N. Nitta and G. Yushin, High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles, Part. Part. Syst. Charact, vol.31, pp.317-336, 2014.

J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacín, Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions, Adv. Mater, vol.22, pp.170-192, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00528312

M. Keppeler and M. Srinivasan, Interfacial Phenomena/Capacities Beyond Conversion Reaction Occurring in Nano-Sized TransitionMetal-Oxide-Based Negative Electrodes in Lithium-Ion Batteries: A Review, 2017.

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. Tarascon,

, Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries, Nature, vol.407, pp.496-499, 2000.

S. Grugeon, S. Laruelle, L. Dupont, and J. Tarascon, An Update on the Reactivity of Nanoparticles Co-Based Compounds towards Li, Solid State Sci, vol.5, pp.895-904, 2003.

C. J. Pelliccione, Y. Ding, E. V. Timofeeva, and C. U. Segre, Situ XAFS Study of the Capacity Fading Mechanisms in ZnO Anodes for Lithium-Ion Batteries, J. Electrochem. Soc, vol.162, pp.1935-1939, 2015.

D. Son, E. Kim, T. Kim, M. G. Kim, J. Cho et al., Nanoparticle Iron-Phosphate Anode Material for Li-Ion Battery, Appl. Phys. Lett, vol.85, pp.5875-5877, 2004.

L. Shao, J. Shu, R. Ma, M. Shui, L. Hou et al., Electrochemical Characteristics and Intercalation Mechanism of Manganese Carbonate as Anode Material for Lithium-Ion Batteries, Int. J. Electrochem. Sci, 1170.

L. Shao, S. Wang, K. Wu, M. Shui, R. Ma et al., Comparison of (BiO) 2 CO 3 to CdCO 3 as Anode Materials for Lithium-Ion Batteries, Ceram. Int, vol.40, pp.4623-4630, 2014.

L. Shao, R. Ma, K. Wu, M. Shui, M. Lao et al., Metal Carbonates as Anode Materials for Lithium Ion Batteries, J. Alloy Compd, vol.581, pp.602-609, 2013.

X. Yan, X. Tong, J. Wang, C. Gong, M. Zhang et al., Hydrothermal-Synthesized NiO Nanowall Array for Lithium Ion Batteries, J. Alloy. Compd, vol.556, pp.56-61, 2013.

L. Aldon and J. Jumas, Lithium-Induced Conversion Reaction in Wu? stite Fe 1?x O Studied by 57 Fe Mo? ssbauer Spectroscopy, Solid State Sci, vol.14, pp.354-361, 2012.

Y. Kim and J. B. Goodenough, Lithium Insertion into TransitionMetal Monosulfides: Tuning the Position of the Metal 4s Band, J. Phys. Chem. C, vol.112, pp.15060-15064, 2008.

D. Qin, P. Yan, G. Li, Y. Wang, Y. An et al., Synthesis of Hierarchical CoO Nano/Microstructures as Anode Materials for Lithium-Ion Batteries, J. Nanomater, pp.1-5, 2014.

J. Wang, G. Wang, L. Yang, S. H. Ng, and H. Liu, An Investigation on Electrochemical Behavior of Nanosize Zinc Sulfide Electrode in Lithium-Ion Cells, J. Solid State Electrochem, vol.10, pp.250-254, 2006.

S. Petnikota, S. K. Marka, A. Banerjee, M. V. Reddy, V. V. Srikanth et al., Graphenothermal Reduction Synthesis of 'Exfoliated Graphene Oxide/Iron (II) Oxide' Composite for Anode Application in Lithium Ion Batteries, J. Power Sources, vol.293, pp.253-263, 2015.

S. Grugeon, S. Laruelle, R. Herrera-urbina, L. Dupont, P. Poizot et al., Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium, J. Electrochem. Soc, vol.148, pp.285-292, 2001.

S. Laruelle, S. Grugeon, P. Poizot, . Dolle?, M. Dolle? et al., On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential, J. Electrochem. Soc, vol.149, pp.627-634, 2002.

C. Liu, C. Zhang, H. Fu, X. Nan, and G. Cao, Exploiting HighPerformance Anode through Tuning the Character of Chemical Bonds for Li-Ion Batteries and Capacitors, Adv. Energy Mater, vol.7, p.1601127, 2017.

A. Eguía-barrio, E. Castillo-martínez, F. Klein, R. Pinedo, L. Lezama et al., Electrochemical Performance of CuNCN for Sodium Ion Batteries and Comparison with ZnNCN and Lithium Ion Batteries, J. Power Sources, vol.367, pp.130-137, 2017.

A. Eguía-barrio, E. Castillo-martínez, X. Liu, R. Dronskowski, M. Armand et al., New Materials Applied as Anode Electrodes for Sodium and Lithium Ion Batteries, 1608.

M. T. Sougrati, A. Darwiche, X. Liu, A. Mahmoud, R. P. Hermann et al., Transition-Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium-and Sodium-Ion Batteries with Excellent Cycling Properties, Angew. Chem., Int. Ed, vol.55, pp.5090-5095, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01302890

X. Liu, A. Decker, D. Schmitz, and R. Dronskowski, Crystal Structure Refinement of Lead Cyanamide and the Stiffness of the Cyanamide Anion, Z. Anorg. Allg. Chem, vol.626, pp.103-105, 2000.

W. Zhao, J. Pan, and F. Huang, Nonaqueous Synthesis of Metal Cyanamide Semiconductor Nanocrystals for Photocatalytic Water Oxidation, Chem. Commun, vol.54, pp.1575-1578, 2018.

M. Kubus, C. Castro, and D. Enseling, Ju? stel, T. Room Temperature Red Emitting Carbodiimide Compound Ca-(CN2):Mn2+, Opt. Mater, vol.59, pp.126-129, 2016.

H. Meng, X. Li, X. Zhang, Y. Liu, Y. Xu et al., Fabrication of Nanocomposites Composed of Silver Cyanamide and Titania for Improved Photocatalytic Hydrogen Generation, Dalton Trans, vol.44, 2015.

M. Becker, J. Nuss, and M. Jansen, Kristallstruktur und schwingungsspektroskopische Daten von Silbercyanamid/Crystal Structure and Spectroscopic Data of Silver Cyanamide, Z. Naturforsch., B, vol.55, pp.383-385, 2000.

M. G. Down, M. J. Haley, P. Hubberstey, R. J. Pulham, and A. E. Thunder, Synthesis of the Dilithium Salt of Cyanamide in Liquid Lithium; X-Ray Crystal Structure of Li 2 NCN, J. Chem. Soc., Chem. Commun, pp.52-53, 1978.

L. R. Auchmoody and G. W. Wendel, Effect of Calcium Cyanamide on Growth and Nutrition of Plan Fed Yellow-Poplar Seedlings

. Res, . Pap, . Ne-265.-uppdr, P. A. Darby, and F. Service, , 1973.

M. Krings, G. Montana, R. Dronskowski, and C. Wickleder, Eu 2+ ?A Novel Efficient Orange-Emitting Phosphor, Chem. Mater, vol.23, pp.1694-1699, 2011.

M. Giorgetti, L. Stievano, and . X-ray, Absorption Spectroscopy Study of Battery Materials. In X-ray Characterization of Nanostructured Energy Materials by Synchrotron Radiation
URL : https://hal.archives-ouvertes.fr/hal-01496314

M. Khodaei and L. Petaccia, , pp.51-75, 2017.

M. Becker, M. Z. Jansen, and . Cyanamide, Zn(CN 2 ), Acta Crystallogr., Sect. C: Cryst. Struct. Commun, vol.57, pp.347-348, 2001.

L. Bail and A. , Whole Powder Pattern Decomposition Methods and Applications: A Retrospection, Powder Diffr, vol.20, pp.316-326, 2005.

J. Leriche, S. Hamelet, J. Shu, M. Morcrette, C. Masquelier et al., An Electrochemical Cell for Operando Study of Lithium Batteries Using Synchrotron Radiation, J. Electrochem. Soc, vol.157, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00477327

B. Ravel, M. Newville, . Athena, . Artemis, and . Hephaestus, Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT, J. Synchrotron Rad, vol.12, pp.537-541, 2005.

U. Berger, W. Schnick, and . Syntheses, Crystal Structures, and Vibrational Spectroscopic Properties of MgCN 2 , SrCN 2 , and BaCN 2, J. Alloy. Compd, vol.206, pp.179-184, 1994.

S. K. Deb and A. D. Yoffe, Inorganic Cyanamides. Physical and Optical Properties, and Decomposition, Trans. Faraday Soc, vol.55, pp.106-113, 1959.

K. Morita, G. Mera, K. Yoshida, Y. Ikuhara, A. Klein et al., Morphology and Electronic Band Gap of Zn(NCN), Solid State Sci, vol.23, pp.50-57, 2013.

Q. Li and C. Feng, Electrochemical Performance of Nanostructured PbO@C Obtained by Sol?Gel Method, J. Electron. Mater, vol.45, pp.3127-3133, 2016.

P. Cignini and G. Pistoia, Discharge Behaviour of AgO and Ag 2 O Cathodes in Lithium Cells, Electrochim. Acta, vol.23, pp.1099-1101, 1978.

W. Liu, B. Ma, Y. Fu, K. Zhang, M. A. Mezaal et al., Electrochemical Property of ?-PbO Prepared from the Spent Negative Powders of Lead Acid Batteries, J. Solid State Electrochem, vol.21, pp.35-46, 2017.

S. M. Wood, E. J. Powell, A. Heller, and C. B. Mullins, Lithiation and Delithiation of Lead Sulfide (PbS), J. Electrochem. Soc, vol.162, 2015.

M. Martos, J. Morales, and L. Sa?nchezsa?nchez, Lead-Based Systems as Suitable Anode Materials for Li-Ion Batteries, Electrochim. Acta, vol.48, pp.615-621, 2003.

J. Morales, L. Sa?nchezsa?nchez, F. Martín, J. R. Ramos-barrado, and M. Sa?nchezsa?nchez, Synthesis, Characterization, and Electrochemical Properties of Nanocrystalline Silver Thin Films Obtained by Spray Pyrolysis, J. Electrochem. Soc, vol.151, pp.151-157, 2004.

H. Li, Y. Wang, P. He, and H. Zhou, A Novel Rechargeable Li? AgO Battery with Hybrid Electrolytes, Chem. Commun, vol.46, 2010.

H. Wan, P. Han, S. Ge, F. Li, S. Zhang et al., Development Zinc Oxide?Cotton Fibers as Anode Materials for Lithium-Ion Batteries, Int. J. Electrochem. Sci, vol.13, pp.4115-4122, 2018.

Y. Zhao, L. P. Wang, M. T. Sougrati, Z. Feng, Y. Leconte et al., A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes, Adv. Energy Mater, vol.7, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01478250

C. Marino, B. Fraisse, M. Womes, C. Villevieille, L. Monconduit et al., At the Heart of a Conversion Reaction: An Operando X-Ray Absorption Spectroscopy Investigation of NiSb 2 , a Negative Electrode Material for Li-Ion Batteries, J. Phys. Chem. C, vol.118, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01091240

S. M. Wood, C. H. Pham, A. Heller, and C. B. Mullins, Communication?Stages in the Dynamic Electrochemical Lithiation of Lead, J. Electrochem. Soc, vol.163, pp.1027-1029, 2016.

M. Martos, J. Morales, L. Sa?nchezsa?nchez, R. Ayouchi, D. Leinen et al., Electrochemical Properties of Lead Oxide Films Obtained by Spray Pyrolysis as Negative Electrodes for Lithium Secondary Batteries, Electrochim. Acta, vol.46, 2001.

N. Bouad, L. Chapon, R. Marin-ayral, F. Bouree-vigneron, and J. Tedenac, Neutron Powder Diffraction Study of Strain and Crystallite Size in Mechanically Alloyed PbTe, J. Solid State Chem, vol.173, pp.189-195, 2003.

A. D. Pelton and . Li, Silver?Lithium) System. Bull. Alloy Phase Diagrams, vol.7, pp.223-228, 1986.

V. V. Pavlyuk, G. S. Dmytriv, I. I. Tarasiuk, I. V. Chumak, H. Pauly et al., Solid State Sci, vol.12, pp.274-280, 2010.

Y. Hwa, J. H. Sung, B. Wang, C. Park, and H. Sohn,

, Nanostructured Zn-Based Composite Anodes for Rechargeable Li-Ion Batteries, J. Mater. Chem, vol.22, pp.12767-12773, 2012.

N. Pereira, L. C. Klein, and G. G. Amatucci, The Electrochemistry of Zn 3 N 2 and LiZnN A Lithium Reaction Mechanism for Metal Nitride Electrode, J. Electrochem. Soc, vol.149, pp.262-271, 2002.

M. Krott, A. Houben, P. Mu?-ller, W. Schweika, and R. Dronskowski, Determination of the Magnetic Structure of Manganese Carbodiimide with Diffraction Experiments Using Polarized Neutrons, Phys. Rev. B, vol.80, 2009.

M. T. Sougrati, J. J. Arayamparambil, X. Liu, M. Mann, A. Slabon et al., Carbodiimides as Energy Materials: Which Directions for a Reasonable Future? Dalton Trans, vol.47, pp.10827-10832, 2018.