
HAL Id: hal-02050767
https://hal.science/hal-02050767v3

Submitted on 1 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transverse approach to geometric algebra models for
manipulating quadratic surfaces

Stéphane Breuils, Vincent Nozick, Laurent Fuchs, Akihiro Sugimoto

To cite this version:
Stéphane Breuils, Vincent Nozick, Laurent Fuchs, Akihiro Sugimoto. Transverse approach to geomet-
ric algebra models for manipulating quadratic surfaces. Computer Graphics International (CGI2019),
Jun 2019, Calgary, Canada. �hal-02050767v3�

https://hal.science/hal-02050767v3
https://hal.archives-ouvertes.fr


Transverse approach to geometric algebra models for

manipulating quadratic surfaces

Stéphane Breuils1, Vincent Nozick1, Laurent Fuchs2 and Akihiro Sugimoto3

1 Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI,
UMR 8049, Université Paris-Est Marne-la-Vallée, France
{stephane.breuils, vincent.nozick}@u-pem.fr

2 XLIM-ASALI, UMR 7252,
Université de Poitiers, Poitiers, France
Laurent.Fuchs@univ-poitiers.fr

3 National Institute of Informatics,
Tokyo 101-8430, Japan
sugimoto@nii.ac.jp

Abstract. Quadratic surfaces gain more and more attention in the geo-
metric algebra community and some frameworks to represent, transform,
and intersect these quadratic surfaces have been proposed. To the best of
our knowledge, however, no framework has yet proposed that supports
all the operations required to completely handle these surfaces. Some ex-
isting frameworks do not allow the construction of quadratic surfaces
from control points while some do not allow to transform these quadratic
surfaces. Although a framework does not exit that covers all the required
operations, if we consider all already proposed frameworks together, then
all the operations over quadratic surfaces are covered there. This paper
presents an approach that transversely uses different frameworks. We em-
ploy a framework to represent any quadratic surfaces either using control
points or the coefficients of its implicit form and then map the representa-
tion into another framework so that we can transform them and compute
their intersection. Our approach also allows us to easily extract some ge-
ometric properties.

Keywords: Geometric algebra, Quadratic surfaces, Conformal Geometric
Algebras

1 Introduction

Geometric algebra provides convenient and intuitive tools to represent, trans-
form, and intersect geometric objects. Deeply explored by physicists, it has been
used in quantum mechanics and electromagnetism [11] as well as in classical
mechanics [12]. Geometric algebra has also found some interesting applications
in geographic data manipulations [15, 20]. Among them, geometric algebra is
used within the computer graphics community. More precisely, it is used not
only in basis geometric primitive manipulations [19] but also in complex il-
lumination processes as in [16] where spherical harmonics are substituted by



2 Stéphane Breuils, Vincent Nozick, Laurent Fuchs and Akihiro Sugimoto

geometric algebra entities. For image data analysis, on the other hand, we can
find the usefulness of geometric algebra in mathematical morphology [5] and in
neural networking [2, 13]. In the geometric algebra community, quadratic sur-
faces gain more and more attention, and some frameworks to represent, trans-
form, and intersect these quadratic surfaces have been proposed.

There exist three main approaches to deal with quadratic surfaces in geo-
metric algebra. The first one, introduced in [8], is called double conformal ge-
ometric algebra (DCGA), G8,2. It is capable of representing quadratic surfaces
from the coefficients of their implicit form. The second one is double projective
geometric algebra (DPGA), G4,4, whose definition was firstly introduced in [10]
and has been further developed in [7]. This approach is based on a duplica-
tion of R4 and it represents quadratic surfaces from the coefficients of their im-
plicit form, as bivectors. However, it cannot construct quadratic surfaces from
control points. The third one was introduced in [1] and is denoted as quadric
conformal geometric algebra (QCGA), G9,6. QCGA allows to define any gen-
eral quadratic surface from 9 control points, and to represent objects by only 1
or 2-vectors. QCGA is capable of constructing quadratic surfaces either using
control points or implicit equations as 1-vector. QCGA also allows to efficiently
intersect quadratic surfaces. However, it does not yet allow all geometric trans-
formations over quadratic surfaces. In order to enhance the usefulness of geo-
metric algebra for the geometry and the computer graphics communities, a new
framework that allows to represent and manipulate quadratic surfaces has to
be developed. It is the main purpose of this paper.

1.1 Contributions

We propose a new approach that transversely uses the three above mentioned
geometric algebra models to compensate drawbacks of each model and show
that it is possible to not only represent quadratic surfaces using either con-
trol points or implicit coefficients but also transform these quadratic surfaces
using versors. More precisely, we employ a model that allows us to repre-
sent quadratic surfaces, and convert them into another model that allows us
to transform them using versors, and then convert the result back into the orig-
inal model. With our approach, the tangent planes to a quadratic surfaces and
intersection of quadratic surfaces can be computed.

1.2 Notations

Following the state-of-the-art usage in [4] and [18], upper-case bold letters
denote blades (blade A) whose grade is higher than 1. Multivectors and k-
vectors are denoted with upper-case non-bold letters (multivector A). Lower-
case bold letters refer to vectors and lower-case non-bold to multivector coor-
dinates. The vector space dimension is denoted by 2d, where d is the number of
basis blades ei of grade 1.



GA & quadratic surfaces 3

2 Geometric algebra models for quadratic surfaces

2.1 Measure for evaluating complexity of models

In order to compare the operations for different frameworks, we need a crite-
rion to evaluate models. This requires the ability of determining the complexity
of operations in a model. Our complexity estimation is made through two sim-
ple assumptions.

First, let us consider the outer product between one homogeneous multivec-
tor whose number of components is u and another homogeneous multivector
whose number of components is v, u,v ∈ N. We then assume that an upper
bound to the number of required products is at most uv products of scalars, as
shown in the definition of the outer product [14].

The equation of the inner product is our base for the second assumption.
Furthermore, we need to use the formula for inner products between 1-vector
and 2-vector as well as inner product between two 1-vector. The first multivec-
tor has u non-zero components, and the second has v non-zero components.
Then the inner product between two 1-vectors will result in uv products. The
inner product between 1-vectors and 2-vectors, on the other hand, requires two
inner products for each pair of components of the two multivectors, that is to
say 2uv products. These models will be used for determining the complexity of
each operation. Let us now explain in more details these models.

2.2 Models of quadratic surfaces with geometric algebra

This section presents the main geometric algebra models to represent and ma-
nipulate quadratic surfaces. Furthermore, we aim at determining the most ef-
ficient geometric algebra model for each of operations required in computer
graphics. The purpose here is to propose an approach that transversely uses
geometric algebra models to efficiently handle quadratic surfaces. The consid-
ered operations over the surfaces are:

– checking whether a point lies in a quadratic surface,
– intersecting quadratic surface and line,
– computing the normal vector (and the tangent plane) of a surface at a given

point.

One of the applications requiring the above operations is the precise visualiza-
tion using ray-tracer [9]. There exist three main geometric algebra frameworks
to manipulate general quadratic surfaces: DCGA of G8,2 [8], DPGA of G4,4 [17,
7], and QGCA of G9,6 [1].

DCGA of G8,2.
DCGA was presented by Hitzer and Easter [8] and aims at having enti-

ties representing both quartic surfaces and quadratic surfaces. In more details,
DCGA of G8,2 is defined over a 10-dimensional vector space. The base vectors



4 Stéphane Breuils, Vincent Nozick, Laurent Fuchs and Akihiro Sugimoto

of the space are basically divided into two groups: {eo1,e1,e2,e3,e
∞1}, corre-

sponding to the CGA vectors, and a copy of this basis {eo2,e4,e5,e6,e
∞2}. A

point of DCGA whose Euclidean coordinates are (x,y,z) is defined as the outer
product of two CGA points with coordinates (x,y,z).

Quadratic surfaces: A general quadratic surface merely consists of defining
some operators that extract the components of x. For a general quadratic surface
defined as:

ax2 + by2 + cz2 + dxy + eyz + fzx + gx + hy + iz + j = 0. (1)

In DCGA, 10 extraction operators {Tx2 ,Ty2 ,Tz2 ,Txy,Txz,Tyz,Tx,Ty,Tz,T1} are

defined (see [8]) such that the inner product of these operators and a point re-
sults in Equation 1. DCGA not only supports the definition of general quadratic
surfaces but also some quartic surfaces like Torus, cyclides (Dupin cyclides,
etc.).

Complexity of some major operations: Let us first evaluate the computa-
tional cost of checking whether a point is on a quadratic surface using the model
of 2.1. QDCGA has 10 basis bivector components in total. For each basis bivector,
at most 3 inner products (bivector ∧ bivector) are required. The number of point
components is 25. Thus, the product QDCGA · X requires 25× 3× 10 = 750 prod-
ucts.

This paragraph details the cost of the computation of the tangent plane to a
quadratic surface, defined in [8] as:

Π = (n1 + de
∞1) ∧ (n2 + de

∞2). (2)

The normal vector is defined as the commutator product of some differential
operators and the quadratic surface resulting in a 7-component bivector. Each
inner product with X then has the cost of 7 × 25 = 175 products. This latter
computation is repeated for each axis; thus, this results in 175 × 3 = 525 prod-
ucts. The computation of the distance d, on the other hand, consists of merely
3 inner products. Both operands in this equation are 4-components 1-vector.
Thus, the computational cost of the outer product is 4× 4 = 16. Hence, the total
cost of the computation of the tangent plane is 525 + 16 = 541 products. The
third operation is the intersection between a quadratic surface and a line. This
computation is, unfortunately, not defined in DCGA.

DPGA of G4,4.
DPGA was adapted from the approach of Parkin [17] in 2012 and firstly in-

troduced in 2015 by Goldman and Mann [10] and further developed by Du and
Goldman and Mann [7]. DPGA is defined over a 8-dimensional vector space.
Similarly to DCGA, the base vectors of the space are divided into two groups:
{w0,w1,w2,w3}, corresponding to the projective geometric algebra vectors,
and a copy of this basis {w∗

0 ,w∗
1 ,w∗

2 ,w∗
3} such that wiw

∗
i = 0.5 + wi ∧ w∗

i ,
∀i ∈ {0,1,2,3}. In DPGA, the entity representing a point whose Euclidean co-
ordinates are (x,y,z) has two definitions, namely, primal and dual. Both defini-
tions are the base to construct quadratic surfaces by means of the sandwiching



GA & quadratic surfaces 5

Table 1: Formulas of DPGA involved in the main computations for computer graphics

Feature DPGA

point is on a quadric p · QDPGA · p∗

tangent plane QDPGA · p∗

quadric-line intersection (L∗ ∧ QDPGA ∧ L) · I

product. The definitions of the points are:

p = xw0 + yw1 + zw2 + ww3, p∗ = xw∗
0 + yw∗

1 + zw∗
2 + ww∗

3 . (3)

Note that the dual definition denotes the fact that

wi · w∗
j =

1

2
δi,j (∀i, j = 0, · · ·3), (4)

where δi,j = 1 if i = j, 0 otherwise. This corresponds to the condition of the dual
stated in Section 11 of [3].

Quadratic surfaces: A quadratic surface in DPGA is the bivector QDPGA de-
fined as follows:

QDPGA =4aw∗
0 ∧ w0 + 4bw∗

1 ∧ w1 + 4cw∗
2 ∧ w2 + 4jw∗

3 ∧ w3

+2d(w∗
0 ∧ w1 + w∗

1 ∧ w0) + 2e(w∗
0 ∧ w2 + w∗

2 ∧ w0)
+2f(w∗

1 ∧ w2 + w∗
2 ∧ w1) + 2g(w∗

0 ∧ w3 + w∗
3 ∧ w0)

+2h(w∗
1 ∧ w3 + w∗

3 ∧ w1) + 2i(w∗
2 ∧ w3 + w∗

3 ∧ w2).

(5)

A point (x,y,z) is in the quadratic surface QDPGA if and only if

p · QDPGA · p∗ = 0. (6)

Table 1 summarises the computations involved in three main operations used
for computer graphics.

Complexity of some major operations: QDPGA has a total of 16 basis bivec-
tor components. For each basis bivector, 2 inner products are required. Thus,
the first product P · QDPGA requires 4 × 2 × 16 = 128 inner products. As previ-
ously seen, the resulting entity is a vector with 4 components. Hence, the second
inner product requires 4× 4 = 16 products. This results in 144 products in total.

Let us now evaluate the cost of the intersection between a quadratic sur-
face QDPGA and a line L and L∗. The line L∗ is obtained by the outer product
of two points x1 and x2 whose number of components is 4. Thus, a line L has
6 components. The number of components of the quadratic surface is 16 and
the number of components of the line is 6. Then, the computational cost of the
outer product L∗ ∧ QDPGA is 6 × 16 = 96 outer products. The result is a 4-vector
and the resulting entity has 16 components. Furthermore, the line l has 6 com-
ponents. Hence, the cost of the final outer product is 16× 6= 96 outer products.
The total operation cost is thus 96 + 96 = 192 products.



6 Stéphane Breuils, Vincent Nozick, Laurent Fuchs and Akihiro Sugimoto

Considering the fact that the number of components of p∗ is 4 and the num-
ber of components of QDPGA is 16, the computational cost of the computation of
the tangent plane is 16 × 4 = 64 products.

QCGA of G9,6

Let us evaluate the computational cost of checking whether a point is on a
quadratic surface. The definition of a quadratic surface in QCGA is a 1-vector,
called Q∗, which has a total of 12 basis vector components. Furthermore, the
number of point component is 12. Thus, the product x · Q∗ requires at most
12 × 12 = 144 products.

The computation of the tangent plane is performed by firstly computing the
normal vector. This computation requires the inner product between a vector
with 12 components and another vector with 4 components. This is repeated
for each Euclidean basis vector; thus, the computation of the normal vector
requires 3 × 4 × 12 = 144 inner products.

Then, the tangent plane is computed using the normal vector as follows:

π
∗ = nǫ +

1

3

(

e
∞1 + e

∞2 + e
∞3

)

√

−2(eo1 + eo2 + eo3) · x. (7)

This computation requires the computation of an inner product of a vector with
3 components (e1,e2,e3) with a 12 component-vector. This means 12 × 3 = 36
products. Thus, the total number of inner products required for computing the
tangent plane is 144+ 36 = 180 products.

The final computational feature is the quadric-line intersection. In QCGA,
this simply consists of computing the outer product:

C∗ = Q∗ ∧ L∗ (8)

The number of components of Q∗ is 12 as already seen. In QCGA, a line with
the 6 Plücker coefficients is defined as:

L∗ = 3 m Iǫ + (e
∞3 + e

∞2 + e
∞1) ∧ n Iǫ. (9)

The number of components of both m and n is 3. The outer product (e
∞3 +

e
∞2 + e

∞1) ∧ n Iǫ yields a copy of the 3 components of n along e
∞1,e

∞2,e
∞3

basis vectors. Thus, the number of components of L∗ is 3 × 3 + 3 = 12. The cost
of the outer product between Q∗ and L∗ is thus 12 × 12 = 144 products.

Table 2 summarises the complexity of DPGA, DCGA, and QCGA for com-
puting features. We remark that the computation of the tangent plane is more
efficient if we use DPGA whereas the intersection between a quadratic surface
and a line requires less computations if we use QCGA. Furthermore, geometric
transformations are not yet defined in QCGA.

3 Mapping between the three models for quadratic surfaces

As one of practical applications, we consider constructing a quadratic surface
from 9 points then rotating this quadratic surface. To the best of our knowledge,



GA & quadratic surfaces 7

Table 2: Numbers of operations required for computation in DPGA, DCGA, and QCGA.

Feature DPGA DCGA QCGA

point is on a quadric 144 750 144

tangent plane 64 541 180

quadric-line intersection 192 − 144

QCGA
quadric, point

DPGA
quadric, point

DCGA
quadric, point

Fig. 1: Encapsulation of the three models of points and quadrics.

QCGA is the only approach that can construct a quadratic surface from 9 points.
But QCGA does not yet support all the transformations. Furthermore, the last
section shows that it is more computationally efficient to perform the quadric-
line intersection in the QCGA model whereas the computation of the tangent
plane or the normal vector at a point of quadratic surface is more efficient in the
DPGA model. Moreover, if we represent both a Dupin cyclide and a quadratic
surface in a same way as [6], then we need DCGA. The above observation is our
motivation for defining new operators that convert quadratic surfaces between
the three models, see Fig. 1.

The key idea is that for any entities representing a quadratic surface in
QCGA, DCGA and DPGA, it is possible to convert the entity such that all the
coefficients of the quadrics:

ax2 + by2 + cz2 + dxy + eyz + fzx + gx + hy + iz + j = 0 (10)

can be extracted easily.

3.1 DCGA reciprocal operators

This means defining reciprocal operators for DCGA:

Tx2
= e1 ∧ e4, Ty2

= e2 ∧ e5, Tz2
= e3 ∧ e6, T1 = eo1 ∧ eo2, (11)

along with the 6 following:

Tx =
(

e1 ∧ eo2 + eo1 ∧ e4

)

, Ty =
(

e2 ∧ eo2 + eo1 ∧ e5

)

,

Tz =
(

e3 ∧ eo2 + eo1 ∧ e6

)

, Txy =
(

e1 ∧ e5 + e2 ∧ e4

)

,

Txz =
(

e1 ∧ e6 + e3 ∧ e4

)

, Tyz =
(

e3 ∧ e5 + e2 ∧ e6

)

.

(12)



8 Stéphane Breuils, Vincent Nozick, Laurent Fuchs and Akihiro Sugimoto

Given the DCGA extraction operators presented in Section 2.2, our defined
reciprocal operators verify the following properties:

Tx2
· Tx2= 1, Ty2

· Ty2= 1, Tz2
· Tz2= 1, Txy · Txy= 1, Txz · Txz= 1,

Tyz · Tyz= 1, Tx · Tx = 1, Ty · Ty = 1, Tz · Tz = 1, T1 · T1 = 1.
(13)

Then, given QDCGA, the entity representing a quadratic surface of DCGA,
any coefficients of this quadratic surface (10) can be extracted as:

Tx2
· QDCGA= a, Ty2

· QDCGA= b, Tz2
· QDCGA= c, Txy · QDCGA= d,

Txz · QDCGA= e,Tyz · QDCGA = f, Tx · QDCGA = g, Ty · QDCGA = h,
Tz · QDCGA = i, T1 · QDCGA = j.

(14)

The construction of a DCGA point is explained in Section 2.2 and defined
in [8]. The reciprocal operation requires the computation of the normalization
point x̂ of DCGA that we define as:

X̂ = −
X

X · (e
∞1 ∧ e

∞2)
. (15)

The extraction of the Euclidean components (x,y,z) of a normalized point X̂ of
DCGA can be performed as follows:

x = X̂ · (e1 ∧ e
∞2), y = X̂ · (e2 ∧ e

∞2), z = X̂ · (e3 ∧ e
∞2). (16)

3.2 DPGA reciprocal operators

Let us denote by W reciprocal operators for DPGA:

Wx2
= w∗

0 ∧ w0, Wy2
= w∗

1 ∧ w1, Wz2
= w∗

2 ∧ w2, Wxy= 2w∗
1 ∧ w0,

Wxz= 2w∗
2 ∧ w0, Wyz= 2w∗

2 ∧ w1, Wx = 2w∗
3 ∧ w0, Wy = 2w∗

3 ∧ w1,
Wz = 2w∗

3 ∧ w2, W1 = w∗
3 ∧ w3.

(17)

Given QDPGA, the entity representing a quadratic of DPGA, any coefficients of
this quadratic surface (10) can be extracted as:

Wx2
· QDPGA= a, Wy2

· QDPGA= b, Wz2
· QDPGA= c, Wxy · QDPGA= d,

Wxz · QDPGA= e, Wyz · QDPGA= f, Wx · QDPGA = g, Wy · QDPGA = h,
Wz · QDPGA = i, W1 · QDPGA = j.

(18)

As in projective geometry, the construction of a finite point of DPGA re-
quires to add a homogeneous component 1 to the Euclidean components. The
normalization of a point merely consists of dividing all the components by its
w3 components (or w∗

3 for the dual form) if it is a non-zero component.



GA & quadratic surfaces 9

3.3 QCGA reciprocal operators

For QCGA, quadratic surfaces can be represented using either the primal form
or the dual form. We define the reciprocal operators for the dual form. When
considering the primal form, we have only to compute the dual of the primal
and then apply the following reciprocal operators:

Qx2
=

1

2
eo1, Qy2

=
1

2
eo2, Qz2

=
1

2
eo3, Qxy = eo4,

Qxz = eo5, Qyz = eo6, Qx = e1, Qy = e2, (19)

Qz = e3, Q1 = e
∞1 + e

∞2 + e
∞3.

Given a general quadratic Q∗ whose coefficients are (a,b,c, · · · , j), the prop-
erties of these operators are as follows:

Qx2
· Q∗= a, Qy2

· Q∗= b, Qz2
· Q∗= c, Qxy · Q∗= d, Qxz · Q∗= e,

Qyz · Q∗= f, Qx · Q∗ = g, Qy · Q∗ = h, Qz · Q∗ = i, Q1 · Q∗ = j.
(20)

The construction of a QCGA point is explained in [1]. However, the recipro-
cal operation requires the computation of the normalization point x̂ of QCGA
which is missing in [1].

Proposition 31 For a QCGA point x, the normalization is merely computed through
an averaging of eo1,eo2,eo3 components thus of eo component as:

−
x

x · e∞

. (21)

Proof. A scale α on x acts the same way on all null basis vectors of x:

αx = αxǫ +
1
2 α(x2e

∞1 + y2we
∞2 + z2e

∞3) + xyαe
∞4 + xzαe

∞5 + yzαe
∞6

+αeo1 + αeo2 + αeo3.
(22)

The metric of QCGA indicates (see [1]):

αx · e
∞1 =−α, αx · e

∞2 =−α, αx · e
∞3 =−α. (23)

Thus, if α 6= 0:

−3αx

αx · (e
∞1 + e

∞2 + e
∞3)

· e
∞1 = −

−3αx

−3α
· e

∞1

= x · e
∞1 = −1.

(24)

A similar result is obtained with e
∞2 and e

∞3:

−3αx

αx · (e
∞1 + e

∞2 + e
∞3)

· e
∞2 = x · e

∞2 = −1. (25)

−3αx

αx · (e
∞1 + e

∞2 + e
∞3)

· e
∞3 = x · e

∞3 = −1. (26)



10 Stéphane Breuils, Vincent Nozick, Laurent Fuchs and Akihiro Sugimoto

Table 3: Geometric operations allowed in either QCGA, DPGA or DCGA, where ✓means
possible and ✗ means not.

Opération DPGA DCGA QCGA

quadric from
✗ ✗ ✓control points

point ∈ quadric ✓ ✓ ✓

tangent plane ✓ ✓ ✓

quadric-line
✓ ✗ ✓intersection

quadric-quadric
✗ ✗ ✓intersection

transformations ✓ ✓ ✗

Quartic surfaces ✗ ✓ ✗

Thus, we check that for any scaled points x1,x2:

x1

x1 · e∞

·
x2

x2 · e∞

= −
1

2
‖x1ǫ − x2ǫ‖

2 . (27)

The extraction of the Euclidean components (x,y,z) of a normalized point x̂ of
DCGA can be performed as follows:

x = x̂ · e1, y = x̂ · e2, z = x̂ · e3. (28)

3.4 How to choose the right model?

Given a geometric operation and this general framework, a question arises that
which model we should choose among QCGA, DPGA and DCGA. To answer
this question, we merely consider two criteria, namely, (1) if the operation is
defined and (2) on which model it is the most computationally efficient. This is
illustrated in Table 2 and Table 3.

3.5 Example

We tested our approach by defining an ellipsoid from 9 points using QCGA.
Then we rotate it using DPGA and back-convert the rotated ellipsoid into the
QCGA framework. In terms of geometric algebra computations, first we com-
pute the quadric:

Q∗ = (x1 ∧ x2 ∧ · · · ∧ x9 ∧ I⊲o )
∗. (29)



GA & quadratic surfaces 11

Then, we apply the extraction operators of QCGA to convert the QCGA quadric
to its corresponding DPGA quadric.

QDPGA =4(Qx2
· Q∗)w∗

0 ∧ w0 + 4(Qy2
· Q∗)w∗

1 ∧ w1 + 4(Qz2
· Q∗)w∗

2 ∧ w2

+4(Q1 · Q∗)w∗
3 ∧ w3 + 2(Qxy · Q∗)(w∗

0 ∧ w1 + w∗
1 ∧ w0)

+2(Qxz · Q∗)(w∗
0 ∧ w2 + w∗

2 ∧ w0) + 2(Qyz · Q∗)(w∗
1 ∧ w2 + w∗

2 ∧ w1)
+2(Qx · Q∗)(w∗

0 ∧ w3 + w∗
3 ∧ w0) + 2(Qy · Q∗)(w∗

1 ∧ w3 + w∗
3 ∧ w1)

+2(Qz · Q∗)(w∗
2 ∧ w3 + w∗

3 ∧ w2).
(30)

The rotation is now performed as follows:

QDPGA = RQDPGAR−1. (31)

The rotor R is defined as:

R = exp(
1

2
θwiw

∗
j ), (32)

where i 6= j.
The final step is to convert the resulting quadric back into the QCGA frame-

work. It is merely computed using the QCGA extraction operators as follows:

Q∗ = −
(

2(Wx2
· QDPGA)eo1 + 2(Wy2

· QDPGA)eo2 + 2(Wz2
· QDPGA)eo3

+ (Wxy · QDPGA)eo4 + (Wxz · QDPGA)eo5 + (Wyz · QDPGA)eo6

)

+
(

(Wx · QDPGA)e1 + (Wy · QDPGA)e2 + (Wz · QDPGA)e3

)

−
(W1 · QDPGA)

3
(e

∞1 + e
∞2 + e

∞3). (33)

Note that the program can be found in the plugin folder of the git repository
https://git.renater.fr/garamon.git.

4 Conclusion

In this paper, we focused on an approach to deal with quadratic surfaces. After
presenting the main geometric algebras to represent and manipulate quadratic
surfaces, we introduced an approach that transversely uses the main geomet-
ric algebras. This approach unifies all the models of geometric algebra into one
more general approach that allows to represent any quadratic surface either us-
ing control points or from the coefficients of its implicit form. For the following,
we seek for a generalization of this approach for the representation of quadratic
and cubic surfaces. Some frameworks are considered, and all of these models
require high dimensional frameworks.

References

1. BREUILS, S., NOZICK, V., SUGIMOTO, A., AND HITZER, E. Quadric conformal geo-
metric algebra of R9,6. Advances in Applied Clifford Algebras 28, 2 (Mar 2018), 35.



12 Stéphane Breuils, Vincent Nozick, Laurent Fuchs and Akihiro Sugimoto

2. BUCHHOLZ, S., TACHIBANA, K., AND HITZER, E. M. Optimal learning rates for clif-
ford neurons. In International conference on artificial neural networks (2007), Springer,
pp. 864–873.

3. DORAN, C., HESTENES, D., SOMMEN, F., AND VAN ACKER, N. Lie groups as spin
groups. Journal of Mathematical Physics 34, 8 (1993), 3642–3669.

4. DORST, L., FONTIJNE, D., AND MANN, S. Geometric Algebra for Computer Science, An
Object-Oriented Approach to Geometry. Morgan Kaufmann, 2007.

5. DORST, L., AND VAN DEN BOOMGAARD, R. An analytical theory of mathemati-
cal morphology. In Mathematical Morphology and its Applications to Signal Processing
(1993), pp. 245–250.

6. DRUOTON, L., FUCHS, L., GARNIER, L., AND LANGEVIN, R. The non-degenerate
dupin cyclides in the space of spheres using geometric algebra. Advances in Applied
Clifford Algebras 24, 2 (2014), 515–532.

7. DU, J., GOLDMAN, R., AND MANN, S. Modeling 3D Geometry in the Clifford Al-
gebra R4,4. Advances in Applied Clifford Algebras 27, 4 (Dec 2017), 3039–3062.

8. EASTER, ROBERT BENJAMIN AND HITZER, ECKHARD. Double conformal geometric
algebra. Advances in Applied Clifford Algebras 27, 3 (2017), 2175–2199.

9. GLASSNER, A. S. An introduction to ray tracing. Elsevier, 1989.
10. GOLDMAN, R., AND MANN, S. R(4, 4) as a computational framework for 3-

dimensional computer graphics. Advances in Applied Clifford Algebras 25, 1 (Mar
2015), 113–149.

11. GREGORY, A. L., LASENBY, J., AND AGARWAL, A. The elastic theory of shells using
geometric algebra. Royal Society open science 4, 3 (2017), 170065.

12. HESTENES, D. New foundations for classical mechanics, vol. 15. Springer Science &
Business Media, 2012.

13. HITZER, E. Geometric operations implemented by conformal geometric algebra
neural nodes. arXiv preprint arXiv:1306.1358 (2013).

14. LEOPARDI, P. A generalized FFT for Clifford algebras. Bulletin of Belgian Mathemati-
cal Society 11 (2004), 663–688.

15. LUO, W., HU, Y., YU, Z., YUAN, L., AND LÜ, G. A Hierarchical Representation
and Computation Scheme of Arbitrary-dimensional Geometrical Primitives Based
on CGA. Advances in Applied Clifford Algebras 27, 3 (Sep 2017), 1977–1995.

16. PAPAEFTHYMIOU, M., AND PAPAGIANNAKIS, G. Real-time rendering under distant
illumination with conformal geometric algebra. Mathematical Methods in the Applied
Sciences (2017).

17. PARKIN, S. T. A model for quadric surfaces using geometric algebra. Unpublished,
October (2012).

18. PERWASS, C. Geometric algebra with applications in engineering, vol. 4 of Geometry and
Computing. Springer, 2009.

19. VINCE, J. Geometric algebra for computer graphics. Springer Science & Business Media,
2008.

20. ZHU, S., YUAN, S., LI, D., LUO, W., YUAN, L., AND YU, Z. Mvtree for hierarchical
network representation based on geometric algebra subspace. Advances in Applied
Clifford Algebras 28, 2 (Apr 2018), 39.


