E. Agrafioti, G. Bouras, D. Kalderis, and E. Diamadopoulos, Biochar production by sewage sludge pyrolysis, J. Anal. Appl. Pyrol, vol.101, pp.72-78, 2013.

M. Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan et al., Biochar as a sorbent for contaminant management in soil and water: A review, Chemosphere, vol.99, pp.19-23, 2014.

D. Aran, A. Maul, and J. F. Masfaraud, A spectrophotometric measurement of soil cation exchange capacity based on cobaltihexamine chloride absorbance, C. R. Geosci, vol.340, pp.865-871, 2008.

G. Choppala, N. Bolan, A. Kunhikrishnan, and R. Bush, Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate, Chemosphere, vol.144, pp.374-381, 2016.

Z. Ding, X. Hu, Y. Wan, S. Wang, and B. Gao, Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests, J. Ind. Eng. Chem, vol.33, pp.239-245, 2016.

X. Dong, L. Q. Ma, J. Gress, W. Harris, and Y. Li, Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: Important role of dissolved organic matter from biochar, J. Hazard. Mater, vol.267, pp.62-70, 2014.

X. J. Gong, W. G. Li, D. Y. Zhang, W. B. Fan, and X. R. Zhang, Adsorption of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon in the presence of co-existing ions, Int. Biodeterior. Biodegrad, vol.102, pp.256-264, 2015.

P. Gonzalez-garcia, Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications, Renew. Sustain. Energ. Rev, vol.82, pp.1393-1414, 2018.

X. Han, Y. L. Li, and J. D. Gu, Oxidation of As(III) by MnO 2 in the absence and presence of Fe(II) under acidic conditions, Geochim. Cosmochim. Acta, vol.75, pp.368-379, 2011.

H. Huang, J. Tang, K. Gao, R. He, H. Zhao et al., Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics, RSC Adv, vol.7, pp.14640-14648, 2017.

M. F. Hughes, B. D. Beck, Y. Chen, A. S. Lewis, and D. J. Thomas, Arsenic exposure and toxicology: A historical perspective, Toxicol. Sci, vol.123, pp.305-332, 2011.

J. Ifthikar, J. Wang, Q. Wang, T. Wang, H. Wang et al., Highly efficient lead distribution by magnetic sewage sludge biochar: Sorption mechanisms and bench applications, Bioresour. Technol, vol.238, pp.399-406, 2017.

S. V. Jadhav, E. Bringas, G. D. Yadav, V. K. Rathod, I. Ortiz et al., Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal, J. Environ. Manage, vol.162, pp.306-325, 2015.

C. K. Jain and R. D. Singh, Technological options for the removal of arsenic with special reference to South East Asia, J. Environ. Manage, vol.107, pp.1-18, 2012.

T. Jiang, R. Xu, T. Gu, and J. Jiang, Effect of crop-straw derived biochars on Pb(II) adsorption in two variable charge soils, J. Integr. Agric, vol.13, pp.507-516, 2014.

H. Jin, S. Capareda, Z. Chang, J. Gao, Y. Xu et al., Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation, Bioresour. Technol, vol.169, pp.622-629, 2014.

Y. Lin, P. Munroe, S. Joseph, R. Henderson, and A. Ziolkowski, Water extractable organic carbon in untreated and chemical treated biochars, Chemosphere, vol.87, pp.151-157, 2012.

T. H. Liou and S. J. Wu, Characteristics of microporous/mesoporous carbons prepared from rice husk under base-and acid-treated conditions, J. Hazard. Mater, vol.171, pp.693-703, 2009.

P. Liu, W. J. Liu, H. Jiang, J. J. Chen, W. W. Li et al., Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution, Bioresour. Technol, vol.121, pp.235-240, 2012.

H. Lu, W. Zhang, Y. Yang, X. Huang, S. Wang et al., Relative distribution of Pb 2+ sorption mechanisms by sludge-derived biochar, Water Res, vol.46, pp.854-862, 2012.

T. Mahmood, M. T. Saddique, A. Naeem, P. Westerho, and S. Mustafa, Comparison of different methods for the point of zero charge determination of NiO, Ind. Eng. Chem. Res, vol.50, pp.10017-10023, 2011.

B. A. Manning, S. E. Fendorf, B. Bostick, and D. L. Suarez, Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite, Environ. Sci. Technol, vol.36, pp.976-981, 2002.
DOI : 10.1021/es0110170

URL : http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1508&context=usdaarsfacpub

D. Mohan, A. Sarswat, Y. S. Ok, and C. U. Pittman, Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent -A critical review, Bioresour. Technol, vol.160, pp.191-202, 2014.

M. Montperrus, Y. Bohari, M. Bueno, A. Astruc, and M. Astruc, Comparison of extraction procedures for arsenic speciation in environmental solid reference materials by high-performance liquid chromatography-hydride generation-atomic fluorescence spectroscopy, Appl. Organomet. Chem, vol.16, pp.347-354, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00291394

N. K. Niazi, I. Bibi, M. Shahid, Y. S. Ok, E. D. Burton et al., Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination, Environ. Pollut, vol.232, pp.31-41, 2018.

N. K. Niazi, I. Bibi, M. Shahid, Y. S. Ok, S. M. Shaheen et al., Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques, Sci. Total Environ, vol.621, pp.1642-1651, 2018.

E. H. Novotny, C. M. Maia, M. T. Carvalho, and B. E. Madari, Biochar: Pyrogenic carbon for agricultural use -A critical review, Rev. Bras. Cienc. Solo, vol.39, pp.321-344, 2015.
DOI : 10.1590/01000683rbcs20140818

URL : http://www.scielo.br/pdf/rbcs/v39n2/0100-0683-rbcs-39-2-0321.pdf

J. T. Petrovic, M. D. Stojanovic, J. V. Milojkovic, M. S. Petrovic, T. D. Sostaric et al., Alkali modified hydrochar of grape pomace as a perspective adsorbent of Pb 2+ from aqueous solution, J. Environ. Manage, vol.182, pp.292-300, 2016.

Y. Qiu, Z. Zheng, Z. Zhou, and G. D. Sheng, Effectiveness and mechanisms of dye adsorption on a straw-based biochar, Bioresour. Technol, vol.100, pp.5348-5351, 2009.

P. Regmi, J. L. Moscoso, S. Kumar, X. Cao, J. Mao et al., Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process, J. Environ. Manage, vol.109, pp.61-69, 2012.

R. Singh, S. Singh, P. Parihar, V. P. Singh, and S. M. Prasad, Arsenic contamination, consequences and remediation techniques: A review, Ecotoxicol. Environ. Saf, vol.112, pp.247-270, 2015.
DOI : 10.1016/j.ecoenv.2014.10.009

T. Sizmur, T. Fresno, G. Akgül, H. Frost, and E. Moreno-jiménez, Biochar modification to enhance sorption of inorganics from water, Bioresour. Technol, vol.246, pp.34-47, 2017.

P. Thomas, J. K. Finnie, and J. G. Williams, Feasibility of identification and monitoring of arsenic species in soil and sediment samples by coupled highperformance liquid chromatography -Inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom, vol.12, pp.1367-1372, 1997.

M. Vithanage, I. Herath, S. Joseph, J. Bundschuh, N. Bolan et al., Interaction of arsenic with biochar in soil and water: A critical review, Carbon, vol.113, pp.219-230, 2017.

J. Wan, J. Pressigout, S. Simon, and V. Deluchat, Distribution of As trapping along a ZVI/sand bed reactor, Chem. Eng. J, vol.246, pp.322-327, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01249974

S. Wang, B. Gao, Y. Li, A. Mosa, A. R. Zimmerman et al., Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead, Bioresour. Technol, vol.181, pp.13-17, 2015.
DOI : 10.1016/j.biortech.2015.01.044

S. Wongrod, S. Simon, G. Guibaud, P. N. Lens, Y. Pechaud et al., Lead sorption by biochar produced from digestates: Consequences of chemical modification and washing, J. Environ. Manage, vol.219, pp.277-284, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01803748

S. Wongrod, S. Simon, E. D. Van-hullebusch, P. N. Lens, and G. Guibaud, Changes of sewage sludge digestate-derived biochar properties after chemical treatments and the influence on As(III and V) and Cd(II) sorption, Int. Biodeterior. Biodegrad, vol.36, pp.96-102, 2018.

W. Wu, J. Li, T. Lan, K. Müller, N. Khan et al., Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: A microscopic and spectroscopic investigation, Sci. Total Environ, vol.576, pp.766-774, 2017.

Z. Xu, H. Y. Hu, D. K. Chen, J. X. Cao, and H. Yao, Determination of inorganic arsenic speciation in municipal solid waste incineration fly ash by high performance liquid chromatography-hydride generation-atomic fluorescence spectroscopy with phosphoric acid as extracting agent, Chinese J. Anal. Chem, vol.43, pp.490-494, 2015.

Y. Xue, B. Gao, Y. Yao, M. Inyang, M. Zhang et al., Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests, Chem. Eng. J, pp.673-680, 0202.

H. Yuan, T. Lu, H. Huang, D. Zhao, N. Kobayashi et al., Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge, J. Anal. Appl. Pyrolysis, vol.112, pp.284-289, 2015.

W. Zhang, S. Mao, H. Chen, L. Huang, and R. Qiu, Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions, Bioresour. Technol, vol.147, pp.545-552, 2013.