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ABSTRACT
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The quality of surface roughness for machined parts is essential in the manufacturing process. The cutting tool
plays an important role in the roughness of the machined parts. The process of determining the number of
tolerant faults is problematic; this is due to the fact that the behaviour of the cutting tool is random. In this paper,
we use an approach based on order statistics to study the construction of functional and reliability characteristic
for the faults tolerant machined parts in each five batch of ten machined parts. Our experiments show that the

number of faulty machined parts will not exceed two and the distribution of the minimum gives the best interval
of the surface roughness. We have shown that the distribution of extreme order statistics plays an important role
in determining the lower and upper limits of the roughness measurements depending on the reliability of the

cutting tool.

1. Introduction

In the manufacturing industry, the surface finish obtained on the
final machined part is not always homogeneous. We will primarily
focus on criteria of surface quality which are linked with surface
roughness (see [1] for details). In machining processes, the surface
roughness of machined parts depends on several factors. Some are
systematic such as the geometrical conditions of the cutting tool asso-
ciated with the cinematic conditions of the generation process. Other
factors are associated with tool wear and random machining faults (see
[7,15] for details). The evolution of the cutting tool behaviour is also
random. A fault occurring in the process can lead to the lack of the
machined parts conformity and can cause disastrous economic con-
sequences. Such a situation must be identified as quickly as possible to
repair the malfunction and thus allowing a normal operation of the
production. We will consider, as is often the case in the manufacturing
industry, a batch process where a given number of machined parts with
a slight overshoot of the tolerance (faulty machined parts) are tolerated.
The magnitude of the fault must be taken into account as well as the
number of concerned machined parts. Due to this framework, an ap-
proach based on the use of the order statistics is particularly suitable to
consider a contribution to a more efficient machining.

Order statistics describing random variables in order of magnitude
are widely used in statistical methods and inference. They also play a
key role in a wide variety of practical situations such as reliability, life
testing, lifetime distributions, durability study, data compression,
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software reliability (see [2,11] for details), etc. These domains of sta-
tistics are concerned with the rank as well as the intensity of observa-
tions. It combines the techniques of conventional statistics which con-
sider the intensity of the observation. The rank order statistics only
consider the relative rank whatever the original observations were
measured on an ordinary scale or not. Order statistics have many ap-
plications, such as modelling health data in [13], modelling the heights
of sea waves (see [9] for details), in life testing of electrical components
modelling (see [12] for details), or in the mechanic field (see [5] for
details). In this paper, we study the construction of the functional
process for the fault tolerant machined part detection based on order
statistics.

Furthermore order statistics are very important in practice and
especially the minimum and the maximum values because they are the
critical values used in engineering, physics, medicine, etc. (see [2,5] for
details). The minimum and maximum values in order statistics are
called the extremes; they play an important part in the reliability and
industry framework. For a more detailed presentation of extreme order
statistics (see [3,6,11] for details). The Generalized Extreme Value
(GEV) theory is a family of continuous probability distribution which
deals with extreme events such as natural catastrophes, earthquakes,
heart attacks, flying accidents. We distinguish three families of extreme
value distributions namely Gumbel, Fréchet and Weibull; these dis-
tributions depend on the shape parameter (see [14] for more details).
Moreover, the distributions can be obtained as limited distributions of
properly normalized maxima of n independent and identically



distributed (iid) random variables. Extreme values analysis finds wide
applications in many areas including engineering for health engine
managing. Commonly, the distribution which is widely used in a re-
liability model is viewed as a parameterization of Weibull distribution.

Applications of order statistics in surface roughness modelling is
scarce in literature; we here present a case study in manufacturing
areas. This study uses data and some outcomes of surface roughness
modelling in [7]. The quality control of the machined parts in a man-
ufacturing process is crucial. This control takes place in several process
steps and especially at the end of this process. These several points
could be checked like dimensional control, surface quality, resistance to
mechanical stresses like tensile strength or fatigue behaviour (see [4]
for details).

After the introduction, Section 2 exposes the extreme value theory,
order statistics and some applications in literature. Section 3 draws the
case study framework as well as all associated developments. Finally,
Section 4 gives a conclusion.

2. Literature

This section provides information about basic concepts of the ex-
treme value theory and order statistics which can be useful for the work
and some examples of order statistics in literature are given.

2.1. Extreme value theory

Suppose Y;,...,Y; is a sequence of independent and identically dis-
tributed (iid) random variables and let.

M, = max(%,...,Y,). If the distribution of Y; is specified, then the
exact distribution of M,, is known. On the other hand, in the absence of
such specifications, the extreme value theory considers the existence of

lim P[(M,—b,)a,* <y] = F(y) for some sequence of real numbers

n—-+oo

{a, > 0}, and {b, € }. If the cumulative distribution F(y) is a non-de-
generate one distribution, then we obtain the following expression:

exp[—(l +§y;—“)’%] ifE#0
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where ;4 €  is the location parameter, c € is the scale parameter,
¢ €R is the shape parameter and y, =max(y,0). Gumbel, Frechet and
Weibull families of distributions are obtained from (1) by considering
& =0,¢> 0% < 0 respectively (see [14] for more details).

2.2. Order statistics: basic distribution theory

Let Y be a random variable from a given population, f(y) and F(y)
are the associated probability density function (pdf) and the cumulative
distribution function (cdf), respectively. Assume that (y,.y,,....;,) is a
random sample of size m from such a population and rearrange the
observations in  increasing  order = (V. Vi Ymm)»  With
Vim < Voo < Xy The 1-th order statistic is defined as the member
Y..m of the ordered collection of size m [2,6]. Depending on the appli-
cation one or more order statistics can critically affect functionality,
performances, or integrity of a complex system, and the statistical
properties of y..,, drive design and maintenance activities [5,11].

Order statistics as a discipline can be used in this respect to de-
termine the individual, joint, conditional probability of one or more
order statistics from the parent functions of the population to which the
sample belongs. Only the case of (iid) random samples is considered
here.

Consider the observations in increasing order (Yi.m,Ya:ms-»Ymim)»
such that Y;.,, <y (i = 1,...,r), then the event (Y;.,, < y) has pdf and cdf
probability functions:

fy ©) = FCRET10). [1-F () "f ()

@) = 3 CHF™ (). [1-F )"~
r=j (2)

FYr:m (y) + RYr:m(y) =1,

where R is the reliability function and

j-1
Ry, ) = ) CrhF' (). [1=-F ()]~
r=1 (3)

We can also write, for the sake of clarity:

Fy,.,, ¥) = Pr{at least r of theYjis less than or equal to y} is also known
as the unreliability function.

In particular cases of some interest in the applications;Y;.,, is the
minimum, with a density and cumulative distribution function respec-
tively:

Fin @) = mA=F @)™ 'f )
Fy., ) = 1-0-Fo)" 4)

and the maximum, Y,.,, with a density and cumulative distribution
function respectively:

S @) = MF™10)f ()
Fppm @) = F™(3) ' 5)

The underlying idea of these results is that each y, is a Bernoulli trial
with only two possible outcomes: either Y; <y (success) or Y; >y
(failure) [5,6].

In lieu of the iid hypothesis, the series of m trials follow a binomial
distribution with a success rate, p = F(y). The probability Fy,.,, (),
associated with Y;.,, <y is readily computed as the exceedance of at
least r trials being successful, whereas the Sy @) follows from deri-
vation with respect to y. Distribution-independent results, such as Eq.
(2) constitute the power of the theory of order statistics.

Let’s note that Y;.,, = min(y,,,....,,) is the smallest order statistics
and corresponds to the sample minimum, and Y,,..,, = max (y,.y,,....)},,) is
the largest order statistics and corresponds to the sample maximum.
These order statistics are specific cases of extreme value theory and are
the most important in the order statistics approach.

For example [9], one uses the Rayleigh distribution and order sta-
tistic to model the waves heights, in a given location and the corre-
sponding order statistic pdf and cdf to assess the survival probability of
a rigid breakwater; in [12] one uses order statistic in the life test of
bulbs, in [5] one uses extreme order statistics to control the strength in
structural engineering; whereas in [16] one uses order statistics in the
reliability of software.

3. Case study framework

The aim of this case study is to propose a decision support tool to
define quality control criteria in manufacturing processes. The con-
sidered work aims at improving the production of machined parts by
machining in turning process, in a production line under given cutting
conditions. Making pre-series composed of 5 batches of 10 parts will
allow to note the surface qualities obtained, these datasets are available
in [7]. Both criteria must be highlighted: on the one hand, the best
surface roughness measurement obtained and on the other hand, the
number of faulty parts, which roughness measurements are greater than
a maximum roughness allowed by the customer specification (upper
limit). To achieve this goal, different stages have been carried out:

e Research of the data family distribution in a series of five batches;

e Parent distributions estimate of parameters of (method of moments);

e Expressions of order statistics distributions (pdf and cdf) in each of
the five batches of 10 parts;



® Computation from cdf of order statistics to identify the faulty parts
in each batch;

® Minimum and maximum of surface roughness measurement with
extreme order statistics;

® Outcomes (number of faulty machined parts in each batch, best
values of surface roughness).

The datasets have been provided by the work done in [7], it consists

in the study of the surface roughness of machined parts. Surface
roughness is given by R(t) and depends on geometrical conditions of
the cutting tool associated with the cinematic conditions of the ma-
chining process. The parameters of models are measured from 5 series
of 10 parts each; on each part, 10 measurements have been achieved.
We only consider the dynamic signal of the surface roughness.

This study shows that from 5 series of 10 parts each, the minimum
of surface roughness is 1,79 um and the upper limit of the surface
roughness is around 4 ym,

In the balance of this article, y denotes the value of surface rough-
ness.

3.1. Maximum domain attraction of data distribution

From the generalized extreme value theory and maximum like-
lihood procedures in software R we obtain Table 1 showing that data
follow a distribution in Weibull family with the shape parameter & < 0
for all five batches. Remember that each batch is composed of 10 ma-
chined parts.

For this modelling, we use the two parameters Weibull distribution.
Density and the corresponding cumulative distribution are represented
by:

fa0) = 5(2) )
Fu ) = 1-e ()’ ®)

where k is the shape parameter and 1 the scale parameter, which will be
estimated in the next subsection.

3.2. Estimation of Weibull parameters with the method of moments

The method of moments is a technique commonly used in the field
of parameters estimation. If the numbers y,,y,,...,),, represent a set of
data, then an unbiased estimator for the m—th origin moment is given
by:

M, =

3|~

m
m
2N
i=1

where M,, stands for the estimation of M,,. In a Weibull distribution,
the m-moment is readily obtained from Eq. (5). With an expression of
the Gamma function I'(y), the average surface roughness can be ex-
pressed as a function of k and 1. The found integral cannot be resolved.
However it can be reduced to a standard integral, the Gamma function,
as follows:

I'(s) = _/0l q° e ddg, @)

k
EA g1
A),x—q ands—1+k.

The expression of the m—th moment is:

where q = (

Table 1
GEV shape parameter &.

Batches 1 2 3 4 5

Shape parameter & —0.6258 -0.707 —0.6819 —0.7014 —0.675

- (3e2)

As we have two parameters to estimate, we can find the first and the
second moments as follows:

1
~ 1\k 1
m=() (e g)=m

= (e e )] -

When we divide m, by the square of m;, we get the following ex-
pression:

2 5 1
" r(1+2)-r}(1+)
2 = 1 :
m 2 1
1 T (1 + k) 8)
On taking the square roots of Eq. (7), we have the coefficient of
variation C,:

| 2\_p2 1
) Vr(l +2)-r2(1+ 1)
- 1
r(1+ 1)
where o is the standard deviation and y the means of surface roughness
(see [8,10] for more details).
In this case, the method of moments can be used as an alternative to

maximum likelihood. The values of k and 4 can be determined by the
following equations:

o=loe )

‘g‘r(1+§) X

G

5
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After some calculations, we have:

1.0983
f (0.9874) .

G ©)]

The Weibull scale parameters can be calculated by:
_y
-
r(1+4)
Table 2 presents the summary of computations for the five batches.
For the scale parameter calculation, we must find F(l + %), This
integral has no closed form; thus, we use software Geogebra to compute
1
r(1+3).
For example, for the first batch, using Eq. (6) and Table 2, we get:

A=

3769 ( y \2T69 _(_y 7O
fi7693526 ) = ﬁ(ﬁ) e(53%)
)3.759 :

(.Y
F3 7603506 (V) = 1—e (3.526 10)

Similarly, we obtain the pdfs and cdfs of the four remaining batches.

Table 2
Weibull parameters for five batches.

Batches 1 2 3 4 5
Mean y 3.138 3.079 3.151 3.11 3.11
Standard deviation o 0.925 0.923 0.938 0.905 0.898
Coefficient of variation C, 0.295 0.3 0.298 0.291 0.289
Shape k 3.769 3.7 3.728 3.826 3.855
Scale parameter 1 3.526 3.499 3.54 3.494 3.494
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Fig. 1. Pdfs and cdfs of Weibull distribution of the surface roughness.

Results are reported in Fig. 1.

3.3. Distribution of ordered observations for the five batches

The 10 observations have been rearranged in size order for each
batch.

The pdfs and the corresponding cdfs of the rth order statistic in a
sample of size m = 10 for the first batch, values from Table 2 are:

3769\~ 1 3.769\10—r
Sypro @) = 1Ciy (1—9‘(ﬁ) ) . (e‘(s.sym) )

2.769 y \3769
3.769 y _
—_— —_— 3.526
X (3.526)(3.526) € ( )

10 3.769\" 3.769\10—r
Fy.0) = Z (&S (l—e_(s.évze) ) . (e_(s.syze) )

r=j

(1)

Similarly, we obtain the pdfs and cdfs of the rth order statistic for all
other batches.

From results in [7], we assume that the part is faulty when
y > 4pum. It is shown that the fault origin is generally in a small
breakage of the cutting tool. This fault can occur at any stage of the
machining process. If it happens at the beginning of the operation, the
effect of this breakage can diminish due to a self polishing phenom-
enon. This situation must not be confused with the classicalwear of the
cutting tool where the behaviour evolution of the cutting tool can be
modelized. However, we modelized the reliability of the cutting tool
which is linked with the roughness measurement. The probability to
have one measurement above 4um is Fy, ., (4) and the corresponding
reliability of the cutting tool is Ry,.,, (4); Table 3 presents the value of
each batch.

All considered batches show that Fy,,,, (4) is large enough to con-
sider the presence of one faulty part. Due to all values of Fy, ., (4); it is
also clear that it will be more than one. The reliability of the cutting
tool is weak in all batches.

Let us consider Fy,,,, (4), which indicates the probability of having 2
parts above 4 pum.

Table 4 gives results and according to all values close to 1, the
probability of a certain event. We conclude that the number of faulty
parts will not exceed 2. Moreover, Fy,, (4) ~ 0.99, this means that the
probability of three measurements above 4 um is approximately the
same for two measurements and confirms that there are no more than
two faulty parts. The reliability values of cutting tools are associated to
measurements; these values show that in each batch the magnitude of

Table 3
Probability of one measurement above 4 um and reliability of the cutting tool.

Batches 1 2 3 4 5
Fyy0.10 @) 0.87 0.86 0.86 0.88 0.89
Ryy0.10 (4) 0.13 0.14 0.14 0.12 0.11

Table 4
Probability of two measurements above 4 um and reliability of the cutting tool.

Batches 1 2 3 4 5
Fig.10 (4) 0.99 0.98 0.99 0.9 0.99
Ryy.10 (@) 0.01 0.02 0.01 0.01 0.01
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Fig. 2. Distribution of minimum of five experiments.

the measurement 4 um is very important in the behaviour of the cutting
tool.

3.4. Distributions of minima and maxima of Weibull iid samples of size 10

The distribution of the first-order statistics, which is the minimum,
is also the best value of surface roughness.

The pdf of random minima is obtained from Eq. (4) by setting r = 1,
which leads to the following pdf:

Fia @) = 10. 5 2603526 0)- [1=Fs7603.526 () ]°-

Jy1.1o @) is shown in Fig. 2 for all 5 batches. As expected, a high value of
fyi.1o @) is obtained for the small values of the surface roughness. The
best values of surface roughness are between 1.79 and 2.25. This in-
terval is now clearly described and the expected quality in line pro-
duction could be imposed.

Based on the same logic the pdf of random maxima can be studied
from Eq. (5) by setting r = m, the pdf for each batch can be written as:

Syi010 @) = 10- f3760 3526 O)- [FOP

Fig. 3 shows f, (y) and logically high values of f,

. Y10:10 Y10:10
spond to high values (around 4um) of the surface roughness.

(y) corre-

3.5. Flowchart of the different steps of proceeding

In this subsection, we propose a flowchart (Fig. 4) which illustrates
the practical stages of our proceeding. This proposed methodology in-
cludes the following steps:

0.30
!

pdfs
0.20
[

0.10
|

0.00
l

| T | T T |
2.0 25 3.0 3.5 4.0 4.5
y

Fig. 3. Pdfs distribution of maximum for five batches.



Fig. 4. Flowchart of the different stages.
Data
analysis
5 batches of 10 Family
roughness distribution
measurements — From EVT
Method of
moment
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Statistical Surface roughness
modeling modeling

Computation

B ——
\/ Quality control

Minimum of surface Number of
roughness (best faulty machined
machined parts) parts

Maximum of surface
roughness (defective
machined parts)

e Data analysis: it concerns the analysis of raw data from industrial
components;

e Method of moment: the method of moments is a technique com-
monly used in the field of parameters estimation;

e Computation: it concerns the use of cdf and order statistics to
identify the faulty machined parts in each batch;

Finally, we have the best values of surface roughness, the number of
faulty machined parts and the corresponding roughness values in each
batch.

4. Conclusion

In manufacturing, preliminary steps consist of defining the quality
criteria expected when the process will be operated in line production.
These steps are achieved by making pre-series.

For this purpose, we have considered a case study which is a turning
process with some specific cutting conditions. We have proceeded the
machining of 5 batches of 10 parts. The quality criteria in our case
study are twofold: the minimum surface roughness for each part and the
maximum number of faulty parts in a batch. A part is considered as
faulty when the surface roughness is greater than 4um. It is shown that
the dataset follows a Weibull distribution with shape parameters

(k> 1).

Extreme order statistics in surface roughness were applied to high-
light the 2 considered criteria.

The computation of the cdf of order statistic has revealed a number
of faulty parts whereas the minimum distributions give the best in-
terval, [1.79,..., 2.25], of the surface roughness. The reliability of the
cutting tool around 4 um is not satisfactory; this result confirms the best
interval of roughness measurement for machined parts.

As a classical limit of this study one can argue that 5 batches could
be too small to be sure that the good criteria were found. Nevertheless,
by keeping the same procedure, the dataset can surely be enhanced
with measurements of the line at the beginning of the parts production.
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