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1 École Centrale de Nantes, LS2N, 1 rue de la Noë, F-44321 Nantes, France
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ABSTRACT

This paper addresses the linear spectral unmixing problem, by
incorporating different constraints that may be of interest in
order to cope with spectral variability: sparsity (few nonzero
abundances), group exclusivity (at most one nonzero abun-
dance within subgroups of endmembers) and significance
(non-zero abundances must exceed a threshold). We show
how such problems can be solved exactly with mixed-integer
programming techniques. Numerical simulations show that
solutions can be computed for problems of limited, yet realis-
tic, complexity, with improved estimation performance over
existing methods, but with higher computing time.

Index Terms— sparse spectral unmixing, `0-norm opti-
mization, structured sparsity, mixed-integer programming.

1. INTRODUCTION

Spectral unmixing consists in decomposing an observed re-
flectance spectrum into a linear mixture of elementary spec-
tra (endmembers) and estimating their proportions (abun-
dances) [1, 2]. We focus on abundance estimation, and
endmembers are supposed to be known, e.g., obtained by
laboratory spectroscopic measurements or estimated from
the hyperspectral data set, forming a dictionary used for
decomposition. In order to cope with spectral variability,
spectral libraries may contain an increasingly high number of
spectra—the minerals data base provided by the United States
Geological Survey (USGS), for example, increased from 504
spectra in 2003 [3] to 1276 spectra in 2017 [4]. Dealing
with a large number of endmembers is acknowledged as a
critical issue, especially because many spectra are highly cor-
related [5, 6]. In such cases, the standard approach based on
least-squares fitting under positivity and possibly sum-to-one
constraints [7], may perform badly, and stronger constraints
are required, some of which are considered in this paper.

The first one is sparsity: usually, each mixture contains
only a few components. Second, imposing structural con-
straints on the dictionary is also of interest in order to cope
with variability. In particular, experimental data concerning
a mineral are usually acquired in various conditions, and the
dictionary may include such different spectra, although at

most one is actually used in the decomposition (exclusiv-
ity constraint). Last, imposing a minimum value to each
non-zero abundance (significance constraint) also promotes
sparsity: conjugated with positivity and sum-to-one con-
straints, it concentrates the solution into few components,
without imposing a maximum number of non-zero abun-
dances.

To our knowledge, such constraints have never been
addressed exactly, probably because of their numerical dif-
ficulty. Cardinality constraints resort to combinatorial opti-
mization. Sparse spectral unmixing has been proposed e.g.,
with `1-norm [8, 9] or `p, p<1-norm [10] regularization, or
with a greedy Orthogonal Matching Pursuit procedure [9].
While computationally attractive, such approaches usually
do not solve the original sparse problem, and they face dif-
ficulties in considering the sum-to-one constraint and non-
normalized dictionaries. Both exclusivity and significance
constraints are basically logical constraints, that cannot be
addressed by standard optimization (exclusivity is mentioned
e.g. in [6], but no algorithmic solution is proposed). This pa-
per considers the exact resolution of such problems through
mixed-integer programming (MIP) techniques, which mix
continuous and discrete variables and offers a natural frame-
work for such constraints. Although MIP optimization is
usually NP-hard, it has been investigated for long in opera-
tions research and very efficient solvers were developed [11].

In this paper, we first show how the above constraints can
be exactly translated into MIPs; their exact resolution is then
performed through dedicated software. Second, we evaluate
the obtained solutions through numerical simulations in their
ability to correctly solve unmixing problems, as a function of
the problem complexity (cardinality and noise level).

2. CONSTRAINED LINEAR SPECTRAL UNMIXING

We consider the standard linear mixture model [1, 2]:

y =

N∑
n=1

ansn + ε = Sa+ ε,

where y ∈ RL is a reflectance spectrum acquired in L spec-
tral bands, sn ∈ RL represents the n-th endmember, an ∈ R



is the associated abundance, a = [a1, . . . , an]T , ε repre-
sents noise and model errors and S = [s1, . . . , sN ] is the
dictionary of N endmembers, with usually N � L. In or-
der to account for physical considerations (abundances are
percentages), positivity and sum-to-one constraints are usu-
ally added. The resulting Fully Constrained Least-Squares
(FCLS) estimate [7] reads:

min
a∈ RN

‖y − Sa‖2 such that (s.t.) a ≥ 0,

N∑
n=1

an = 1, (1)

where vector inequality is taken componentwise. In the pres-
ence of noise, and if the dictionary S contains highly corre-
lated spectra, FCLS may not be efficient, as shows the exam-
ple in Figure 1, Section 4: estimated abundances are spread
over many non-zero, but small, values, which does not corre-
spond to physical reality and lead to erroneous interpretation.
In such cases, imposing more constraints may be necessary.

2.1. Cardinality constraint (`0-norm sparsity)

In most cases, only a small number of elementary spectra
are used for representing a mixture: a should be sparse, that
is, only a few an are non-zero. Let us remark that formula-
tion (1), through the positivity constraint, produces solutions
for which some abundances are zero. However, on difficult
problems, FCLS generally produces a large number of small-
valued abundances and may fail in locating the true compo-
nents (see simulation results in Section 4). Enforcing more
sparsity may contribute to improve abundance estimation [9,
12, 5]. Introducing the `0 “norm” ‖a‖0 = Card{n|an 6=
0}, the sparse linear unmixing problem can be written as the
cardinality-constrained optimization problem:

min
a≥0
‖y − Sa‖2 s. t. ‖a‖0 ≤ K,

N∑
n=1

an = 1. (2)

Since solving (2) is essentially a combinatorial problem,
suboptimal estimation strategies are usually preferred for
computational efficiency. Substituting the `0 norm with the
convex `1 norm has been a standard in sparsity-enhancing
methods for a long time. However, it is not fully appropriate
here: since abundances are positive and sum to one, their `1
norm is fixed to 1! Therefore, the `1 norm cannot be used
for enforcing sparsity in problem (1). Indeed, we note that
the works in [8, 9] exploiting `1-norm strategies discard the
sum-to-one constraint. While we acknowledge that imposing
a lower value on

∑
an may act as a sparse regularizer, in

our experiments, however, the best `1-norm-based solution
was always found with

∑
an ' 1, that is, the FCLS solu-

tion (1). The non-convex `p,p<1-norm regularization recently
proposed in [10] may be more suited for enforcing sparsity,
although optimization strategies in [10] also discard the sum-
to-one constraint. Standard greedy iterative algorithms [13]

are also unadapted to cope with the sum-to-one constraint
and with non-normalized dictionaries: since endmembers
are reflectance spectra, the dictionary cannot be normalized
without affecting the abundance estimation [12]. Finally, the
backward procedure in [12] iteratively removes one by one
the small-but-non-zero components in the FCLS solution.
Although this method has no optimality guarantee with re-
spect to problem (2), it provides a sparse solution by running
iterations until a few abundances are non-zero. Therefore, it
will be used for comparison in our experiments.

2.2. Group exclusivity constraint

In order to improve the model accuracy in dictionary-based
spectral unmixing, a given mineral can be represented by sev-
eral possible spectra, depending on grain size, acquisition ge-
ometry, impurities, etc. Also, mineral samples used for end-
member laboratory measurements may come from different
places on Earth, resulting in slight differences in impurities.
In addition, some minerals (e.g., olivine or pyroxene) are ac-
tually solid-state solutions with a continuum of possible com-
positions, creating a variability in the spectral shape. In such
cases, the spectral library may include different possible vari-
ations of a given mineral, although at most one may be acti-
vated in a given mixture [6]. Let the component indices be
split1 into J groups G1, . . . , GJ , and let a(j) denote the cor-
responding abundance subset. We address the following op-
timization problem, which imposes that the mixture contains
at most one spectral element in each group Gj :

min
a≥0
‖y − Sa‖2 s. t.

{
‖a(j)‖0 ≤ 1, j = 1, . . . , J∑N

n=1 an = 1,
(3)

Note that such group exclusivity (GE) constraints also en-
hance more sparsity in the FCLS solution (1).

2.3. Significant abundances only

If the spectral dictionary is highly correlated and in the pres-
ence of noise, the FCLS solution usually shows (possibly
many) small-amplitude components. Such artifacts can be
easily eliminated after some post-processing step; however,
they may also perturbate detection of the true components
(see Section 4, Figure 1, left column). Therefore, one may
want to impose a minimum value to non-zero abundances, in
order to detect only significant contributions. We call these
constraints significant abundances (SA). The last optimiza-
tion problem we are interested in therefore reads:

min
a≥0
‖y−Sa‖2 s. t.

{
(an 6= 0⇒ an ≥ τ) , n = 1, . . . , N∑N

n=1 an = 1.

(4)

1We consider here a partition of the dictionary, but similar constraints
operating on overlapping groups could also be accounted for.



It represents another sparsity-promoting formulation (less
than 1/τ abundances are non-zero), that may be preferred
to the `0-norm problem (2). In particular, tuning the related
threshold τ can be easier in practice than specifying the num-
ber of non-zero abundances that are searched in the mixture.

3. REFORMULATIONS AS MIXED-INTEGER
PROGRAMS

We now formulate the three constrained spectral unmixing
problems (with sparsity, exclusivity and significance con-
straints) as mixed-integer programs (MIPs). Since these
constraints are discrete or logical ones, we introduce binary
variables bn indicating the presence or absence of a given
endmember in the mixture: bn = 1 ⇔ an 6= 0. Remarking
that abundances an ∈ [0, 1], one can easily show that the
former equivalence can be exactly translated as 0 ≤ an ≤ bn,
giving N linear inequality constraints mixing binary and real
variables, that can be efficiently tackled by MIP optimization.

The `0 norm can now be simply written as the sum of the
binary variables: ‖a‖0 =

∑
n bn. Therefore, the cardinality-

constrained problem (2) is equivalently reformulated as:

min
a∈RN ,b∈{0,1}N

‖y − Sa‖2 s. t.


0 ≤ a ≤ b∑

n bn ≤ K∑
n an = 1

.

Similarly, the exclusivity-constrained problem (3) reads:

min
a∈RN ,b∈{0,1}N

‖y−Sa‖2 s. t.


0 ≤ a ≤ b∑

i∈ Gj
bi ≤ 1, j = 1, . . . , J∑N

n=1 an = 1.

Finally, one can show that the logical constraints in (4) can be
equivalently written as τbn ≤ an ≤ bn, so that the problem
with significance constraints (4) reads:

min
a∈RN ,b∈{0,1}N

‖y − Sa‖2 s. t.

{
τbn ≤ an ≤ bn, ∀n∑N

n=1 an = 1
.

These three optimization problems share a common structure:
a quadratic cost function, linear equality and inequality con-
straints, and binarity of some variables. Efficient resolution
methods have been developed in operations research for such
quadratic MIPs, based on branch-and-bound tree exploration
strategies. In this paper, resolution is performed with IBM
ILOG CPLEX, which is unanimously considered among the
best MIP solvers [11].

Finally, although considered separately in the former de-
scription, the three constraints can obviously be mixed in or-
der to build more complex estimates, and resulting problems
still form quadratic MIPs. Note also that alternate formula-
tions that would switch the cost function and the constraints
(e.g., minimize the `0 norm under a bounded approximation
error constraint) result in quadratically-constrained MIPS,
whose resolution by MIP solvers is much less efficient [14].

4. SIMULATION RESULTS

We study the performance of these approaches on simu-
lated spectral unmixing problems. The dictionary is com-
posed of reflectance spectra of minerals taken in the USGS
database [3], possibly present on planetary surfaces [15]. It
contains N = 481 spectra, among which J = 85 groups of
spectra with same mineral name contain from 2 to 18 end-
members, and 146 endmembers are not clustered into groups.
Spectral sampling represents L = 113 wavelengths from 1
to 2.5 microns. Abundances are uniformly distributed above
τ = 0.1 and sum to one. Spectral components are randomly
chosen, with at most one endmember in each group. Gaussian
noise ε is added with SNRdB = 10 log(‖Sa‖2/‖ε‖2) equal
to 55 and 40 dB. Due to the positivity of the spectra (which
have therefore nonzero mean), such values seem particularly
high, but they actually correspond to low and medium noise
levels (see Figure 1 for an example). In both cases, data are
sufficiently noisy so that the FCLS estimate almost always
fails in retrieving the true abundance set, as will be seen later.

Abundances are estimated by FCLS, by the backward
method in [12] and by the following constrained estimates:
`0-norm sparsity (`0), exclusivity (GE), `0-norm sparsity and
exclusivity (`0+GE), significance and exclusivity (SA+GE).
The best `1-norm-based solutions were obtained by tuning the
`1 norm close to 1 (see § 2.1), and therefore gave similar re-
sults to FCLS. The threshold τ for significance constraints is
set to 0.1 and cardinality constraints are set to their true value.
Resolution is performed on a standard desktop computer.

Figure 1 shows an example of results, with SNR = 40 dB
and K = 4. FCLS correctly detects only 3 spectra, with un-
derestimated amplitudes, and produces many erroneous de-
tections. In this example, adding the GE constraint improves
the detection since the 4 spectra are correctly detected. How-
ever, some artifacts can still be found, and abundances of
true components are therefore badly estimated. The back-
ward method correctly detects 3 spectra, with slightly mis-
estimated amplitudes. On the other hand, the three `0, `0+GE
and SA+GE estimates perfectly detect the four components,
with fairly estimated amplitudes (we only show the first esti-
mate, since the three are identical).

Figure 2 shows the quadratic error between true and esti-
mated abundances as a function of K, averaged over 30 data
realizations, with low (55 dB) and medium (40 dB) noise lev-
els. GE improves over simple FCLS, and the backward per-
forms better FCLS and GE at high SNR and lowK. The three
`0, `0+GE and SA+GE estimates always give the best results,
with perfect detections at high SNR (even forK = 7, whereas
FCLS and GE fail fromK = 2 and the backward method fails
from K = 4). Of course, their performance decreases as the
problem complexity increases: then, the `0 minimizer, even
correctly computed, does not find the true solution. For SNR
= 55 dB and K > 6, the problem complexity does not make
it possible to compute the solution in the maximum time al-
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Fig. 1. Example of result,K = 4 spectra, SNR = 40 dB. Top: estimated (black squares) and true (red stars) abundances. Bottom:
true (solid red line) and estimated (dashed black line) endmembers weighted by their abundances, and noise (blue solid line).
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Fig. 2. Error on estimated abundances for FCLS (+), GE (4),
`0 (o), SA+GE (�), and backward [12] (x).

lowed for MIP resolution (1000 s).
Table 1 gives average computing times obtained on

the former instances, for GE, `0, `0+GE and SA+GE con-
straints. Including GE constraints is never computationally
prohibitive, although it requires the resolution of a MIP. The
computing times of the three `0-norm-based estimates are
still reasonable for low noise level or small K, but strongly
increase with these two factors. In particular, the optimal
solution of `0+GE is obtained in less than 1000 s, on all
instances up to K = 6 for SNR = 55, and up to K = 4
for SNR = 40. Problems with significance constraints are
much more difficult to solve, as show the rows ‘SA+GE’ in
Table 1. In all our simulations, `0 and `0+GE always gave the
same solution. However, adding GE constraints allows better
numerical resolution for the most difficult problems. Finally,
the computing time of the backward method in [12] is rather
high (approximately 32 s for all problems), since it requires
the resolution of many (up to N −K) FCLS problems.

5. CONCLUSION

Complex constraints for spectral unmixing (cardinality, group
exclusivity, significant abundances) were taken into account

SNR Method K=3 K=4 K=5 K=6 K=7
55 dB GE 1.3 2.2 3.3 5.9 9.8

`0 1.5 3 11.8 124(3) 468(9)

`0+GE 1.6 3.1 7.1 82(1) 320(7)

SA+GE 2.5 11.5 29 76 264(5)

40 dB GE 1.3 2.2 2.1 3.2 2.9
`0 9.2 107(1) 574(13) 963(27) 1000(30)

`0+GE 8.1 75 515(11) 929(25) 982(28)

SA+GE 282(6) 426(8) 746(19) 936(26) 997(29)

Table 1. Computing times (s) for optimization of MIP prob-
lems, averaged over 30 instances. In parentheses: number of
instances for which optimization did not terminate in 1000 s.
The computing time of the backward method is almost con-
stant same for all problems, around 32 s.

via MIP formulations. When such constraints are valid in
practice, they may be advantageously used for improving
abundance estimation. Exact optimization of the resulting
problems was shown to be possible for problems of limited
complexity. In particular, accounting for group exclusivity
only reasonably increases the computing time. More involved
sparsity-inducing constraints (cardinality or significant abun-
dances) are computationally more demanding. In our sim-
ulations with 481 endmembers, exact resolution of `0-norm
problems was still possible up to K = 6 at high SNR and
K = 4 at medium SNR, which is still realistic in many cases.

Incorporating binary indicating variables offers a flexible
framework, which may be used for considering other high-
level structuring constraints. Adding more constraints to the
problems studied in this paper is also a lever for improving
their numerical resolution. Last, dedicated MIP optimization
strategies are currently under investigation in order to reduce
the computing time.
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