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Theory and Validation of a 2D Finite-Volume

Integral Boundary Layer Method for Icing

Applications

Charlotte Bayeux1 and Emmanuel Radenac2 and Philippe Villedieu3

ONERA / DMPE Université de Toulouse, F-31055 Toulouse, France

A two-dimensional integral boundary layer method is developed to enable fast and

economical computations of boundary layer flows. The ultimate goal is to provide some

experience for the extension of this method in three dimensions. In this study, the

unsteady momentum and kinetic energy integral equations are solved numerically, to-

gether with a set of closure relations based on assumed velocity profiles for laminar and

turbulent flows. The robustness of the method is ensured by a Finite-Volume formu-

lation based on an upwind scheme and a semi-implicit time discretization. Moreover

a control method has been developed in order to avoid the Goldstein singularity. The

accuracy of the numerical method in the vicinity of the stagnation point is strongly

improved by introducing a consistent corrective source term in the right-hand side

of the equation system. The chosen closure relations are validated with test cases of

self-similar flows. Numerical results are also compared with those of a full Prandtl

equations code for NACA0012, GLC305 and MS317 airfoils test cases to demonstrate

the capabilities of the method. Finally, preliminary results are shown proving the

ability of the method to deal with iced airfoils even for complex glaze ice shapes.
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1



Nomenclature

CD viscous dissipation coefficient

Cf friction coefficient

f, g, l closure functions

F flux vector

G numerical flux vector

H shape factor

I identity matrix

p exponent of the velocity profile

P pressure (Pa)

Re() Reynolds number Re() = ue()
νe

S source term vector

U vector of primary variables

u, v velocity components (m/s)

ũ dimensionless velocity

x, y Cartesian coordinates (m)

δ boundary layer thickness (m)

δ1 displacement thickness (m)

δ3 kinetic-energy thickness (m)

θ momentum thickness (m)

Λ Pohlhausen parameter

µ dynamic viscosity (kg/m/s)

ν kinematic viscosity (m2/s)

ρ density (kg/m3)

τ shear stress (N/m2)

<> Reynolds averaging

()e boundary layer edge quantity

()i quantity at edge i
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()n quantity at time n

()w wall quantity

I. Introduction

Today a usual and general method to obtain viscous flow solutions is to numerically solve

the full Navier-Stokes equations. However, this approach is time-consuming and computationally

demanding. This is a serious issue for applications which require a large number of calculations.

In aeronautics, this is for example the case of in-flight icing simulation. Icing simulation numerical

tools are used both for design purpose (to improve the safety of flights) and in the certification

procedure as means of compliance. Since a huge number of computations must be performed, tools

must be very low time consuming. To date, 2D codes are mature enough to be routinely used

by aeronautic engineers but their 3D extension still requires some improvements and especially a

significant reduction of the computational time.

A way to drastically reduce the cost of viscous flow computations is to use a coupling between

an inviscid flow solver and an integral boundary layer solver.An integral boundary layer code is

based on the integration of the boundary layer equations in the direction normal to the wall. This

integration results in the loss of one space dimension and thus in significant saving in computational

time. As far as icing simulations are concerned, the choice of such a method (instead of using a full

Navier-Stokes solver) is justified by the fact that the aerodynamic velocity field in the boundary layer

is not useful to compute the droplet collection efficiency and the ice accretion growth rate. Only

the values of the skin friction and the heat exchange coefficients must be provided by the air flow

solver to the accretion solver [1] . The ability of the boundary layer solver to accurately compute

separated flows is not mandatory either. Indeed ice accretion generally occurs in the leading edge

area (region of highest droplet collection efficiency) where the boundary layer is attached and, when

separation occurs due to the ice deposit itself, the heat exchange coefficient in the separated zone

is much lower than in the attached part and hence does not need to be accurately predicted.

For these reasons, the development of a general and robust 3D integral boundary layer Finite-
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Volume solver, able to deal with unstructured surface meshes, seems to be a promising way to provide

aeronautic industry with efficient tools for icing applications. This opinion also relies on the fact

that today, even for 2D computations, many existing icing tools (LEWICE [2], ONICE [3], IGLOO

[4]) use simplified integral boundary layer models, such as the well-known method of Thwaites [5],

and nevertheless are able to provide satisfactory results for most icing conditions. However, the 3D

extension of these simplified boundary layer models is not straightforward since the formulation on

which they are based is only two-dimensional. More general models and numerical methods, which

could be formulated both in 2D and in 3D, are necessary. This is the aim of the present paper to

address this objective. This work is in continuity with many other studies performed during the

last decades to extend the application domain of integral boundary layer models [6–17].

Here we restrict our attention to the 2D case. The focus is put on the model formulation,

the derivation of the corresponding closure relationships, the choice of the numerical discretization

method and validation tests. This work is an important step towards the development of a 3D

Finite-Volume integral boundary layer solver for icing applications.

The paper is divided into 3 parts. In the first one, the chosen formulation of the integral

boundary layer model is presented and the corresponding closure relationships are derived for both

laminar and turbulent cases. The resulting equation system is shown to be hyperbolic in both cases.

Moreover a control method has been developed in order to avoid the Goldstein singularity [18].

Section III is devoted to the Finite-Volume discretization method. Finally validation test cases are

presented in section IV. The accuracy of the proposed methodology is assessed by comparing the

results against reference analytical solutions (self-similar boundary layers) and results produced by

a full boundary layer solver for 2D flows around different airfoils [19]. The ability of the method to

produce correct results in a fast and robust manner on iced geometries is also assessed.

II. Modeling equations

The purpose of this section is to establish an integral boundary layer model based on two integral

equations and a set of closure relations for laminar and turbulent flows.
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A. Purpose and main assumptions

A Finite-Volume semi-implicit method on unstructured surface meshes is employed to ensure

the robustness of the method. Moreover, the need to explicitly locate the stagnation point is avoided

by solving an unsteady formulation of the integral equations. A good accuracy of the method is

required in the vicinity of the stagnation point, where icing occurs. On the contrary, a very accurate

solution is not required in regions where the boundary layer is detached even though the method must

produce a realistic result. Indeed, icing occurs mainly in the leading edge zone, where boundary layer

separations are rare. In addition, the laminar-turbulent transition is generally located upstream of

the laminar separation point, making the boundary layer less prone to separation. When it is not

the case, the heat transfer coefficient is expected to be rather low in a separated zone. Consequently,

heat transfer at the ice/air interface is less significant in the energy balance within a separated zone

than in an attached region. Thus, it is assumed in the present work that a non-accurate boundary

layer model for separated zones will not significantly change the final ice shape.

The calculation method developped in this study is valid for a 2D unsteady, incompressible,

laminar or turbulent boundary layer. Only the dynamic boundary layer is solved here. It is indeed

assumed that the heat transfer coefficient is inferred from dynamic quantities as often done in ice

accretion codes [1]. The external flow is assumed to be known from a steady irrotational inviscid

calculation. The curvature effects are neglected. A 1-way approach is adopted because the inviscid

flow is not supposed to be significantly affected by the boundary layer.

B. 2D Integral boundary layer equations

Under the assumptions given in section IIA, the unsteady and incompressible Prandtl equations

can be written as follows: 

∂u

∂x
+
∂v

∂y
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+

1

ρ

∂τxy
∂y

∂P

∂y
= 0

(1a)

(1b)

(1c)

The pressure gradient term can be expressed in terms of velocity gradients thanks to the momentum

equation in the x direction written in the external flow region. This external flow is supposed to be
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steady, incompressible and inviscid:

−1

ρ

∂P

∂x
= −1

ρ

∂Pe
∂x

= ue
∂ue
∂x

The 2D integral boundary layer (IBL) equations are obtained by integrating the following 2D

equations with respect to the coordinate y, normal to the wall, over the boundary layer thickness:

ue × continuity equation (1a)−momentum equation (1b) (2a)

ue
2 × continuity equation (1a)− 2u×momentum equation (1b) (2b)

These equations involve incompressible integral quantities which are defined as:

δ1 =

∫ ∞
0

(
1− u

ue

)
dy

θ =

∫ ∞
0

u

ue

(
1− u

ue

)
dy

δ3 =

∫ ∞
0

u

ue

(
1− u2

ue2

)
dy

δ1, θ and δ3 correspond to the displacement, momentum and kinetic-energy thicknesses respectively.

These quantities represent the deficit of mass, momentum and kinetic energy within the boundary

layer. Finally, the system of two integral equations for unsteady, incompressible, two-dimensional

flows is obtained in conservation form:

∂U

∂t
+
∂F (x,U)

∂x
= S(x,U) (3)

where

U =

ueδ1
u2eθ

 =

U1

U2

 , F =

 u2eθ

u3eδ3 − u3eθ

 , S =

 −ueδ1
∂ue
∂x

+
1

2
u2eCf

(u2eδ1 − u2eθ)
∂ue
∂x
− 1

2
u3eCf + 2u3eCD



Cf and CD denote respectively the friction coefficient and the dissipation coefficient:

1

2
ue

2Cf =
τxyw
ρ

ue
3CD =

1

ρ

∫ ∞
0

τxy
∂u

∂y
dy

where τxy = µ
∂u

∂y
in laminar flow regime and τxy = µ

∂u

∂y
− ρ < u′v′ > in turbulent flow regime.

The first equation is an unsteady version of the well-known von Kármán equation. The second one
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is the kinetic energy integral equation. The conservative formulation is mandatory for the Finite

Volume resolution.

Model (3) is not the only possible integral model for 2D boundary layers. Several other formu-

lations can be found in the literature. Some authors prefer to use the entrainment equation instead

of the kinetic energy equation [20, 21] and many of them prefer to use a steady formulation [5, 22]

which is simpler and cheaper from a numerical point of view. But, even if it is more complicated

than other models, there are important advantages of using model (3), especially if one takes into

account that the final objective is to extend the chosen formulation to three dimensional problems.

First, since model (3) is an unsteady model, it can be solved iteratively using a time discretization

method until convergence to the steady solution, starting from an arbitrary initial condition. It is

not necessary to use a space marching algorithm, from upstream to downstream, which is difficult

to generalize to 3D unstructured meshes and arbitrary configurations with several stagnation points

or lines. Second, model (3) is based on balance equations for both the displacement thickness and

the momentum thickness respectively and these two integral length scales are the most commonly

used quantities in semi-empirical closure models, in particular for the skin friction coefficient Cf

and the viscous energy dissipation coefficient CD which are often expressed as function of θ and

H = δ1/θ.

The integration process used to derive (3) results in a loss of information especially on the

velocity field within the boundary layer. Thus, system (3) involves three unknowns (u3eδ3, Cf , CD)

in addition to the two primary ones (ueδ1, u2eθ). Closure relations are often derived by making

assumptions on the shape of the velocity profiles. It is worth mentioning that only the closure

relations are affected by the laminar or turbulent boundary layer flow regime, whereas the two

integral equations are valid for both cases.

C. Laminar and turbulent closure relations

The choice we made for the closure relations is presented in this section. It is common practice

to close all terms of equation (3) by the use of relations between Cf , CD and ue3δ3 and the shape

factor defined as H = δ1/θ. They are often based on self-similar solutions (Cousteix [6], Drela
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[8]), especially for laminar flows. For turbulent flows, empirical relations are also frequently used.

However, the method presented here is also intended to be used for 3D and thermal boundary layer

[23, 24]. Thus, closure relations employed here are based on assumed velocity profiles because they

will be easier to implement for the additional equations. Once the velocity profile is known, the

computation of u3eδ3, Cf and CD is straightforward.

1. Laminar closure relations

Many profile families have been proposed in the literature. Several of them can be found in

Rosenhead [25]. The velocity profile proposed in our case has the same form as those proposed by

Mangler [26]:

u

ue
= ũ = 1− (1 + aη)(1− η)p−1 (4)

where η =
y

δ
and δ is a measure of the boundary layer thickness. More precisely, y = δ is the

location from which u = ue. This condition strictly applies at y −→∞ but it is assumed that it can

be transferred from infinity to y = δ without significant error. Boundary conditions (5), (6) and (7)

are naturally satisfied by the velocity profile (4):

η = 0 : ũ = 0 (5)

η = 1 : ũ = 1 (6)

η = 1 : ∀n ≤ p− 2
∂nũ

∂ηn
= 0 (7)

One can notice that the exponent p must be strictly greater than 2 by construction. It is worth

mentioning that p needs not necessarily be an integer. In this case, the number of zero gradient

conditions at η = 1 is given by the largest integer less than or equal to the exponent p− 2.

Three other conditions (8), (9) and (10) are required in order to express a, p and δ as functions

of the primary unknowns ueδ1 and ue2θ. They read:(
∂ũ

∂η

)
η=0

=
ueδCf

2ν
(8)

δ1 = δ

∫ 1

0

(1− ũ) dη (9)

θ = δ

∫ 1

0

ũ(1− ũ) dη (10)
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where the friction coefficient in condition (8) is given by a closure relation proposed by Cousteix [6],

which was extracted from the self-similar solutions of the Falkner-Skan boundary layer equation. It

reads:

Cf
2
Reθ = g(H) with Reθ =

ueθ

ν
(11)

where

g(H) = 2.99259

[(
1

H
− 1

8.05846

)1.7

−
(

1

8.05846

)1.7
]

if H ≤ Hcrit

g(H) = 0.20644− 90.30936

((
1

4.02923

)1.3

− 1

H1.3

)3.35661

+ (H − 1)

[
−0.06815 + 46.34236

(
1

(4.02923)2
− 1

H2

)2.338238
]

if H > Hcrit

(12a)

(12b)

Function g is plotted against the shape factor H in figure 1. It is apparent from this figure that

g(H) (i.e. Cf ) is negative for shape factors greater than Hcrit = 4.02923. This corresponds to areas

where the boundary layer is detached from the body. In contrast, areas where the boundary layer

is attached are characterized by a shape factor lower than Hcrit.

0 2 4 6 8 10
H

0

0.2

0.4

g
(H

) 
=

  
R

e θ
C

f/
2

Fig. 1 Closure function g against the shape factor H

Conditions (9) and (10) are essential to ensure the consistency of the two primary unkonwns

ueδ1 and ue
2θ. However, condition (8) is not commonly used in the literature. Since the friction

coefficient is a major output of the IBL code, this option has been preferred over Mangler choice to

use a condition which ensures an accurate modeling of the effect of the pressure gradient. Thanks

to the velocity profile (4) and the definition of the shape factor H =
δ1
θ
, the set of conditions (8),
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(9) and (10) becomes:

p− 1− a = Hg(H)
δ

δ1
(13)

δ1 =
δ(p+ 1 + a)

p(p+ 1)
(14)

θ = δ

(
p+ 1 + a

p(p+ 1)
− 2a2 + 2a(2p+ 1) + 2p(2p+ 1)

(2p− 1)2p(2p+ 1)

)
(15)

This forms a system of 3 equations with 3 unknowns a, δ and p. From condition (13), one can

express a as a function of H, p and
δ

δ1
. Then one can deduce

δ

δ1
(H, p) from condition (14). Finally,

p(H) can be obtained from (15) which is solved numerically for several values of H (see figure 2,

curve “target values"). A fair fit of the solutions (curve “p(H)" in figure 2) reads :

p(H) = 2.4834 +
0.7877

(H − 1.9538)1.6001
if H ≤ Hcrit

p(H) = 2 +
2.0411× 1011

(H + 25.890)7.7560
if H > Hcrit

(16a)

(16b)

2 4 6 8 10
H

0

2

4

6

8

10

p

target values
p(H)

Fig. 2 Degree of the analytic velocity profiles p against the shape factor H

More details are given in the appendix on the derivation of the velocity profile and the function

p(H). Finally the velocity profile can be written as a function of a single parameter, H, which is

directly related to the solved variables ueδ1 and ue2θ:

ũ(η) = 1− (1 + a(H)η)(1− η)p(H)−1 (17)

where a(H) =
√
p2 − p(p+ 1)Hg(H) − 1 and p(H) is given by equation (16). g(H) is given by

equation (12). η =
y

δ
with δ =

δ1p(p+ 1)

p+
√
p2 − p(p+ 1)Hg(H)

.

10



Velocity profiles produced by (17) are compared with several self-similar Falkner-Skan solutions

[6] in figure 3. These self-similar solutions are obtained for external velocities expressed as ue = kxm.

The pressure gradient is thus dependent on m or β =
2m

1 +m
: it is positive for negative values of β.

β = 0 corresponds to a flow over a flat plate (zero pressure gradient). Then the pressure gradient is

negative for positive values of β. One may notice that β = 1 represents a 2D stagnation point flow.

Figure 3 shows a fair agreement with the Falkner-Skan profiles especially for β > 0 corresponding

to accelerated flows in an attached boundary layer. However one can see poorer results for velocity

profiles within a detached boundary layer (β ≤ −0.1988). But, as already mentioned, a good

accuracy of the solution is not sought in separated zones. Moreover, from a practical point of view,

the Falkner-Skan solutions are not as representative for separated boundary layers as they are for

attached ones.

-0.2 0 0.2 0.4 0.6 0.8 1
u/u

e

0

2

4

6

8

10

12

y
/(

ν
x

/u
e)0

.5

Falkner-Skan solutions
Polynomial velocity profiles

β = 1

β = 0.5

β = 0

β = -0.1988

β = -0.08

β = -0.16

Fig. 3 Polynomial velocity profiles compared with those obtained from the Falkner-Skan so-

lutions for different pressure gradient parameters

Thanks to the velocity profile (17), δ3 and CD can now be easily determined from their definition

(regarding the other source terms, Cf is given by equation (11)):

δ3 = δ

∫ 1

0

ũ(1− ũ2) dη

CD =
1

δ

∫ 1

0

ν

ue

(
∂ũ

∂η

)2

dη
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It can be shown that the closure relations can be written in the following form:

δ3
θ

= fl(H)

2CD
fl(H)

Reθ = l(H)

where the functions fl(H) and l(H) are given in the appendix.

2. Turbulent closure relations

The turbulent boundary layer is composed of an inner region close to the wall where the viscosity

prevails and an outer region where turbulence is predominant. Complete velocity profiles, valid over

the entire boundary layer, can be found in the literature. One of the most commonly used profiles

for IBL methods (Drela [8], Mughal [22], Nishida [11], Milewski [12]) was developped by Swafford

[27] and Whitfield [28]. But this model is very cumbersome. The velocity profile chosen in our case

is simpler and often used as well for boundary layers (Tai [9], Mughal [10], Kays and Crawford [29],

Cousteix [7]). It reads:

ũ = η1/n (18)

where η =
y

δ
. This power-law with n = 7 is often used for boundary layers [10, 29] and gives a good

approximation of the turbulent velocity profile especially over a flat plate. To be more general, in

this calculation method, two conditions are imposed in order to express n and δ as functions of the

primary unknowns:

δ1 = δ

∫ 1

0

(1− ũ) dη =
δ

n+ 1
(19)

θ = δ

∫ 1

0

ũ(1− ũ) dη =
nδ

(n+ 1)(n+ 2)
(20)

As for the laminar case, conditions (19) and (20) ensure the consistency of the primary unknowns.

This implies:

δ = (n+ 1)δ1 (21)

and

n =
2

H − 1
(22)
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The obtained velocity profile has already been used by Tai [9]. It reads:

ũ = η(H−1)/2 (23)

where H =
δ1
θ
. It is worth mentioning that the velocity profile of equation (23) is valid for the outer

region but not for the region very close to the wall. However this does not introduce a significant

error on the value of integral thicknesses δ1, θ, δ3 since the outer region represents the major part

of the boundary layer thickness. But the coefficients Cf and CD cannot be directly derived from

the velocity profile. Thus they are given by relations based on empirical data and the study of

equilibrium boundary layers. These relations are proposed respectively by White [30] and Drela [8]:

Cf =
0.3 e−1.33H

(logReθ)
1.74+0.31H

(24)

CD =
H∗

2

[
Cf
6

(
4

H
− 1

)
+ 0.03

(
H − 1

H

)3
]

(25)

with

H∗ = 1.505 +
4

Reθ
+

(
0.165− 1.6√

Reθ

)
(H0 −H)1.6

H
if H < H0

H∗ = 1.505 +
4

Reθ
+ (H −H0)2

0.04

H
+ 0.007

lnReθ(
H −H0 +

4

lnReθ

)2

 if H > H0

and

H0 = 4 if Reθ < 400

H0 = 3 +
400

Reθ
if Reθ ≥ 400

It is worth mentioning that relations (24) and (25) have been established in smooth-wall conditions.

The rough-wall models are beyond the scope of the present paper and will be addressed in

subsequent papers. It is current practice though in icing codes to employ semi-empirical relations

which make it possible to calculate the skin friction coefficient on rough walls from the smooth

integral quantities [1]. Although not fully satisfying, the method consisting of post-processing

the integral quantities produced by the present integral model, including the use of relations (24)

and (25), would thus be in line with the state-of-the-art. For improved modelling of the physics,
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equations (24) and (25) should be changed to include the effect of roughness (with usual relations

like the ones of Kays and Crawford [29] or upgraded relations as proposed in [31]), so that the

integral model solves the rough-wall-condition boundary layer equations.

The last term to close is δ3 which can be easily determined from its definition thanks to the

velocity profile (23):

δ3 = δ

∫ 1

0

ũ(1− ũ2) dη

Thus, the closure relation can be written in the following form:

δ3
θ

= ft(H) =
2(n(H) + 2)

(n(H) + 3)

where n(H) is given by (22).

3. Transition criterion

The transition can be imposed at a fixed location or calculated using a criterion. For the current

paper, the local criterion proposed by Drela [32] and based on the model of Abu-Ghannam and Shaw

was chosen:

ReθT = 155 + 89

[
0.25 tanh(

10

H − 1
− 5.5) + 1

]
ñ1.25

ñ = −8.43− 2.4 ln

(
τ ′

100

)
τ ′ = 2.7 tanh

( τ

2.7

)
where ReθT is the Reynolds number of transition and τ is the turbulence rate expressed in %. This

criterion has already been used for icing applications by Fuzaro Rafael et al. [13]. However this

criterion is not valid on rough surfaces. Rough-wall criteria will not be employed for the present

paper because roughness models are not addressed. However, it must be noted that most authors

use the criterion Rek > 600, where Rek is a Reynolds number based on the roughness height k,

for icing applications (LEWICE [2], IGLOO [4]). The criterion Rek > 600 will thus be a first step

towards realistic rough-ice surface modelling in subsequent papers. Kerho and Bragg explain that

the criterion should also be changed for little local Reynolds numbers Rex (up to Rek > 1200).
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Moreover, the extension of the transitional region is particularly wide on rough walls [33]. A more

evolved criterion, using an intermittency function as proposed by [13] for instance, could therefore

be considered for even more realistic computations.

D. Nature of the integral equation system

Including the closure relations, the integral boundary layer system (3) now reads:

∂U

∂t
+
∂F (x,U)

∂x
= S(x,U) (26)

with

U =

ueδ1
ue

2θ

 =

U1

U2

 F =

 U2

ueU2 (f(H)− 1)

 =

F1

F2



where f(H) = fl(H) for a laminar boundary layer and f(H) = ft(H) for a turbulent boundary

layer. It is assumed here that the model is consistent, which means that the two conditions (9) and

(10) are exactly met. Hence it is assumed that θ in the term U2, obtained by the resolution of the

integral boundary layer equations, is exactly equal to θ calculated with equation (10). Consequently,

F1 is strictly equal to U2. The integral system is hyperbolic if the Jacobian matrix ∇UF (x,U) of

the flux vector has only real and distinct eigenvalues.

∇UF (x,U) =

 0 1

ue
2f ′ ue(f −Hf ′ − 1)

 (27)

where f ′ =
df

dH
.

The Jacobian matrix depends on the closure relation for δ3. Thus, the hyperbolicity of the integral

system depends on the closure assumptions (here the closure relation f(H)). The eigenvalues λi of

∇UF (x,U) are solutions of the following equation:

λ2i − λiue(f −Hf ′ − 1)− ue2f ′ = 0 (28)

Figure 4 illustrates that the dimensionless discriminant of the characteristic polynomial (∆/ue
2 =

(f −Hf ′ − 1)2 + 4f ′) is always strictly positive for a large range of shape factors. Eigenvalues are

also plotted in figure 5 for laminar and turbulent cases. These four graphs show that the integral
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boundary layer system associated with the closure functions is hyperbolic for both laminar and

turbulent flows. Both eigenvalues are expected to be positive for an attached boundary layer and

to be of opposite sign for a detached boundary layer. Indeed, the information propagates only in

the downstream direction in the first case and in both directions (upstream and downstream) in the

second. For the turbulent case, eigenvalues are positive for all values of the shape factor because the

velocity profile proposed in this method does not allow negative velocities. For the laminar case,

the two eigenvalues are positive for the low values of the shape factor and one of them is negative

for H > 4.43. However, one may notice that there is a range of shape factor values between Hcrit

and 4.43 where the friction coefficient is negative (i.e. the boundary layer is detached) and the

eigenvalues are both positive. According to Cousteix [7], the size of this zone depends on the chosen

closure relations.
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Fig. 4 Dimensionless discriminant of the characteristic polynomial against the shape factor H

2 4 6 8 10
H

-0.2

0

0.2

0.4

0.6

0.8

1

λ
/u

e

λ
+
/u

e

λ
-
/u

e

(a) Laminar regime

2 4 6 8 10
H

-0.2

0

0.2

0.4

0.6

0.8

1

λ
/u

e

λ
+
/u

e

λ
-
/u

e

(b) Turbulent regime

Fig. 5 Eigenvalues of the system of equations against the shape factor H
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E. Treatment of the Goldstein singularity

For a laminar flow, f ′ = 0 for H = 4.43 and the matrix ∇UF (x,U) is singular (equation (27)).

This is the so-called Goldstein singularity [18]. In practice, a steady solution can not be reached

in the presence of a laminar boundary layer separation. A good way to avoid this singularity is to

couple the boundary layer solver with an inviscid flow solver thanks to a viscous-inviscid interaction

method. However, the inviscid flow solver used in the ONERA icing tool is an Euler solver and

a viscous-inviscid interaction method can be time consuming and difficult to implement in 3D. In

addition, as already mentioned, it is not mandatory to calculate the separation zone accurately.

An approach proposed by Lokatt and Eller is to change the closure relations to prevent the matrix

singularity [16]. Here, a "control method" has been developped independently in order to avoid the

Goldstein singularity. This method consists of artificially adding a source term in the equations so

as to be able to control the value of the determinant of the Jacobian matrix ∇UF (x,U) and thus

prevent it from vanishing, with the same consequence as Lokatt and Eller’s method. This term must

obviously vanish in the attached boundary layer zones so that it does not modify the solution in the

areas where an accurate solution is sought. However, the solution in the separation zones will not

really correspond to the expected solution while still exhibiting negative skin friction. This is the

main limit of this method but it is not too restrictive for icing applications. Indeed, icing occurs

mainly in the leading edge zone, where boundary layer separations are rare. This is especially true

on rough surfaces like ice because the boundary layer becomes turbulent early and it is thus more

resistant to separation. Section IVF, however, shows characteristic rime-ice and glaze-ice shapes,

for which the transition has been artificially delayed (because a smooth-wall transition criterion was

used) and for which the correction happens to be activated. But even under these conditions, the

activation of the correction is very local so that it has a low impact on the overall solution. The

Goldstein singularity is thus often avoided in practice, in the steady state. The method proposed

here is mainly useful for the transitional phase preceding the steady state.

The system of integral equations, including the control term Sc(x,U), reads:

∂U

∂t
+
∂F (x,U)

∂x
= S(x,U) + Sc(x,U) (29)
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where

Sc(x,U) =

 uevθ

ue
2vδ1

 =

α(H)ue
∂θ
∂x

α(H)ue
∂δ1
∂x


and α is a function of H that will be determined later. The control term is treated as a source

term but it is intended to modify the flux term so as to avoid the singularity in the equations. Let

∇UF c(s,U) be the new Jacobian matrix, based on the modified fluxes. It reads:

∇UF c(s,U) =

 0 (1− α)

ue
2(f ′ − α) ue(f −Hf ′ − 1)


The function α(H) can then be considered as a control parameter. Indeed, it allows to have an

influence on the sign of the determinant of the Jacobian matrix which becomes:

det = −ue2(f ′ − α)(1− α)

α must vanish for an attached boundary layer (H < Hcrit) so that the system remains unchanged

when no singularity is expected. In this case, det = −ue2f ′ is strictly positive because f ′l < 0. Thus

the determinant must be strictly positive for all values of H. Furthermore, α is chosen strictly less

than 1 so that the value of the control terms are not too high. This implies that α must be strictly

greater than f ′l . To account for all these constraints, α is chosen as a function of the form:

α(H) = c

[
1 + tanh

(
H −Hcrit

0.25

)]

where c is a constant striclty less than 0.5. Its value is fixed in such a way that the system is never

singular (i.e. α > f ′l ) and is always hyperbolic (i.e. (∆/ue
2 = (f−Hf ′−1)2 +4(f ′−α)(1−α)) > 0)

whatever the value of H. Figure 6 shows that c must meet the condition:

0.01994 < c < 0.02457

c is therefore fixed at 0.020.

Figure 7 shows the eigenvalues of the modified system for a laminar boundary layer. As expected,

one can see that they are both positive regardless of the value of the shape factor. It is worth

mentioning that their values have not been changed in the attached boundary layer zone.
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Fig. 6 Regularity (det > 0) and hyperbolicity (∆ > 0) of the system with respect to c
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Fig. 7 Eigenvalues of the system of equations with and without the control term against the

shape factor H for a laminar boundary layer

III. Finite-Volume resolution

The integral boundary layer equations together with the closure relations are solved with a

Finite-Volume method to make extension to 3D general surfaces easier. For the 2D structured

approach exposed here, equation (26) is integrated over an edge i of length ∆xi:

d

dt

∫
Ci
U dx+ F (xi+1/2,U i+1/2(t))− F (xi−1/2,U i−1/2(t)) =

∫
Ci
S(x,U) dx+

∫
Ci
Sc(x,U) dx

Let the numerical flux Gi+1/2 be an approximation of the flux vector F at the node xi+1/2 of edge

i. The above equation thus reads:

∆xi
dU i

dt
+
[
Gi+1/2(t)−Gi−1/2(t)

]
= ∆xi (Si(t) + Sci(t))) (30)
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A. Upwind scheme for the space discretization

The flux terms are discretized thanks to an upwind scheme. This scheme is valid only when

the eigenvalues λ±/ue are both positive. In practice, this condition is always respected due to the

control method developed in section II E. The numerical fluxes are calculated with the upstream

or downstream values according to the sign of ue:

If uei+1/2 > 0

Gn
i+1/2 =

 ue
2
i+1/2θi

ue
3
i+1/2(δ3i − θi)


If uei+1/2 < 0

Gn
i+1/2 =

 ue
2
i+1/2θi+1

ue
3
i+1/2(δ3i+1 − θi+1)


where δ3i = f(Hi)θi

It is worth mentioning that the external velocity is an input of the calculation. That is why

its value at the nodes is known and can be directly used for the flux calculation. In fact, it can be

shown that it is necessary to use the value at the nodes in order to enable the stagnation point zone

to be accurately calculated (see section IIID). The extension to second order accuracy is possible

by the use of a MUSCL approach.

B. Semi-Implicit scheme for the time discretization

An explicit Euler method has been employed for the discretization of the fluxes while the source

terms are computed implicitly in an attempt to increase the stability of the method and to allow

arbitrary initial conditions. In addition, the term of the control method, Sci, is computed explicitly

to be treated similarly to the flux terms. For the same reason, the gradients involved in the term

Sci are computed with an upwind scheme.

∆xi
Un+1
i −Un

i

∆ti
+
[
Gn
i+1/2 −Gn

i−1/2

]
= ∆xiS

n+1
i + ∆xiSc

n
i (31)
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C. Solution of the system

The set of equations (31) can be written in the following form:

Un+1
i −∆tiS

n+1
i = Un

i −
∆ti
∆xi

(
Gn
i+1/2 −Gn

i−1/2

)
+ ∆tiSc

n
i

The resolution is performed by a Newton method. The goal is only to obtain the steady-state

solution, not the transient regime. Thus it is not necessary to reach convergence at each time step.

Only one iteration for the Newton method per time step is sufficient. The solution is given by:

Un+1
i = Un

i + [I −∆ti∇USni ]
−1

∆tiResni

where

Resni = − 1

∆xi

(
Gn
i+1/2 −Gn

i−1/2

)
+ Sni + Sc

n
i

and ∇US is the Jacobian matrix of the source terms.

D. Treatment of the stagnation point

The stagnation point over an airfoil is defined as the point where the external velocity ue

vanishes. The stagnation point is often located at the boundary of the computational domain and

it is fixed by a boundary condition. However, in this study, the stagnation point is not explicitly

localized and can be located within the computational domain. In this region, the numerical errors

can become very important since the calculated quantities (ue2θ, ue3δ3) are very low and lead to

some divisions by very small numbers. This section deals with the adjustment of the numerical

scheme in order to prevent numerical errors.

1. Identification of the issue

Focusing on a small zone very close to the stagnation point, it is assumed that the flow behaves

as a bidimensional stagnation point flow (i.e. Falkner-Skan flow with m = 1). In that case, the

external velocity varies as ue = kx (where x is the distance to the stagnation point) and the

quantities H, δ1, θ, δ3 do not depend on x. The flux term

F (x,U) =

F1

F2

 =

 ue
2θ

ue
3 (δ3 − θ)


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is derived as follows:

∂F (x,U)

∂x
=

 2θue
∂ue
∂x

3 (δ3 − θ)ue2
∂ue
∂x

 =

 2θk2x

3 (δ3 − θ) k3x2

 (32)

From a discrete point of view, a bidimensional stagnation point flow should verify the following

hypotheses:

uei = kxi, θi = θi−1, δ3i = δ3i−1

Let ∆xi be the length of cell i, the external velocity reads:

uei−1 = k

(
xi −

∆xi
2
− ∆xi−1

2

)
, uei−1/2 = k

(
xi −

∆xi
2

)
, uei+1/2 = k

(
xi +

∆xi
2

)

Using the upwind scheme described in section IIIA , the first element of the derivative of the flux

vector (32) is discretized as follows:

ue
2
i+1/2θi − ue

2
i−1/2θi−1

∆xi
= 2θik

2xi

This discrete result is consistent with the continuous one obtained in (32). But it is worth mentioning

that the external velocity must be taken at the node (i+ 1/2) and not at the cell center (i). Indeed,

in the latter case, we would have:

ue
2
i θi − ue2i−1θi−1

∆xi
= 2θik

2

(
xi

(
1

2
+

∆xi−1
2∆xi

)
− ∆xi−1

4
− ∆xi

8
−

∆x2i−1
8∆xi

)

In the vicinity of the stagnation point, ∆x is not negligible with respect to x. In fact, ∆x can

become greater than x in the cell where ue vanishes. Thus, the discrete derivative of the flux term

would not be consistent with the continuous one.

The same reasoning is used for the second element of the derivative of the flux vector (32).

Using the upwind scheme described in section IIIA , its discrete derivative is obtained as follows:

ue
3
i+1/2 (δ3i − θi)− ue3i−1/2 (δ3i−1 − θi−1)

∆xi
= 3 (δ3i − θi) k3

(
x2i +

∆x2i
12

)
(33)

So for the kinetic energy equation, the discrete form of the derivative of the flux term is not fully

consistent with the continuous one obtained in (32) even if ue is taken at the node.
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This difference can be explained by the fact that the discrete form of the equality

∂ue
3

∂x
= 3ue

2 ∂ue
∂x

is not verified with the upwind scheme used. Far from the stagnation point, ∆x2 is negligible

compared to x2 and the discretized scheme (33) is a consistent scheme. But near the leading edge,

this is no more the case and the numerical error is not negligible.

Finally, the study above showed that the system of discrete equations (31) is not fully consistent

with the corresponding continuous equations in the vicinity of the stagnation point. As theoretically

shown above with the assumption ue = kx, the discretization of the system of equations using the

upwind scheme of section IIIA produces an error. This non-consistency was evaluated as being

equal to the discretization of the following term:

Er =

Er1
Er2

 =


(
∂ue

2

∂x
− 2ue

∂ue
∂x

)
θ(

∂ue
3

∂x
− 3ue

2 ∂ue
∂x

)
(δ3 − θ)


It is worth mentioning that the discretization of the first component of Er has been shown to be

equal to zero for a bidimensional stagnation point flow. However, this term can take non-zero values

over an airfoil because the hypothesis ue = kx used in this demonstration is not exactly verified for

a stagnation point in a non-similar flow.

2. Correction of the errors

This non-consistency can be corrected by adding a corrective source term in the right hand

side of equation (31) to offset the error which appears in the left hand side of equation (31). The

corrective source term must therefore be equal to the discretization of Er. The continuous form of

the vector Er is obviously equal to zero but its discrete form allows to offset the error which appears

when the derivative of the flux vector is discretized. Taking the correction term into account, the

system of discrete equations (31) reads (Sc vanishes in the vicinity of the stagnation point):

∆xi
Un+1
i −Un

i

∆ti
+
[
Gn
i+1/2 −Gn

i−1/2

]
= ∆xiS

n+1
i + ∆xiErn+1

i (34)
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where

∆xiErn+1
i =


((
ue

2
i+1/2 − ue

2
i−1/2

)
− 2uei

(
uei+1/2 − uei−1/2

)) U2
n+1
i

ue2i((
ue

3
i+1/2 − ue

3
i−1/2

)
− 3ue

2
i

(
uei+1/2 − uei−1/2

)) U2
n+1
i

(
f(Hn+1

i )− 1
)

ue2i


It is worth mentioning that the first component of Er has been shown to be useless (i.e. equal to

zero) for a bidimensional stagnation point flow. However, this term can take non-zero values over

an airfoil because the hypothesis ue = kx used in this demonstration is not exactly verified for a

stagnation point in a non-similar flow.

In addition, recasting the term Er2i as Er2i = k2i
(
∂ue

∂x

)
i
(f(Hi)− 1)U2i, it can be shown that

k2i can take huge values very close to the stagnation point, which makes the system unstable. Thus,

in order to ensure the stability of the corrected numerical scheme, an empirical CFL condition has

been introduced. This condition is based on the characteristic time scale of the correction source

term 1/∂ue

∂x . Moreover, the time step must be small for large values of k2. For these reasons, a good

condition on the time step to make the numerical scheme with the correction source term stable is:

∆ti <
2∣∣∣∣k2i(∂ue∂x

)
i

∣∣∣∣
Section IVB2 shows how the correction source term allows to strongly increase the accuracy of

the numerical method in the vicinity of the stagnation point.

E. Pressure gradient limitation

When the adverse pressure gradient is very important, the velocity gradient takes strongly

negative values. In this case, the source terms, which can be simplified as follows:

S =

 −ueδ1
∂ue
∂x

+
1

2
u2eCf

(u2eδ1 − u2eθ)
∂ue
∂x
− 1

2
u3eCf + 2u3eCD

 '
 −ueδ1

∂ue
∂x

(u2eδ1 − u2eθ)
∂ue
∂x

 = −∂ue
∂x

 1 0

−ue 1


U1

U2


(35)

become too large and the calculation blows up. A simplified scalar equation representative of

problem (3) becomes indeed:

∂v

∂t
+ a

∂v

∂x
= bv
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This equation is discretized as follows:

vn+1
i − vni

∆t
+ a

vni − vni−1
∆x

= bvni

Thus it can be shown, through a matrix stability analysis, that |1− a∆t/∆x+ b∆t| < 1 is a

necessary and sufficient condition so that the numerical scheme can converge to a steady solution.

This requires the following condition on the mesh size:

∆x <
a

b
with b > 0

This condition has been adapted for the integral boundary layer equations system by taking a = λ−,

the smallest eigenvalue of the flux jacobian matrix, and b = −∂ue

∂x , the maximum eigenvalue of the

simplified source matrix (35). The condition on the mesh size becomes:

∆x <
λ−

−∂ue

∂x

if
∂ue
∂x

< 0

In practice, it is complicated to impose a condition on the mesh size. Thus this relation has been

turned into a condition on the velocity gradient (i.e. the pressure gradient). It reads:

if
∂ue
∂x

< 0 and − ∂ue
∂x

> C
λ−

∆x

then − ∂ue
∂x

= C
λ−

∆x
(36)

where C is a constant which can be set by the user. It has been found empirically that C = 0.1 is

a good value in most cases. It is worth mentioning that the solution for attached boundary layers

is not modified because this condition applies only for adverse pressure gradients and only when

they become very large. But, the solution is obviously incorrect in the cells where the limitation

is activated. In practice, a strong adverse pressure gradient can occur mainly at the trailing edge

of a clean airfoil or near the leading edge when the angle of attack is important. It can also occur

downstream of the horn for airfoil with a horn-ice shape. However, as already mentioned, an accurate

solution is not mandatory in these zones where ice accretion occurs rarely. Additionally, as is the

case for the Goldstein singularity correction, section IVF shows that, for a significant buildup of

ice, the pressure gradient correction can also be activated in the iced area, very locally and with a

negligible impact on the solution.
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IV. Validation of the method

Some results from validation tests are presented in this section. The first ones correspond to

the simulation of some self-similar laminar boundary layer flows in order to evaluate the accuracy

of the closure relations. It is worth mentioning that the turbulent model has been validated too but

it will not be presented here because the turbulent closure relations come from the literature. Then

the other results correspond to 2D airfoil computations with laminar-turbulent transition. The IBL

method, which has been implemented in the so-called code BLIM2D, is then assessed against an

ONERA in-house code (CLICET) based on the full Prandtl equations [19].

A. Self-similar laminar boundary layer flows

The first step to validate the boundary layer calculation method is to compare the computed

results with the Blasius and Falkner-Skan solutions, which are self-similar laminar solutions. For

a self-similar flow, the velocity profiles only differ by a scale factor from each other. This type of

flows can be obtained if the external velocity varies as:

ue = kxm where m =
x

ue

due
dx

=
β

2− β

This edge velocity results from a wedge flow with an angle βπ. Under these conditions, the quantities

H, Reδ1/
√
Rex, Reθ/

√
Rex and Cf

√
Rex/2 are constant for each value of m. Four calculations

were performed in order to assess the accuracy of laminar closure relations. They correspond to a

stagnation point flow (m = 1), an accelerated boundary layer (m = 1/3), a flow over a flate plate

(zero pressure gradient, m = 0) and a decelerated boundary layer (m = −0.07).

As can be seen from table 1, numerical results are in good agreement with the theoretical

solutions. Figure 8 shows that for the 2D stagnation point flow (m = 1), the results are perfectly

constant thanks to the method exposed in section IIID. But for some other cases like m = 1/3,

there is still a little error for small Rex. In practice, exactly constant results are necessary only

for the case m = 1 in order to compute correctly the leading edge region over an airfoil profile.

It is worth mentioning that the values given in table 1 are those obtained from a sufficiently large

Reynolds number.
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Cases

H Reδ1/
√
Rex Reθ/

√
Rex Cf

√
Rex/2

theo. num. theo. num. theo. num. theo. num.

(%err.) (%err.) (%err.) (%err.)

m = 1 2.21623 2.22039 0.64789 0.64822 0.29234 0.29194 1.23259 1.23184

(0.19) (0.05) (0.14) (0.06)

m = 1/3 2.29694 2.29726 0.98537 0.98548 0.42899 0.42898 0.75745 0.75805

(0.01) (0.01) (0.002) (0.08)

m = 0 2.59110 2.59294 1.72079 1.71556 0.66411 0.66163 0.33206 0.33247

(0.07) (0.30) (0.37) (0.12)

m = −0.07 3.09067 3.08641 2.50823 2.47436 0.81155 0.80169 0.12981 0.13429

(0.14) (1.35) (1.21) (3.45)

Table 1 Comparison of numerical results with analytical solutions for different Falkner-Skan

flows
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(a) Accelerated boundary layer (m = 1/3)
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(b) 2D stagnation point flow (m = 1)

Fig. 8 Ratio between H and Htheo against the local Reynolds number Rex

B. NACA0012 case

In this section, some results obtained over a NACA0012 airfoil are presented. The integral

boundary layer code BLIM2D is compared with the code CLICET which is considered as the refer-

ence.

The fluxes are evaluated by a first order scheme and an arbitrary constant inital condition is

imposed at the beginning of the calculation.
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Profile NACA0012

Chord (m) 0.500

AOA (◦) 0

M∞ 0.15

T∞ (K) 263

P∞ (Pa) 80000

Table 2 Test case conditions

1. Mesh convergence

A preliminary mesh convergence study was carried out. Four uniform meshes were constructed

with a constant grid refinement ratio. They are composed of 128, 256, 512 and 1024 elements. The

data of the test case used for this study are detailed in table 2. The mesh convergence study is

limited to the leading edge of the airfoil, where the boundary layer is laminar.

The L2 error norm is given as follows:

ErrX =

√√√√√√
Nelmt∑
i=1

(XBLIM2Di −XCLICET i)
2

Nelmt

The errors obtained for the shape factor and the momentum thickness depending on the grid re-

finement are reported in table 3. The convergence is not very clear because this convergence study

is somewhat limited by the fact that the solution given by CLICET is not the exact solution of the

model. In addition this study represents a global convergence study for the whole aerodynamic solver

because the inviscid flow must be computed with the same grid as the boundary layer. Moreover,

it is worth mentioning that CLICET is a compressible solver whereas BLIM2D is an incompressible

solver. Thus errors may converge towards an asymptote which represents the difference between

the exact solution of CLICET and the exact solution of the model proposed in this paper.

However, it appears clearly in figures 9 and 10 that the solution is converged for meshes 3 and

4 because the errors no longer decrease. However one can see that the solution obtained with the

mesh 2 is very satisfactory too. In this section, for NACA0012 cases, calculations performed on a

1024 grid will be presented.

Finally, non-uniform grids composed of 128 elements and refined in the vicinity of the stagnation
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Mesh Mesh 1 Mesh 2 Mesh 3 Mesh 4

Nelmt 128 256 512 1024

ErrH 2.e−2 1.e−2 8.e−3 7.e−3

Errθ 6.e−7 3.e−7 2.e−7 2.e−7

Table 3 Errors for the shape factor and the momentum thickness depending on the grid

refinement
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Fig. 9 Shape factor against the dimensionless curvilinear abscissa for different grid refinements

point are often used in the ONERA’s 2D icing suite IGLOO2D. One can see in figure 11 that the

solution obtained with such a mesh is as converged as the solution obtained with the mesh 2. Such

a mesh will also be used in the next sections dedicated to MS317 and GLC305 airfoils and iced

airfoils.

2. Influence of the corrective source term on the stagnation point solution

This section deals with the study of the impact of the correction source term (see section IIID)

on the solution very close to the stagnation point. To that end, solutions obtained with and without

the correction source term are compared in figure 12. The data which correspond to the test case

used for this comparison are detailed in table 2.

It appears in figure 12 that the solution obtained without correction is incorrect in the vicinity of

the stagnation point (about 6 cells). This is particularly apparent for the shape factor. However it is

worth mentioning that the relative errors are broadly the same for the displacement and momentum

thicknesses and the friction coefficient. In fact, the relative errors of the four quantities are between
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Fig. 12 Effect of the corrective source term on the numerical results in the vicinity of the

stagnation point
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Profile NACA0012

Chord (m) 0.500

AOA (◦) 4

M∞ 0.30

T∞ (K) 263

P∞ (Pa) 80000

Table 4 Test case conditions

5% and 10%. In contrast, when the correction source term is activated, the solution in the vicinity

of the stagnation point is very close to the one obtained with CLICET.

Finally, the correction developed allows to strongly improve the accuracy of the method in the

vicinity of the stagnation point. This is essential to enable to simulate properly the ice accretion

over an airfoil. Indeed, ice forms mainly on the leading edge where the droplet collection efficiency

and the thermal exchanges are the most important. That is why an inaccurate calculation of the

boundary layer in this zone would lead to significant errors on the final ice shape.

3. Influence of external velocity and angle of attack

Several calculations were performed with different values of external velocity and angle of attack

in order to assess the capabilities of the method. One of them, with relatively high Mach number

and angle of attack, is presented in this section. The data of the test case are detailed in table 4.

For a better comparison with CLICET, the transition criterion used for the calculations obtained

with CLICET is the same as the one used by BLIM2D (see section IIC 3).

Figure 13 shows that the results are in good agreement with the reference solution. The solution

in the turbulent region is correct and the laminar region is very accurately computed by the code

BLIM2D, including in the vicinity of the stagnation point. As already mentioned, especially for

icing applications, it is essential to have good results in this region where thermal exchanges are

very important and a little error can change significantly the final ice shape.
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Fig. 13 Comparison between results of BLIM2D and CLICET over a NACA0012 airfoil for a

chord of 0.5m, a Mach number of 0.3 and an angle of attack of 4◦

C. MS317 cases

In this section, two calculations performed over a MS317 airfoil are presented, the first one with

an angle of attack of 0◦ and the second one with an angle of attack of 8◦. The data of the test

cases are detailed in table 5. The accuracy of the solution is similar to the one observed over the

NACA0012 airfoil. In particular, the solutions in the leading edge for laminar boundary layers are

still excellent (see figures 14 and 15). Nevertheless it may be noted a slightly larger difference with

the CLICET solution in the turbulent zone over the MS317 airfoil. The main reason is that the

laminar-turbulent transition does not occur exactly at the same location for CLICET and BLIM2D,

which induces a delay in the turbulent zone. In addition, the delay in this case is more visible than

over the NACA0012 airfoil because the space step is larger than for the previous airfoil.

D. GLC305 cases

The solvers CLICET and BLIM2D have also been compared over a GLC305 airfoil. The data

of the test cases presented in this section are detailed in table 6. The conclusions are broadly the

same as for the previous cases (see figures 16 and 17). However, for the case with an angle of attack
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Profile MS317 MS317

Chord (m) 0.914 0.914

AOA (◦) 0 8

M∞ 0.2420 0.2420

T∞ (K) 263 263

P∞ (Pa) 101325 101325

Table 5 Test cases conditions
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Fig. 14 Comparison between results of BLIM2D and CLICET over a MS317 airfoil for a chord

of 0.914m, a Mach number of 0.2420 and an angle of attack of 0◦

of 4.5◦, no comparison can be made on the upper surface (i.e. s/c > 0). Indeed, CLICET predicts

a boundary layer separation just after the stagnation point and the solver no longer provides a

solution because it can not solve the detached boundary layers. However, according to the solution

of BLIM2D, the boundary layer is not detached even if it is strongly decelerated. The reason is

that the adverse pressure gradient, which is too large, has been limited in this zone. The solution

is therefore inaccurate on a little zone where the boundary layer should be detached. However this

shows the robustness of the solver which allows to obtain a solution over the whole airfoil, knowing

that an accurate solution is not mandatory for strong adverse pressure gradients.
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Fig. 15 Comparison between results of BLIM2D and CLICET over a MS317 airfoil for a chord

of 0.914m, a Mach number of 0.2420 and an angle of attack of 8◦

Profile GLC305 GLC305

Chord (m) 0.9144 0.9144

AOA (◦) 4.5 1.5

M∞ 0.2730 0.3940

T∞ (K) 268.30 263.60

P∞ (Pa) 101325 101325

Table 6 Test cases conditions

E. Calculation over airfoils with ice shapes

First simulations over iced airfoils are presented in this section in order to show the capabilities

of the method to perform calculations over complex geometries. The icing suite used to perform the

ice accretion calculations is IGLOO2D [4]. Figure 18 illustrates the predictor ice shape obtained

for the two sets of external conditions detailed in table 7. The first case corresponds to a rime ice

case and the second one to a glaze ice case. A boundary layer calculation has been performed with

BLIM2D and CLICET over these two ice shapes. The results for the rime ice case are illustrated

in figure 19. The solution obtained by BLIM2D is consistent with the one obtained by CLICET.
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Fig. 16 Comparison between results of BLIM2D and CLICET over a GLC305 airfoil for a

chord of 0.9144m, a Mach number of 0.2730 and an angle of attack of 4.5◦

Generally, calculations over rime ice are not much more difficult than those over a clean profile

because the shapes are broadly similar (see figure 18). However, one can see that the leading edge

has been thickened by the ice deposit and a strong adverse pressure gradient occurs close to the

leading edge (at s/c ≈ ±0.1). The boundary layer is therefore strongly decelerated and the shape

factor rises quickly. The difference which appears in this zone between CLICET and BLIM2D is

due to the fact that the laminar-turbulent transition is not predicted exactly at the same location

by the two codes. It is also worth mentioning that a boundary layer separation is predicted by

BLIM2D at s/c ≈ −0.07. The treatment of the Goldstein singularity allows to produce a solution

for which the skin friction is locally negative (on one point only). The agreement with CLICET

remains very good everywhere else. Besides, the non-uniform mesh used for this calculation is not

symmetrical. This explains why the results are not exactly symmetrical.

In contrast, for the glaze ice case, the ice shape is much more complex and it significantly

affects the inviscid flow. In particular, for horn-ice shapes, the inviscid code usually predicts a

large separation zone just downstream of the horns, which is a numerical issue that has to be

addressed with BLIM2D. Indeed, this large separation zone results in backflow edge velocities
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Fig. 17 Comparison between results of BLIM2D and CLICET over a GLC305 airfoil for a

chord of 0.9144m, a Mach number of 0.3940 and an angle of attack of 1.5◦

(see figure 18), which may be a numerical challenge for an integral boundary layer code. That

is why CLICET provides a solution only in the vicinity of the stagnation point (see figure 20).

However, BLIM2D is able to provide a steady solution over the entire profile. Again, a laminar

boundary layer separation is produced by BLIM2D at s/c ≈ 0.024 where the skin friction becomes

locally negative (on one point again). CLICET predicts a laminar separation roughly at the

same location. It must be noticed that at s/c ≈ −0.044, BLIM2D predicts a laminar-turbulent

transition whereas CLICET predicts a laminar separation. Moreover, one can notice in figure 18

that the external velocity vanishes at two different locations on the lower and upper surfaces, in

addition to the stagnation point. The points s/c ≈ 0.1 and s/c ≈ −0.064 correspond to the onset

of the large separation zone. The adverse pressure gradient is very strong. This is consistent with

the fact that the integral quantities are very large and the friction coefficient becomes negative

(see figure 20). The points s/c ≈ 0.29 and s/c ≈ −0.35 correspond to the end of the large sep-

aration zone. The flow behaves like a stagnation point: H ≈ 2.21 and the friction coefficient is large.

The BLIM2D solution in the separation region is meaningless because the boundary layer is not
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Case Rime ice Glaze ice

Profile NACA0012 GLC305

Chord (m) 0.533 0.914

AOA (◦) 0 0

M∞ 0.2807 0.3660

T∞ (K) 252.44 260.78

P∞ (Pa) 93000 77000

LWC (g/m3) 0.51 0.58

MVD (µm) 40 44

t (s) 600 876

Table 7 Test cases conditions

(a) Rime ice on NACA0012 airfoil (b) Glaze ice on a GLC305 airfoil

Fig. 18 Studied ice shapes

well defined in a large separation zone. The skin friction given by BLIM2D here is globally lower

than in the attached region. It means that the diffusive transfers to the walls are lower than in

the upstream region, making their importance lower for the ice accretion computations. However,

there is no evidence that the order of magnitude is correct. That is the reason why Navier-Stokes

computations were run on the very same configuration, with the ONERA solver elsA.

For the present elsA computation, the grid of figure 21 was generated. It is composed of 117504

quadrangular cells. The grid was extended 50 chords around the airfoil to ensure proper farfield

boundary conditions. The cell refinement is correct for a low-Reynolds approach, since the cell size
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Fig. 19 Comparison between results of BLIM2D and CLICET over a NACA0012 with rime

ice shape

is everywhere lower than y+ = 1 in wall coordinates. In order to make a fine comparison between

elsA and BLIM2D on the horn ice shape, the same wall conditions were considered for both codes.

Smooth and adiabatic wall conditions were used and transition was enforced at the same position

as for BLIM2D, that is close to the top of the horns (s/c ' −0.04 and s/c ' 0.08).

Regarding turbulence, the turbulence rate was considered as 1% and a low value of turbulent

viscosity was employed in the far field (a ratio 0.1 between the turbulent viscosity and the molecular

viscosity was used). A k-ω Menter SST model was used. A steady local time-stepping approach was

used with a backward Euler implicit time scheme (LUssor method, CFL=10). The spatial scheme

was a Roe scheme with a minmod limiter and with a Harten entropic correction coefficient set to a

very low value, 10−6, for the transport of turbulent variables. 200000 iterations were performed to

achieve steady-state (a decrease in the residuals of around 9 orders of magnitude was obtained).

Figure 21 shows the flow separation obtained with elsA. The inviscid approach is not expected

to catch the flow separation correctly (figure 18). But it is also well known that the flow separation

is not easy to capture with RANS approaches either, especially its extent. Here, the streamlines of

figures 18 and 21 show that elsA predicts the flow as detached slightly further than IGLOO2D. The
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Fig. 20 Comparison between results of BLIM2D and CLICET over a GLC305 with glaze ice

shape

agreement between the two codes on pressure and edge velocity is very good in the attached region

(figure 22). At the top of horns (s/c ' −0.02 and s/c ' 0.09), there is a strong acceleration and

a decrease in pressure. IGLOO2D overpredicts this acceleration, especially for the horn located on

suction side (s/c > 0). This may be due to the fact that the boundary layer thickens the airfoil

and smoothes the horn shape. In the separated zone, the Navier-Stokes computation captures the

pressure plateau, whereas the evolution predicted by the inviscid solver of IGLOO2D is more chaotic.

The pressure levels finally get similar again in the downstream part of the airfoil.

Figure 23 shows that the agreement between the two codes is very good on skin friction in

the attached region. The main discrepancy between the two codes is obtained at the top of the

upper-side horn (s/c ' 0.09). This is due to the overestimation of the velocity by IGLOO2D.

BLIM2D logically also overestimated the skin friction at this point. Further downstream, the order

of magnitude of skin friction produced by BLIM2D is rather correct as compared to elsA (as well

as the location of the separation region, where the skin friction is negative). Skin friction is overall

underpredicted by BLIM2D. The under-prediction of skin friction by BLIM2D is a sign that diffusive

transfers to the wall are underestimated. The role of the convective transfer on ice accretion should
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therefore be reduced as well in the large separation area. This is safer than an over-prediction of

the diffusive transfers to the wall, given the low level of accuracy of the solution in this area.

(a) Grid (b) Resulting volume flow field

Fig. 21 Navier-Stokes elsA computations of glaze-ice GLC305 test-case

(a) Pressure (b) Edge velocity

Fig. 22 Profiles produced by elsA and IGLOO2D around the glaze-ice GLC305 airfoil
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Fig. 23 Skin friction predicted by elsA and BLIM2D over the glaze-ice GLC305 airfoil

F. On the use of the corrections over airfoils with ice shapes

Figure 24 shows where the Goldstein singularity correction and the pressure gradient limitation

are activated on the the two cases studied. In both cases, the Goldstein correction is activated

at convergence very occasionally. During the iterative process, the activation area is a little larger

(cells where the correction was activated at least once during the iterations). Similarly, the limitation

of the pressure gradient can be active until convergence in the iced area. For the rime case, the

pressure gradient limitation is activated near the laminar-turbulent transition. For the glaze case,

the limitation is particularly used in the flow separation area, mainly after the laminar-turbulent

transition. But the limitation is also active in a small area near the stagnation point.

Figure 25 shows that the activation of these corrections has a limited effect on wall friction.

For the rime case, the difference between BLIM2D and CLICET is mainly due to the fact that the

laminar-turbulent transition is a little delayed for BLIM2D (s/c = ±0.07 instead of ±0.064). In

the areas where both codes produce laminar regime (s/c ∈ [−0.06,−0.055] and s/c ∈ [0.06, 0.062]),

the pressure gradient limitation generates a rather small deviation on Cf (although it is a little

larger than elsewhere). The same observation holds in areas where both codes produce turbulent

regime (s/c = 0.074). For the glaze case, the differences observed between BLIM2D and elsA in the

flow separation zones have already been commented earlier. The Goldstein singularity correction
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is enabled at s/c ' 0.02. The slight but sudden drop in friction at this point is not predicted

by BLIM2D. But on both sides of this point, the level of friction is the same for both codes. At

s/c ' 0.04, the pressure gradient limitation is activated and there is no significant difference between

the skin frictions produced by the two codes.

No significant errors are therefore created by the activation of corrections, even though it should

be noted that the two studied cases are particularly difficult. Indeed, the walls are considered as

smooth, which means that the laminar-turbulent transition is delayed compared to a transition on

a rough wall. Let us examine for example the case of an advanced transition at s/c = 0.03 instead

of s/c ' 0.07 for the rime case.

It is interesting to note that the Goldstein correction no longer needs to be activated (figure

26(a)), which was expected. But the limitation of the pressure gradient is also almost no longer

necessary (except in the immediate vicinity of the trailing edge and locally during the iterative

process). This is due to the fact that the limitation is now activated in turbulent regime and the

eigenvalue used in equation (36) is larger in turbulent regime than in laminar regime. There are

two reasons for this. First, the eigenvalues are slightly larger in turbulent regime than in laminar

regime (figure 5). Second,the eigenvalues are a decreasing function of the shape factor H and H is

lower in turbulent regime than in laminar regime. Figure 26(b) shows that the agreement on the

skin friction is overall very good between the two codes.

V. Conclusion

In this paper, an integral boundary layer method developed specifically for icing applications

has been presented. In particular, it is known that ice accretion occurs mainly at the leading edge of

an airfoil. For this reason, special attention has been given to the resolution of the boundary layer

in this zone. Firstly, a closure of the integral model based on a laminar velocity profile has been

developed in order to achieve a high precision for the calculation of the integral quantities and the

friction coefficient at the leading edge. Then, a specific numerical procedure has been developed to

improve significantly the accuracy of the solution in the vicinity of the stagnation point. In contrast,

ice deposit occurs rarely in strong adverse pressure gradient and separation zones. Thus a condition
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(a) Rime-ice case (b) Glaze-ice case

Fig. 24 Locations where Goldstein singularity correction (Goldstein corr.) and pressure gra-

dient limitation (PG Lim.) were activated during the BLIM2D computations of the cases of

table 7

(a) Rime-ice case (b) Glaze-ice case

Fig. 25 Skin friction predicted by BLIM2D and the reference code and locations where

Goldstein singularity correction and pressure gradient limitation were activated during the

BLIM2D computations of the test-cases of table 7. : Goldstein singularity correction ac-

tivated during the iterative process, : Goldstein singularity correction activated at conver-

gence, : pressure gradient limitation activated during the iterative process, : pressure

gradient limitation activated at convergence
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(a) Locations (b) Skin friction

Fig. 26 Skin friction predicted by BLIM2D and the reference code and locations where Gold-

stein singularity correction (Goldstein corr.) and pressure gradient limitation (PG Lim.) were

activated during the BLIM2D computations of the rime-ice case of table 7. Laminar-turbulent

transition imposed at s/c = 0.03. : Goldstein singularity correction activated during the it-

erative process, : Goldstein singularity correction activated at convergence, : pressure

gradient limitation activated during the iterative process, : pressure gradient limitation

activated at convergence.

to limit adverse pressure gradients has been developed to make the solver robust and to ensure that

a steady solution is always provided, even if it is inaccurate in non-critical areas as far as icing is

concerned. Moreover, the discretization method is based on a Finite-Volume formulation, adapted

for unstructured meshes. This allows to perform calculations over airfoils with ice shapes which are

often complex geometries. Finally, the model formulation and the discretization method have been

chosen to ensure the possible extension of the method to the three dimensional case [23]. Many

validation test cases have been performed, both on academic and more realistic configurations. The

results show the high accuracy of the method at the leading edge and its robustness in strong adverse

pressure gradient zones. Calculations over airfoils with complex ice shapes are in progress but the

first results exposed in this article are encouraging, both in terms of accuracy in the attached zones

and robustness.

The ultimate goal of this work is to implement the IBL method in a 3D icing suite. To that
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end, the extension of the method to 3D is on-going [23, 24, 34]. Besides, the solver must be able to

calculate the friction coefficient and the heat transfer coefficient over an ice shape. So a follow-up

to the present work is to solve the thermal boundary layer and to take into account the effects of

surface roughness. The heat transfer coefficient can be inferred from dynamic quantities thanks to a

Reynolds-like analogy. This approach is commonly used in 2D ice accretion codes. A more accurate

method consists of solving a model for the thermal boundary layer by adding the integral energy

equation to the system. The rough quantities can either be inferred from the smooth ones thanks to

semi-empirical algebraic laws or be directly computed by modifying the closure relations to account

for roughness effects. This work is currently on-going and promising preliminary results based on a

Reynolds-like analogy have already been obtained [23, 24].

Appendix

Derivation of the laminar velocity profile

The laminar velocity profile has the following form:

u

ue
= ũ = 1− (1 + aη)(1− η)p−1 with η =

y

δ

where a, δ, and p must be expressed as functions of the primary unknowns thanks to the set of

conditions (13), (14) and (15) which is recalled below:

p− 1− a = Hg(H)
δ

δ1

δ1 =
δ(p+ 1 + a)

p(p+ 1)

θ = δ

(
p+ 1 + a

p(p+ 1)
− 2a2 + 2a(2p+ 1) + 2p(2p+ 1)

(2p− 1)2p(2p+ 1)

)

From condition (13), one can easily deduce a:

a = p− 1−Hg(H)
δ

δ1
(37)

Then,
δ

δ1
can be expressed as a function of H and p. Thanks to (37), condition (14) becomes:

Hg(H)

(
δ

δ1

)2

− 2p

(
δ

δ1

)
+ p(p+ 1) = 0
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One may notice that there are real and physical solutions of the above equation only for Hg(H) < 1

(i.e. H > 1.9538) and p >
Hg(H)

1−Hg(H)
. Under these conditions, the solutions for

δ

δ1
are:

δ

δ1
=
p±

√
p2 − p(p+ 1)Hg(H)

Hg(H)
=

p(p+ 1)

p∓
√
p2 − p(p+ 1)Hg(H)

The ratio
δ

δ1
must be positive for all values of H. Therefore, the solution is:

δ

δ1
=

p(p+ 1)

p+
√
p2 − p(p+ 1)Hg(H)

(38)

Finally, p can be obtained as follows. Knowing that H = δ1/θ, equation (15) becomes:

1

H
=

δ

δ1

(
p+ 1 + a

p(p+ 1)
− 2a2 + 2a(2p+ 1) + 2p(2p+ 1)

(2p− 1)2p(2p+ 1)

)

Thanks to (37) and (38), the above equation depends only on p and H. This equation can then be

solved numerically to obtain p(H) (see figure 2, curve “target values"). Let’s consider a piecewise

function to fit this curve of target values (because g(H) is a piecewise function):

p(H) = x1 +
x2

(H − 1.9538)x3
if H ≤ Hcrit

p(H) = 2 +
x4

(H − x5)x6
if H > Hcrit

where Hcrit = 4.02923. The expression above is justified by the fact that p must tend to +∞ when

H tends to 1.9538 by a higher value. In addition, p must always be greater than 2, particularly

when H tends to +∞. Moreover, p(H) and ∂p
∂H must be continuous in Hcrit hence:

x5 = Hcrit −
(
x4x6(Hcrit − 1.9538)x3+1

x2x3

) 1

x6 + 1 (continuity of p’(H))

x1 = 2 +
x4

(Hcrit − x5)x6
− x2

(Hcrit − 1.9538)x3
(continuity of p(H))

This system of equations is solved using a least-squares method to approximate the function p(H).

The solution is given by equation (16).
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Derivation of the closure functions

The closure functions for δ3 and CD are obtained by integrating the veloctiy profile (17). The

definition of these quantities is recalled below:

δ3 =

∫ ∞
0

ũ
(
1− ũ2

)
dy

CD =
1

δ

∫ 1

0

ν

ue

(
∂ũ

∂η

)2

dη

The closure functions fl(H) and l(H) are defined as:

fl(H) = Hδ3 =
δ3
θ

l(H) =
2CD
Hδ3

Reθ

where Reθ =
ueθ

ν
. Thus, they read:

fl(H) =
A+B(p− 1− a) + C(p− 1− a)2 +D(p− 1− a)3

E + F (p− 1− a) +G(p− 1− a)2

l(H) =
2

fl(H)

(
I + J(p− 1− a) +K(p− 1− a)2

) (
E + F (p− 1− a) +G(p− 1− a)2

)
where

A =
4

p+ 1
+

6− 15p

4p2 − 1
+

4− 22p+ 26p2

2− 3p− 18p2 + 27p3

B =
−2

p(p+ 1)
+

12p− 3

p(4p2 − 1)
+

−2 + 17p− 27p2

p(2− 3p− 18p2 + 27p3)

C =
−3

p(4p2 − 1)
+

4

p(9p2 − 3p− 2)

D =
−2

p(2− 3p− 18p2 + 27p3)

E =
2

p+ 1
+

2− 5p

4p2 − 1



F =
−1

p(p+ 1)
+

4p− 1

p(4p2 − 1)

G =
−1

p(4p2 − 1)

I =
p3 − p2

4p2 − 8p+ 3

J =
−p

4p2 − 8p+ 3

K =
p− 1

4p2 − 8p+ 3

where a(H) =
√
p2 − p(p+ 1)Hg(H)− 1 and p = p(H) is given by (16).
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