HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Conference papers

Deep learning for multi-site ms lesions segmentation: two-step intensity standardization and generalized loss function

Francesca Galassi 1 Solène Tarride 1 Emmanuel Vallée 2 Olivier Commowick 1 Christian Barillot 1
1 Empenn
INSERM - Institut National de la Santé et de la Recherche Médicale, Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-02052250
Contributor : Francesca Galassi Connect in order to contact the contributor
Submitted on : Thursday, February 28, 2019 - 1:21:20 PM
Last modification on : Friday, April 8, 2022 - 4:04:03 PM
Long-term archiving on: : Wednesday, May 29, 2019 - 6:26:29 PM

File

Template_ISBI2019.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-02052250, version 1

Citation

Francesca Galassi, Solène Tarride, Emmanuel Vallée, Olivier Commowick, Christian Barillot. Deep learning for multi-site ms lesions segmentation: two-step intensity standardization and generalized loss function. ISBI 2019 - 16th IEEE International Symposium on Biomedical Imaging, Apr 2019, Venice, Italy. pp.1. ⟨hal-02052250⟩

Share

Metrics

Record views

229

Files downloads

237