rate decreases and gets

close to 0%. When the number of trees in the forest is more than 9,

the error rate becomes almost constant.

Fig. 6 shows the average number of errors in health estimation,

when data is aggregated before being sent to the BS (as described

in Section 4.1). The error rate, compared to the previous simulation,

was reduced by half, and was stabilized when number of trees is

greater than 20. Aggregating data reduces the frequency of

transferring packets in the network; CHs will receive data from

nodes within their range, combine them together and send them as

one packet. As a result, the overall activity of sensors will be

reduced, and consequently they will consume less energy. This

means that sensors can live longer (comparing to the previous

topology) to ensure transferring relevant data to the BS for health

assessment. We can therefore conclude that reducing the number

of packets in the network helps improve the quality of diagnostics.

In Fig. 7 we plotted the average number of errors in health

estimation, when nodes forward their data to the nearest

aggregator. Error rate was reduced by almost a half when the

distance of transfer is reduced, and reached 0% when the number

of trees is greater than 80. Transferring data over a short distance

requires less energy from the sender. This helps preserve energy

for a longer period and ensures that data needed for health

assessment can be delivered to the BS over that time period.

To summarize, aggregating data packets ensures that nodes

degrade gracefully (rather than abruptly) and results in more

accurate estimations, which would have not been the case when

using a common machine learning algorithm usually implemented

for PHM (in wired case). Also, having nodes transfer their data over

a short distance helps to preserve the available energy in the

network. The point from which the error rate is stabilized can be

considered as the optimal (or minimum) number of trees needed

in the forest.

Fig. 8 presents the delay between the time the system enters a

failure mode and the time of its detection. This is done in the

absence of correlations between the different features. The 0 time

value of delay, the negative values, and positive values refer to in-

time predictions, early predictions and late predictions of failures,

respectively. The plotted values are the average result per number

of simulations which varies from 1 to 100. With time, sensor nodes

start to fail in order to simulate missing data packets. As a result,

the RF algorithm was able to detect 54% of the failures either in

time or before their occurrence.

For each of the 100 performed simulations, we calculated the

average number of errors in fault detection, produced by the trees

in the forest. Fig. 9 shows that this error rate remained below 15%

through the simulation. This error rate includes both “too early”

and “too late” detections. When certain sensor nodes stop

functioning, this leads to a lack on information, which has an

impact on the quality of predictions; this explains a sudden

increase in the error rate with time. We can conclude from the low

Fig. 5. Error in health estimation for the star topology.



error rate in the absence of some data packets that increasing the

number of trees in the RF helps improve the quality and accuracy of

predictions.

As described in Section 4.1, a correlation was introduced

between the features. Fig. 10 shows the number of successful

fault detection when the number of tree estimators in the

forest changes. As shown in this figure, the RF method

guarantees a 60% success rate when the number of trees is

limited to 5. As this number grows, the accuracy of the method

increases to reach 80% when the number of trees is around 100.

Comparing to the previous results, the correlation between the

features helps decrease the uncertainties in health assessment

when the number of trees increases. The algorithm is able to

understand the relationship between two features. Thus, when

some values describing a feature are missing, the algorithm

can deduct them from the available information about the

remained features.

5. Discussions

For the sake of discussion, we will evaluate in this section the

RF-based diagnostic compared to other machine learning methods.

5.1. General comparison

Finding the optimal training of a classification problem is most

of the times a real difficult problem. Tree ensembles have the

advantage of running the algorithm from different starting points,

and this can better approximate the near-optimal classifier. In his

paper, Leo Breiman discusses the accuracy of Random Forests. In

particular, he gave proof that the generalized error, although

different from one application to another, always has an upper

bound and so random forests converge [4].

The injected randomness can improve accuracy if it minimizes

correlation while maintaining strength. The tree ensembles

investigated by Breiman use either randomly selected inputs or

a combination of inputs at each node to grow the tree. These

methods have interesting characteristics as:

- Their accuracy is at least as good as Adaboost;

- They are relatively robust to outliers and noise;

- They are faster than bagging or boosting;

- They give internal estimates of error, strength, correlation, and

variable importance;

- They are simple and the trees can be grown in parallel.

There are four different levels of diversity which were defined

in [27], level 1 being the best and level 4 the worst.

! Level 1: no more than one classifier is wrong for each pattern.

! Level 2: the majority voting is always correct.

! Level 3: at least one classifier is correct for each pattern.

! Level 4: all classifiers are wrong for some pattern.

RFcan guaranteethatat least leveltwoisreached. Infact,a trained

tree is only selected to contribute in the voting if it does better than

random, i.e., the error rate generatedby the corresponding treehasto

beless than 0.5,or the treewill be droppedfromthe forest [4]. Finally,

in [31], Verikas et al. argue that the most popular classifiers like

Support Vector Machine provide too little insight about the variable

importance to the derived algorithm. They compared each of these

methodologies to the random forest algorithm to find that in most

cases RF outperform other techniques by a large margin.

This general discussion emphasizes that Random Forests

should be considered in the context of PHM based on wireless

sensor networks data [10], and that, due to their robustness and

accuracy, they are real alternatives to state-of-the-art PHM

algorithms. To illustrate this point by an experimental comparison

between random forests and algorithms usually used for diagnosis

Fig. 7. Error in health estimation for cluster topology with closest aggregator.

Fig. 6. Error in health estimation for cluster topology.



such as Adaboost and SVM, a new series of simulations will be

conducted in the section below.

5.2. Experimental comparison

Once again, we consider that data are gathered by the mean of a

wireless sensor network in which sensor nodes have a limited

lifetime, and strategies are deployed to optimize the network's

lifetime like data aggregation and hop-by-hop routing. Data have

been generated by our simulator as detailed in Section 4.1. As we

take place in a WSN context, we considered that some nodes of the

network are specifically designed to aggregate data from their

neighboring sensor. 200 terminal nodes have been deployed, and

16 aggregators have been added. They have been linked to the

closest terminal nodes according to the K-mean method. At each

time an aggregator receives 3 values, it computes their average and

transmits it towards the sink.

Situations 2 and 3 of Section 4.1 have been tested, depending on

whether each aggregator sends its averaged values directly to the

sink, or to the nearest aggregator that is closer to the sink. Note that

this last situation reduces the transmission cost (thus enlarging the

networks’ lifetime), but data arrived to the sink are more averaged.

In addition, all the sensors have limited batteries that are drained

over time due to data transmission; they are spread randomly, if

we except that the aggregators are well positioned thanks to the

use of K-means. As a consequence, the sensors die one after the

other as time goes by, impacting the evolution of the number of

sensors having detected a failure.

A failure is randomly simulated according to a Poisson law. This

failure disrupts the industrial system from close to close, and thus

Fig. 8. Delay in failure detection with respect to the number of simulations. X value represents the size of the learning set, while Y value is the averaged error between real and

predicted RULs. Standard deviations are provided too.

Fig. 9. Error rate in health assessment with respect to the number of simulations. X is again the size of the learning set, while Y value measures the too-early vs. too-late

detection. A value of five, for instance, means that there were 5 more too-early detection than too-late ones, for the considered learning size.



the number of sensors detecting aberrant values increases over

time. In spite of the aggregation process, this increase is clearly

observed at the sink level when the aggregators send their

averages directly (Situation 2, see Fig. 11), but tends to be less

apparent when the averages are again aggregated during cluster

routing (Situation 3, see Fig. 12).

Various experiments have finally been conducted to compare the

ability of Random Forests to accurately predict a failure to other

machine learning approaches proposed in the PHM literature. The

following regressors have been selected in this set of experiments,

because they are frequently considered for prognostics and health

management: a simple bagging of decision trees, the support vector

machine, AdaBoost, Gradient Boosting, and multinomial Naive Bayes.

Scikit-Learn [25] library has been used to implement the machine

learning algorithms on data provided by our WSN simulator. No

modification of the hyperparameter default values has been

performed, due to the “meaningful default values” conception of

this library: Scikit-Learn provides reasonable default values for most

parameters, making it easy and fast to create a basic and operational

machine learning system. This is also the case for Random Forests, for

which no hyperparameter optimization has been performed here,

allowing an unbiased comparison of the various approaches (see the

next section for a measure of performance increase when improving

the hyperparameter selection).

At each time, the objective was to predict the number of sensors

that detected a failure from the aggregated data received at the

sink. In doing so, we obtain a regressor capable of evaluating the

severity of a failure, and we can easily make a classifier by looking

at whether this number is strictly positive (there is a breakdown)

or zero (there is no breakdown). The simulator has been launched

several time, and N values collected at the sink level have been

randomly picked from this basis of knowledge. The number of

times the Poisson law has returned a new failure within sensors

has been stored too as the objective function: the explanatory

variables are the physical data captured and aggregated, and the

variable to be explained is the number of failures. We tested forty N

values equally distributed in the interval [0, 1000], to see if the

regression error decreases when the basis of knowledge increases.

Finally, 80% of these variables have been used for training, and the

20% remained values for evaluation during the testing stage.

As can be seen in Fig. 13, both the Naive Bayes and SVM fail to

reduce the regression error in Situation 3, even with the largest

basis of knowledge. The same statement holds for SVM even in the

simpler case of Situation 2, as can be seen in Fig. 14. Obviously, the

support vector machine fails to learn how to predict the severity of

the failure, due to the fact that data have been averaged on some

nodes in the network, and the same conclusion can be drawn, to a

lesser extent, for the Naive Bayes method. In other words, the use

of these methods for prognostic and health management must be

seriously discussed in case the data are acquired via a wireless

sensor network: energy saving strategies usually deployed in such

networks can strongly impact their ability to make good

predictions.

The four other machine learning algorithms reach good

prediction scores in testing phase when a single aggregation stage

is performed, as shown in Fig. 15. However, AdaBoost predictions

Fig. 10. Number of successful health assessments with respect to the number of

trees: the accuracy increases with the forest.

Fig. 11. Failures at sink level when data are directly sent from each aggregator to the sink.



are worse when several aggregation layers are made in the

network, and the bagging of decision trees loses stability, as

illustrated in Fig. 16. To sum up, only Gradient Boosting was able to

perform as well as Random Forests, in the context of a diagnostic

on data gathered by a wireless sensor network embedding

aggregation layers.

5.3. Hyperparameter optimization

The number of trees is not the only parameter to optimize in RF,

and the regression error can be greatly reduced by playing on its

many parameters. To illustrate this fact in a PHM scenario, we have

considered the following parameters:

! max depth: the maximum depth of the tree.

! max features: the number of features to consider when looking

for the best split.

! min samples split: the minimum number of samples required to

split an internal node.

! min samples leaf: the minimum number of samples required to be

at a leaf node.

The integer search interval has been defined as follows:

between 1 and 10 for the max depth hyperparameter, between 1

and the total number of features for max features, between 2 and

1000 for min samples split, and finally between 1 and 100 for min

samples leaf. The same dataset as in the previous section has been

Fig. 12. Failures at sink level when aggregated data are sent from aggregators to aggregators towards the sink.

Fig. 13. Comparison of mean absolute regression error in testing phase, for various machine learning algorithms in Situation 3.



considered, and it has been separated again as learning and testing

sets (80% and 20%, respectively).

Various strategies are possible to achieve a hyperparameter

optimization of the regression error in random forests. As GB and

RF proved to be both finalists in the previous evaluation, we have

considered here a mix of the two methods: gradient boosted

regression trees have been used for RF hyperparameter selection,

in which the model is improved by sequentially evaluating the

score function at the next best point, thereby finding the optimum

with as few evaluations as possible. The sequential optimization

has been called 100 times and the optimum has been reached in 35

iterations, leading to a minimum of the mean absolute error

between real and predicted number of failures equal to 0.1406. Best

parameters are respectively equal to 10 (max depth), 4 (max

features), 2 (min samples split), and 1 (min samples leaf). Obtained

convergence curve is depicted in Fig. 17, leading to a real

improvement of RF performance to achieve reliable diagnostics

on data collected within a WSN.

For the sake of completeness and fairness, this hyperparameter

optimization has been performed too in the case of SVM (penalty

parameter C of the error term), AdaBoost (learning rate and

maximum number of estimators at which boosting is terminated),

Fig. 14. Comparison of mean absolute regression error in testing phase, for various machine learning algorithms in Situation 2.

Fig. 15. Comparison of mean absolute regression error in testing phase, for the best machine learning algorithms in Situation 2.



CART (max depth of the tree, minimum number of samples

required to split an internal node, and minimum number of

samples required to be at a leaf node), and gradient boosting (max

depth, learning rate, number of boosting stages to perform, and

minimum number of samples required to split an internal node).

The optimization has been performed via a Bayesian optimization

using Gaussian Processes, with a relevant search space depending

on the considered regressor, and 100 iterations. Obtained results

are compared in terms of Root Mean Squared Error (RMSE), Mean

Absolute Error (MAE), and Mean Absolute Percentage Error

(MAPE); they are provided in Table 2. As can be seen, the

ensemble-based regressors can be really optimized, in such a way
that they outperform the SVM. Note that random Forests and

Gradient boosting have obtained in average the best results.

Fig. 16. Comparison of mean absolute regression error in testing phase, for the best machine learning algorithms in Situation 3.

Fig. 17. Convergence of mean absolute error function during RF's parameters optimization (number of calls in abscissa).

Table 2

Comparison of best Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),

and Mean Absolute Percentage Error (MAPE) after hyperparameter optimization.

Regressor RMSE MAE MAPE

Gradient Boosting 0.6602 0.1282 0.0091

AdaBoost 0.7885 0.3153 0.0091

CART 2.5494 1.8418 0.2693

SVM 59.7767 39.6415 2.6860

Random forests 0.2604 0.1218 0.0089



To put it in a nutshell, in the case where prognostic and health

management is based on data gathered through a wireless sensor

network, the prediction of the RUL should be based on Random Forest

regression. This is for the following reasons. First of all, many

regression algorithms are incompatible with the type of features

produced by such networks. Indeed, data aggregation and scheduling

policies, and the depletion of sensor batteries, cause feature vectors to

have variable sizes over time. However, most machine learning

techniques (SVM, neural networks...) are incompatible with these

variable feature vector sizes. On the other hand, our simulations have

shown that, even if these feature vectors remain fixed in size, the

performance of random forests is better than that of the usual fault

prediction techniques, for the various metrics considered, and

whether or not there is hyperparameter optimization.

6. Conclusions

In this paper, we proposed the random forests algorithm for

diagnostics when the industrial device is monitored by a wireless

sensor network. When the gathered data is incomplete, the

algorithm adapts quickly to the change and continues to deliver

reliable diagnostics. We also illustrated the impact of network

topology on the quality of information at the sink level, by

comparing two cluster topologies to the star one. We showed that

organizing the network in clusters helps preserve the overall

energy but reduces the quality of data used for diagnostics. We also

showed that reducing the distance of packet transfer may impact

the results. The relevance of random forests in such situations is

explained and RF is compared to state-of-the-art PHM algorithms.

Numerical experiments show that some of the latter have an

obvious loss of accuracy when data are provided by a WSN, which

is the case for instance of the support vector machines.

This good performance of the random forests for diagnostics in

a wireless sensor network context has however been obtained only

through simulations and qualitative discussion, which is a

limitation of this research work. A real implementation of this

algorithm in a deployed WSN should be operated, to reinforce the

confidence put in RF for diagnostics in such kind of networks.

Another limitation of this study is that only diagnostics aspects of

PHM have been considered. This is why, in future work, we intend

to develop a prognostic approach taking into consideration all the

constraints discussed in this paper. We also intend to study the

dependability of wireless sensor networks to improve both energy

consumption and the quality of data at the sink level. The effects of

an accurate feature selection on the performance of the

aforementioned algorithms will be finally investigated deeply.
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