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Abstract

This work presents a new enriched finite element method dedicated to the vibrations of axially inhomogeneous Timo-
shenko beams. This method relies on the “half-hat” partition of unity and on an enrichment by solutions of the Timo-
shenko system corresponding to simple beams with a homogeneous or an exponentially-varying geometry. Moreover,
the efficiency of the enrichment is considerably increased by introducing a new formulation based on a local rescaling
of the Timoshenko problem, that accounts for the inhomogeneity of the beam. Validations using analytical solutions
and comparisons with the classical high-order polynomial FEM, conduced for several inhomogeneous beams, show
the efficiency of this approach in the time-harmonic domain. In particular low error levels are obtained over ranges
of frequencies varying from a factor of one to thirty using fixed coarse meshes. Possible extensions to the research of
natural frequencies of beams and to simulations of transient wave propagation are highlighted.
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1. Introduction

The Timoshenko model is widely used to describe the bending of beams, especially for vibration or wave prop-
agation problems, as it approaches the dispersion relations of realistic 3D beams much more accurately than the
simpler Rayleigh or Euler-Bernoulli models for medium and high frequencies [1} 2. Numerous analytical and nu-
merical methods based on this model have therefore been designed to address these problems, see e.g. the review by
Hajianmaleki and Qatu [3]].

Many of these works focus on homogeneous beams, but attention has also been dedicated to various geometrically
or materially heterogeneous beams. Beams whose cross-section varies along the axial direction were studied from the
90’ [4,15,164[7]], and this direction of research has been recently revived by the interest on periodically varying structures
and the dynamic features (dispersion, band-gaps .. .) they induce [8,9]. Moreover, the interest in composite materials,
exhibiting continuously varying effective material parameters at the macroscopic level, lead to numerous studies of
the so-called functionally graded beams (FGBs). These works propose several ways to take into account a material
heterogeneity in the transverse direction [10], in the axial direction [7, [L1]], or in both directions [12]]. Ultimately,
beams that are both geometrically and materially heterogeneous are also considered [13} 14} [15]].

Contrarily to the case of homogeneous beams, closed-form solutions of the Timoshenko system for these inho-
mogeneous beams are only available for simple exponential or polynomial variations of the geometric or material
parameters [16, 11} [17| [18]]. On the other hand, reliable and fast methods, accounting for the inhomogeneity, are
needed for applications that require many computations, notably uncertainty quantification [[19,[20] and optimization
of shape or material mixture of inhomogeneous beams [7, 21, e.g. to enhance exotic properties such as the acoustic
black-hole effect [22]].
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To help meet this need, the present paper proposes a fast enriched finite element method (FEM) to compute
the motion of geometrically heterogeneous beams submitted to time-harmonic loadings. This method is expected to
provide a basis for eigenfrequency search [23]], modal analysis of beams [24]], and time-domain simulations by Fourier
synthesis [2, 110} [15} [25]].

The traditional FEM [26, 27] featuring low-order polynomial shape functions (also called #-FEM) is a reliable
choice for static or low-frequency problems and slowly varying heterogeneities, but fails at addressing higher fre-
quencies or sharper heterogeneities [27, 28]. To tackle these difficulties, two improvements are often considered: (i)
using higher-order polynomial shape functions, the resulting method being sometimes called the hp-FEM [27, 29] or
spectral FEM [30, 28]], or (ii) enriching the finite element basis with problem-related functions chosen to approximate
the exact solution better than polynomials. This second approach is adopted in this paper.

More specifically, the partition of unity method (PUM) by Melenk and Babuska [31] and its descendant the
generalized FEM [32, 33]] are considered. The PUM and related methods have already been applied to Timoshenko
beams, e.g. to get rid of the “locking effect” that occur for very thin beams when using traditional FEM, for static
loadings [34} 135} 136], vibrations [37] or transient motion [38]]. In these studies, the enrichment functions are often
chosen either as particular solutions of the static Timoshenko system for homogeneous beams, even when the focus
is on the vibrations of heterogeneous beams as in [6, [13]], or as oscillating functions whose design relies on numerical
considerations rather than physical ones [37]].

Based on these works, an efficient PUM is developed to address the vibrations of inhomogeneous Timoshenko
beams. The proposed approach lies on two main components: new enrichment functions, and a new formulation of
the Timoshenko problem.

On the one hand, new families of enrichment functions, which tackle both the heterogeneity of the beam and the
time-harmonic nature of the motion are introduced. They are built developing a procedure introduced in a preliminary
work [39] that addresses Webster’s equation. This procedure features (i) a flexible “half-hat” partition of unity, and
(i1) enrichment functions chosen as the solutions of the time-harmonic Timoshenko system for homogeneous or expo-
nentially varying beams. Its implementation is identical to the one of the classical ninth-order polynomial FEM and
therefore it can be incorporated in existing codes with reasonable implementation effort, and the static condensation
procedure [27,139] can be applied.

On the other hand, an original local rescaling, i.e. a position-dependent change of unknowns, is proposed to obtain
a new formulation of the Timoshenko problem. This new formulation can also be discretized using the same enriched
FEM. It partially accounts for the heterogeneity effects, thus the new unknowns are less affected by the heterogeneity,
and therefore are much better approximated by the chosen enrichment functions.

The resulting method is first validated using the analytical solutions available for homogeneous and exponentially
varying beams, and for boundary and distributed loadings. To show the efficiency of the method to handle the inhomo-
geneity of the beam, several numerical experiments and comparisons with a reference ninth-order polynomial FEM
are then conduced on four beams with increasing complexity of inhomogeneity. Results are obtained in the following
four configurations: (i) standard ninth-order polynomial FEM (ii) enriched FEM, (iii) local rescaling and polynomial
FEM and (iv) local rescaling and enriched FEM. They assert the efficiency of combining the two proposed ingredients
(configuration (iv)), especially for medium and high frequencies for which low error levels can still be obtained with
very coarse meshes.

The paper is organized as follows. Section [2| presents the time-harmonic Timoshenko problem at hand, and
gathers notations and existing results used throughout the paper. Section [3] briefly recalls the features of the FEM
for Timoshenko beams and describes the enrichment procedure. The local rescaling and the associated modified
formulation are introduced in Section d] The numerical validations and examples are then presented in Section [5]
Finally, the application of the method to eigenfrequency search and time-domain simulations is discussed in Section
[6l and the main results of the article are summarized in Section[7]

2. Notations and available exact solutions to the Timoshenko system

Throughout the paper, a beam of length L is considered. It is submitted to in-plane time-harmonic loading at
circular frequency @, i.e. forces and momentums whose time dependency, omitted hereafter, is e/, Following the
Timoshenko theory [1]], the resulting in-plane motion is described by the time-harmonic transverse displacement of
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Figure 1: Bending of a geometrically heterogeneous beam: notation.

the mean axis (taken here as the x-axis) and the rotation of the cross-section (Figure[T)), whose amplitudes & and 6 are
solutions of the system:

i_ (KGA()_C) (dﬁ(_x) - 6’()?))) + pA()_C)(I)ZITt()_c) +g(x)=0

dx dx 0
i_ (EI (%) d9(_)_c)) + kGA(X) (dﬁ(_x) - 9()?)) + pl (B)D*0(%) + m(x) = 0,
dx dx dx

where p, G and E are respectively the density, the shear modulus and Young’s modulus of the constitutive material of
the beam; A and [ are the area and quadratic momentum of the cross-section; « is the shear correction factor, which
depends on the shape of the cross-section [40, 29]]; and g and m are the spatial amplitudes of time-harmonic linear
densities of forces and moments, respectively. In these equations, the shear force N and the bending moment M have
been expressed in terms of the kinematic variables (i, 6) thanks to the classical linear elastic constitutive relations
N = kGA(dii/dx — 0) and M = EI(d6/d%).

Since the focus is on geometrically heterogeneous beams made of a homogeneous constitutive material, the ge-
ometrical parameters A and / depend on X, while the material parameters p, G and E are uniform. To simplify
ensuing computations, it is additionally assumed that the shape of the cross-section varies sufficiently slowly so that
the correction factor « can also be considered uniform.

To complete the system (IJ), two boundary conditions (BCs) must be imposed at each extremity of the beam, each
pair of conditions corresponding to a kind of support. Classical examples of these supports include the glued extremity
(@ = 0 and @ = 0); the simply supported extremity (i = 0 and M = 0); the vertical roller connection (N = 0 and
6 = 0); and the free extremity (N = 0 and M = 0).

2.1. Dimensionless Timoshenko system

For further convenience, the system @) is now reformulated into a dimensionless form, similarly to e.g. [41}42].
To this end, constant characteristic amplitudes A. and /. are introduced. These will be chosen as A. = A(0) and
I. = I(0) thereafter, but other choices are possible, e.g. A. and I, may be the mean values of A and I along the
beam. Then, the relevant scales of the problem are the gyration radius r,, Timoshenko’s cut-off frequency w,, and the
shear-compression ratio g defined by:

T 1 e E
We = — RE) 8=

—, —. 2
Ac re \ p kG 2

re =

In particular, for most materials, one has 2 < g < 3. Dimensionless counterparts of the coordinate, parameters, fields
and unknowns that appear in the system (I)) are defined thanks to these scales as:

7 — - ~ =2
L i w qre mrg
- u=—, w=—, q= and m = .
Te Te We kGA, kGl

The dimensionless and strictly positive functions A and 7, that are called profiles of the area and quadratic momentum
hereafter, are similarly defined as:
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Combining the definitions (3) and @) with the original system (IJ), one founds that the couple of dimensionless
unknowns (u, 0) satisfies:

AW - 0)) + P Au+q =0
{ (AW - 0)) + W’ Au+q )

(IO + AW —0) + W*T0+m=0
where ’ stands for differentiation with respect to the dimensionless coordinate x. By analogy with the system (IJ), the
dimensionless shear force N and bending moment M are given by:

N=Aw -60) and M =gIl¥, 6)

so that N(x) = N(x)/kGA. and M(x) = r.M(%)/«GI.. To complete the problem, boundary conditions must be applied
on the couples (u, 9), (u, M), (N, 6) or (N, M) at both extremities, x = 0 and x = L.
For the reader’s convenience, Table [T summarizes the notations introduced above.

’ Parameters H Physical \ Dimensionless ‘
Longitudinal coordinate and total beam length xand L xand L
Material parameters: Young’s modulus, shear modulus and density || E, G and p -
Geometrical parameters: area and quadratic momentum Aand/ Aand I
Correction factor K -
Shear-compression ratio - g
Circular frequency of the time-harmonic loads and motion ) w
Amplitudes of the applied linear force and moment gand m gand m
Amplitudes of the displacement and rotation of the mean axis i and 6 u and 0
Amplitudes of the internal shear force and bending moment N and M Nand M

Table 1: Notations for the physical quantities (parameters, fields etc.) that intervene in the problem and their dimensionless counterparts. The
symbol “—” means that the associated parameter is not defined.

Remark 1. In the system () and afterwards, the dimensionless circular frequency w can equivalently be replaced
by a dimensionless “reference wavenumber” ky. To do so, one first defines a physical reference wavenumber ky =
w/ \/G_/p, whose dimensionless counterpart is ko = r.ky = w. The notation w was retained (i) to stress the importance
of the time-harmonic assumption throughout the article and (ii) so that the dispersion relations and wavenumbers
given in the next section are written in terms of the usual notations.

Remark 2. The Timoshenko system can often be reduced to only one fourth-order equation. For geometrically
heterogeneous beams and when no linear density of forces is applied (q = 0), it was pointed out by Huang et al. [14]
that the displacement u and rotation 6 may be both written in terms of a new unknown function f as:

w4 (fi) r? L ™)
A A A

Then the shear force is N = A’ —0) = —w” f and the transverse equilibrium equation N’ +w*Au = 0 is automatically
verified. The rotation equilibrium equation becomes a fourth-order equation in f:

7\’ N 7\’
I f— +w2i +w | T L +* |- fl+m=0. ®)
A A A A
However, the classical system () is preferred hereafter; as (i) it enables to consider nonzero density of forces q (ii) the
boundary conditions involving 6 or M are more easily expressed and (iii) the corresponding weak formulation of the
problem (see Section is posed in the usual functional space H'(0, L), whereas a weak formulation obtained from

the fourth-order equation (8) would be posed in H*(0, L) and the choice of a finite element basis would therefore be
more constrained.




2.2. Available exact solutions for free vibrations

Some exact solutions available in the literature for the free vibrations of Timoshenko beams, i.e. solutions of the
system (B) with ¢ = 0 and m = 0, are now recalled. These solutions will be used to build enriched finite element
spaces in the next section, and to validate the whole method in Section [5]

Homogeneous beams. Homogeneous beams are addressed in many textbooks e.g. [[1]]. In this case, the profiles A and
7 are uniform and the only remaining geometrical parameter of the problem is the constant & := A/J. The system
(3) becomes:

1_6)/_,’_ 2 =0
{ (u wu ©)

g0 +a( —6)+ w0 =0

Looking for oscillating solutions with the same wavenumber k for u and 6, i.e. u(x) = upe!** and 6(x) = 6pe'**, one
obtains the dispersion relation:

gK? — (g + DK + 0¥ (w? —a) =0, with K := k%, (10)

which admits two real solutions:
K - W (g+ 1)+ wrdga + w(g —1)2
L= .
2g

The four values that can be taken by the wavenumber k are therefore:

ki= VK., k=-vK. k=K., k=-vK_, (12)

These wavenumbers are represented in Figure 2] as w increases. Note in particular that K, > 0, so that k; and k,
are real, whereas K_ has the same sign as w — v, so that k3 and k, are imaginary at low frequencies [2]. For high
frequencies, one has K, ~ w* and K_ ~ w?/ g as w — oo, regardless of the value of a (Figure .

Finally, the basis of solutions for the Timoshenko system (9), parametrized by «, is:

an

P = fx i et (13)

m=1..4"

Remark 3. If the beam is homogeneous on the whole domain [0, L], by choosing A = A and 1. = I in the scaling
@), one obtains A =1 =1and a = 1. For piecewise homogeneous beams, if the same scaling is used throughout the
whole beam (by e.g. choosing A, and I, as the mean values of A and 1), «a takes different values in each subdomain
and different bases of solutions Y“** should be used throughout the beam.

Exponentially varying beams. Closed-form solutions also exist for beams whose profiles are exponentially varying
at the same rate: A(x) = Ape’®* and T(x) = Ipe’®", e.g. beams with rectangular cross-sections having a constant
thickness and an exponentially varying width [17, [18]]. Keeping the notation @ = A/T = Ay/Ty, the system (3]
becomes:

W -6 +26( - 6) + w'u=0
) (14)
g0 +260")+ a( —0) + w6 =0.
Looking for oscillating solutions e'** for both u and 6, the dispersion relation is found to be:
gK? - 0?1+ 9K + W (w* —a) =0, with K = k> - 2isk. (15)

This is exactly the equation (T0) obtained for homogeneous beams, except that K = k? is replaced by K. The roots are
K. and K_, as given by (TT)), and the associated wavenumbers are:

T=i6+ VK, -2, h=io- VK, —6%, ky=i6+ VK. -2, ks =1i6— VK. - &2. (16)

These wavenumber are also represented in Figure[2]for completeness. Eventually, the basis of solutions of the system
(T4), parametrized by « and 6, is:

\Pw,a,é — {X = eiﬁmx}

= {x - e—‘”e”mx\'“m*—éz} . spi= (=D (17)

m=1..4 m=1..4



Figure 2: Examples of dispersion relations for homogeneous and exponentially varying beams: (a) real and (b) imaginary parts of the wavenumbers
kin(w) (solid) and ky(w) (dashed) defined by (I2)) and (T6). The shear-compression ratio is g = 2.5.

Other exact solutions. The paper by Yuan et al. [18] provides other closed-form solutions, for several “complex
exponential” (i.e. exponential of polynomials) and polynomial profiles. These solutions are written in terms of
hypergeometric functions. Exact solutions are also built by Sarkar and Ganguli [11]] for geometrically homogeneous
but materially graded beams. An inverse point of view is adopted: a polynomial solution (u, 6) that satisfies prescribed
boundary conditions is chosen, and then one determines the polynomial profiles of material parameters that permit
to recover this solution. Semi-analytical solutions are also available, e.g. Eisenberger [16] considers polynomial
variations of A and 7 and expands the solution as a power series, whose coeflicients are shown to satisfy recurrence
relations, and Sohani and Eipakchi [42] propose a perturbation approach based on the WKB expansion to tackle the
heterogeneity.

3. Enriched finite elements

In this section, the principles of the Finite Element Method (FEM) applied to the Timoshenko system are briefly
recalled (see e.g. the textbooks [27, [26] for further details). An enrichment method, that produces approximation
spaces dedicated to specific problems, is then presented. Spaces dedicated to time-harmonic Timoshenko problems
are finally built thanks to this method.

3.1. Weak formulation
The first step to apply the FEM is to write the weak formulation of the problem. First, some notations for the
functional spaces used thereafter are recalled [26, App. B]. As usual, L>(0, L) denotes the space of square-integrable
functions on ]0, L[ and:
H'(0,L) := {f such that f € L*(0, L) and f' € L*(0, L)},
H{(0,L) :={f € H'(0,L), f(0) =0}, (18)
HY(0.L) = {f € H'(0, L), f(0)=0and f(L) = 0}.

Multiplying the two lines of the system (3) by two test functions v and ¢, integrating by parts, summing the
resulting equalities, one obtains the weak formulation of the Timoshenko problem (i.e. of the system (&) associated



with a given set of BCs) as:
L
Find (u, ) € <V such that f [AW -0 = ¢) + gT0'¢ - W (Auv + T6¢)| dx
0

L
= [Nv + M¢]: + f (qv+m¢)dx forall (v,¢) € Vy, (19)
0

where the space of kinematically admissible fields <V is a subspace of (H'(0,L))? that depends on the kinematic
boundary conditions that are imposed on u or 8; V) is the associated linear space (corresponding to homogeneous
kinematic BCs); and the boundary term [Nv + M¢]5 depends on all BCs. Some examples include:

o the glued-glued beam, for which (u,6) vanishes at both extremities. In this case, V =V, = (H;(0, L))?, the
boundary term vanishes and the motion is only due to the force density g or the moment density m.

e the cantilever beam, for which (i, 6)(0) = (0,0) and the shear force and bending moment are imposed at the
right extremity: N(L) = N, and M(L) = M,. In this case, the functional space is V = V, = (H(IO(O, L))?, and
the boundary contribution is:

L
[Nv + M¢]0 = Nov(L) + M, ¢(L). (20)

o the glued-free beam submitted to time-harmonic displacement with amplitude u, at x = 0 (i.e. u(0) = u, and

6(0) = 0) and free at x = L (i.e. N(L) = 0 and M(L) = 0). Then one has:

V ={w.0) € H'(0.L) x Hy(0,L), u(0) = u,}, Vo = (Hy(0, L), 1)
and the boundary term entirely vanishes.

In the third example above, and more generally when non-homogeneous kinematic BCs are imposed, ‘V is an
affine space, i.e. V # V. However, one easily comes back to the configuration V = V, by considering a lifting of
a problem, i.e. by defining new unknowns (u,, 6;) := (1, 6) — (i, ) € V,, where (&, §) is an arbitrary element of V.

For instance, taking (i, @) = (i14,0), where i, is a chosen function of H'(0, L) such that i1, (0) = u,, the lifted
counterpart of the glued-free beam problem (I9)-21) is:

L
Find (ur, 6;) € V, such that f [ AW, - 000" - ¢) + 8T6,¢" — w*(Augy + T6,0)] dx
0

L L
- f (qv + mg) dx — f | A(#,(" = ¢) - w’i,v)|dx forall (v,¢) € Vo, (22)
0 0

where the space V), is given by (ZI). Then the solution of the original problem is (u, 8) = (ug + ity 6;).
Since such a lifting is always possible, it is assumed that V' = V) in all the considered problems hereafter.

3.2. Finite element method

The finite element method [27, 26] belongs to the family of Galerkin methods, that rely on an approximation of
the trial space V| by a finite-dimension subspace V;o C Vy. In this work, the same approximation space is used
for u and 6. As a consequence, one first looks for a subspace V;, of H'(0, L), whose dimension is noted N, and then
defines V), = (V},)? the corresponding space of couples (u;,6y). The subspace Vo = Vo NV, is finally built by
removing the functions that does not satisfy the kinematic boundary conditions on u or 8 from the basis of V,.

In practice, this last step is performed at the end of the discretization process described now. First, the displacement
and the rotation angle are approximated using the same basis {¢;};-1.n, of V}, i.e. one looks for approximations
(up, 6p) of (u,0) as:

N

N,
u, = Z ujp; and On = Z 0ip;. (23)
j=1 j=1



By inserting these approximations into the weak formulation (19), and using the couples (v, ¢) = (¢;,0) and (v, ¢) =
(0, ¢;) as test functions, one obtains the 2N}, X 2N}, linear system:

(K-w’M)-U=F, (24)
where the vector U contains the discrete unknowns u; and 6;. In this work, these values are disposed alternatively:
T
UZ[Ml, 91,..., uj, 9]' .. Upn, QN;,] s ie. U2j—1 =Uuj and U2j:9j’ j=1...Nh, (25)

so that the components of the stiffness matrix K are:

L L
Ksio12j-1 =f Agigidx,  Kai-1pj = —f Agpip;dx,
0 0

. . (26)
Kyipj1 =~ f Apipdx,  Kainj = f [ﬂ%’%‘ +g1 QOE%] dx,
0 0
and those of the mass matrix M are:
L L
Myi_1pj1 = f Apip; dx, Myis; = f Loip;dx, 27
0 0

and My;_i2j = Ma;ipj-1 = 0. The right-hand-side vector F is decomposed into F = F in 1 F" where F'™ contains the
contribution of the force and moment densities:

L L
Fy = f gpidx,  Fyi= f me; dx, (28)
0 0

and F* accounts for the boundary conditions on N or M. For instance, for glued-glued beams one has F* = 0, and
for cantilever beams, using (20) one has F* = F®*' with:

Fy = Nogi),  Fyi™ = Magi(L). (29)

The steps described above only take into account the boundary conditions on N and M. The last step to adapt
the system (24)) to a given problem is to impose that u;, and 6, satisfy the prescribed kinematic BCs. To this end, the
functions ¢; that does not satisfy these BC are removed from the basis (equivalently, the associated coefficients u; and
6; are set to 0 in (23)). The corresponding lines and columns are finally removed from the system (24).

The quality of the approximation obtained by solving this system depends on the interpolation properties of the
chosen space V), i.e. the minimal distance between the exact solution of the system and a function of V. For
many applications, well-documented spaces of piecewise-polynomial functions [27,126] offer very good performances.
However, for some problems, including medium- or high-frequency vibration problems, polynomial FE need refined
meshes and therefore high computational cost to catch the fast oscillations of the solution. The proposed alternative
is to build enriched spaces by incorporating oscillating functions into the elementary bases, as presented now.

3.3. Building enriched spaces using the “half-hat” partition of unity

Enrichment functions are incorporated in an approximation space following the partition of unity method (PUM)
introduced by Melenk and Babuska [31]], which is adapted to the Timoshenko problem as follows. One must first
define a partition of unity, i.e. a family of functions {¢,},-0.n, that satisfies:

Nc
D @ =1 ¥xe0.L].
n=0

Given another family of functions ¥ = {¥™},,=1 ., that gathers functions that will be added in the approximation
space, and that is called the enrichment family hereafter, one then builds an enriched function space "Vh‘y as:

0
& S . O = Pn,
V, = span{@; }=0.N., m=0.n, With {‘Pff - o 30)

8
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Figure 3: (a) “Hat” and (b) “half-hat” functions defined from a mesh {xo, xi, ..., xn.}.
A function u, € (V;f' is defined by its (N, + 1) X (N, + 1) components ] in the basis {¢]'}:
Ne N
uy = u, o (3D
n=0 m=0

The most commonly used PU is the family of “hat” functions, to which the notation ¢, will apply hereafter,
defined from a mesh {0 = xo, xi, ..., x5, = L} of [0, L] as plotted in FigureE} Indeed, these functions form a basis of
the traditional FE space $; of piecewise-linear functions [26]], and some convenient properties of this basis are then
transmitted the enriched space, notably the sparsity of stiffness and mass matrices [31}32].

However, with such a PU the additional functions ¢}’ = ¢,y are supported by two elements. To restrain their
support to one element only, it was proposed in a previous work [39] to use the “half-hat” PU represented in Figure
instead. Since on the e-th element the couple {¢_, ¢} forms a local partition of unity, one can work directly on the
elementary basis and choose a specific enrichment family ¥, for each element. The additional functions should also
cancel at the end of each element to simplify the implementation of the resulting method and to be able to apply the
static condensation procedure, as specified in [39] and in Section 5.1] below.

For each function ' in the enrichment family ¥,, two additional functions ¢'~ and ¢'* are therefore added to the
elementary basis. Written as functions of the normalized coordinate & = (x — x,_1)/h, € [0, 1], where h, := x, — X,_;
is the length of the e-th element, they read:

02 (€)= (1= O [Y (1 + hed) =Y (xe-))]s @27 (©) = E[WE (et + o) — Y (xo)] - (32)

Remark 4. When the space generated by the enrichment family is invariant by shifting the origin of the x-axis
(typically, when the family embeds only exponential functions e.g. y7'(x) = exp(ik,x)), it is convenient to use the
definitions:

@@ = A= [l hed) =yl O)], ™€) = [ (he(€ = D) =y ()], (33)

instead of (32), in particular to simplify the implementation. These alternative definitions are used hereafter.

Then, approximations (uy, 8,) are sought as linear combinations of (i) “hat” functions, to ensure the continuity
of these approximations [39]], and (ii) those inner additional functions. Hereafter, each element contains the same
number N, of enrichment functions, and such a combination is therefore written:

N, N,
— 00
up = u,py +

. N,
n=0 e=1 m=1

(.

[l + . (34)

In the sum @]) the distinction is made between the nodal values u2 associated with the “hat” functions, and the inner

values ul* associated with the additional inner functions. The approximation space embedding all these combinations
is:

P1om = span {{QOS}FO_.NE U (e ol et e, m:l...Nm}’ (35)

whose dimension is dim P 5, = (Ne + 1) + 2N X Ny,

Finally, specifying kinematic boundary conditions corresponding to a given problem is done by fixing only the
nodal boundary values ug = u;,(0) and ug, = up(L), and similarly for 6;,, while boundary conditions on the shear force
N and moment M are accounted for in the weak formulation (T9).

9



Remark 5. The notation was slightly modified compared to the previous work [39]: the “half-hat” functions g% and

elementary functions @' are now associated with a given element (thus the subscript -,); and the + and — exponents
now indicate the sign of the slope of the functions ¢Z.

3.4. Enriched spaces dedicated to Timoshenko beams

To conclude this section, approximation spaces are built by combining (i) the bases of solutions for homogeneous
or exponential beams given in Section (2.2) and (ii) the enrichment procedure described above. Spaces that will be
used as reference in the numerical illustrations are also presented.

W,

Timoshenko-enriched spaces. A first enriched space, noted Pl,s , 1s built from the functions of the family ¥Y“* given
by (I3) and that describe the free vibrations of a homogeneous beam. For an arbitrary heterogeneous beam, the
function @ = A/ T is used to define enrichements in each elementary basis: the e-th basis is enriched with the family
P where @, := a((x.-1 + x.)/2) is the value of @ at the middle point of the e-th element. Following (33)), the eight
additional inner functions of the basis are:

@@ == —1] and @) =g[MED 1] m=1...4), (36)

where the wavenumbers k,, given by (I2) depend on .. These functions are represented in Figure (c). The enriched
space then embeds the exact solution for a piecewise-homogeneous or “step” beam, free from distributed loading.

The space P‘l"”é”‘s is introduced next. Its elementary bases are enriched with the functions of the family P« @
given by (T7) and that describe the free vibrations of exponential beams. For each element, the parameters @, and
0. are the values of the functions @ and ¢ := A’/2A, evaluated at the middle of the element. The additional inner
functions are defined similarly to (36), but with the wavenumbers {k, }n=1..4 replaced by their counterparts {ky,}n=1.4
defined by (T6).

In the particular case of beams with constant thickness, @ = A/ 7 is constant and therefore all elementary bases
are identical for the space P‘f’y’é’: it is then a globally enriched space that does not accounts for the inhomogeneity of

the beam. In this case, using the second space 7"{' ’;’6, which is still locally enriched when § is inhomogeneous, is a
first way to take the width variations into account.

Remark 6. The spaces P and 7)‘1"’3’6 are the counterparts for Timoshenko beams of the spaces P% , and P’{"j built
in [39] from time-harmonic solutions corresponding to homogeneous and exponentially varying bars.

For completeness, some other enriched spaces that produced similar results on the upcoming test-cases are pre-

sented in

Reference spaces. To assert the efficiency of the enriched spaces, their performances will be compared to those of
more classical spaces. The first reference that comes to mind is the simplest finite element method that uses the “hat”
functions as elementary basis, i.e. the approximation space is the space P; of piecewise linear functions. However,
this space is well-known to perform poorly to tackle medium or high-frequency problems, especially compared to
higher-order polynomial spaces, see e.g. [27, Sect. 4.7] and [28]] for theoretical and numerical comparisons.

On the basis of the analysis of the enrichment method [39], the enriched spaces built above are expected to perform
much better than #;. In fact, since their elementary bases include eight enrichment functions, they are expected to
share the convergence properties of the space Py of piecewise ninth-order polynomials, at fixed frequency. To present
a fair comparison, the space Py is chosen as a reference rather than $;.

Several elementary bases exist for the space P9, among them are the hierarchical basis of Lobatto polynomials
(often implicitly associated with the so-called p or Ap-FEM [27, Sect. 4.7]) and the “spectral” basis of Lagrange
polynomials with interpolation nodes taken as the Gauss-Lobatto-Legendre points of the reference element [30, 28]].
These two bases were compared by Sprague and Geers [28]], and produced nearly identical results in terms of accuracy.
Since the main advantage of spectral bases, namely the diagonal mass matrices they produce, is irrelevant for time-
harmonic problems, a hierarchical basis, represented in Figure {a), is chosen in this work for simplicity.

Finally, to complete the comparison, the performance of a “naively” sine-enriched space will also be explored.
This space is enriched with the simplest family of oscillating functions ¥ := {x ~ e*“%}, as proposed by many
other authors e.g. [37, 38]. To maintain eight inner functions as in the other considered bases, Lobatto polynomials
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up to the fifth degree are also added to obtain a polynomial-enriched space denoted by P

N whose elementary basis
is represented in Figure d{b).

Remark 7. The implementation of the FEM is identical for both the reference and enriched spaces: all the elementary
bases include two nodal and eight inner functions.

1 : 1 : 1 :
0.5 105 \ 105 \\
06X 0 0 /
05 1-0.5 1-0.5
1 1 -1

(a) (b) (c)
-15 . -1.5 . -1.5 -
0 0.5 1 0 0.5 1 0 0.5 1

Figure 4: Elementary basis functions on an element of length 2 = 1: (a) hierarchical basis of Lobatto polynomials (space P9); (b) sine-enriched
basis for w = 10 (space Pg’ ,); and (¢) Timoshenko-enriched basis for w = 10 and @ = 1 (space P‘f ‘é’).

4. A new formulation based on a local rescaling

For arbitrarily varying profiles (A, 7, the enrichment functions corresponding to homogeneous or exponentially
varying beams account only partially for the geometry. To improve again the efficiency of the enriched method,
geometrical information is now incorporated into the problem unknowns before the discretization.

4.1. Change of unknowns in the Timoshenko system

First, the variable coefficients (d, a) are defined as:
d= VA and a= VI, (37)

and new unknowns (i1, 8) are introduced thanks to the local, i.e. x-dependent, rescaling:
(38)

This change of unknowns is inspired by a similar rescaling for Webster’s equation (Au’)’ + k*Au + f = 0, which
models the longitudinal motion of beams [39], or low-frequency acoustic propagation in waveguides [43]. Indeed,
when the profile A is regular enough, Webster’s equation can be converted into a Helmholtz equation with variable
wavenumber:

(ALY +KPAu+f=0 = '+ (k2 - 7)ﬁ+ JE[ =0, (39

with u = ii/d and d = VA.
Similarly, introducing the rescaling (38) into the Timoshenko system (3)) leads to:
d*,\
(dﬁ’ —-d'ii - —9) +Wdi+qg=0
a
- (40)
g(aé’ - a’é) + (dﬁ’ —-du- —é) +w?ab+m=0.
a
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Equivalently, expanding {@0) and dividing the two lines by d and a, respectively, one obtains:

) 5, d’\ . dal + 2d'a - da’)o q
i+l - — = _1
a? d @)
~, d? a’\ ~ di —d'n m
80 *(‘“2‘;‘87)9*7‘;-

The system @T)) models two coupled harmonic oscillators, where the variable geometric parameters d and a intervene
in the wavenumbers and the coupling terms, but not in the second-order terms in i and . The new unknowns i
and 6 are expected to be less affected by the inhomogeneity than the original solutions (u,6), and therefore better
approximated by oscillating enrichment functions corresponding to homogeneous beams. Of note, this is the case for
exponentially varying beams with A = I: the solutions given by are written u = ii/ VA where i is an oscillating
function with homogeneous amplitude.

4.2. Discretization
The weak formulation associated with the system (0} is:

_ L 2 _ B _
Find (i1, §) € <V such that f [(di/ -du- d—@) OV -¢)+g (a@’ - a’@) ¢ — w*(duv + abg) | dx
0 a

L
= [Nv + M(Z)](I; + f (qv +mg)dx forall (v,¢) € Vo, (42)
0

where (v, ¢) still denote the test functions, and V is obtained by modifying the non-homogeneous kinematic boundary
conditions embedded in the definition of ‘V accordingly with the change of unknowns (38)). The associated linear
space is Vo = V), so that, up to a lifting, the problem [@2)) may be also written using only V.

After discretization, the associated finite element system is:

(K-D-w'M)-U=F, (43)

where the components of the stiffness and mass matrices K and M have similar expressions than those of K and M
defined by l. .i with A and T replaced respectively by d and a, except for the components {Kz, 2j}ij=1..n, Where

A is replaced by d?/a instead. The matrix D embeds the contributions of the derivatives d’ and o’ arising in (@2)) after
the change of unknowns:

L L
Dyi_1j-1 =f "pip;dx, Dyi_15; = —f d'pip;dx,
0 0 (44)

L
Dyipj1 =0, Ds;»; =f gd' pip;dx,
0

and the right-hand side vector F is left unchanged and is defined by (29). Contrary to the system (24)), the system (@3))
is not symmetric, due to the contribution of D.

4.3. Enriched spaces
Finally, approximations (i, 6) of (i, 6) will be sought in the spaces Py, P, and P’y defined in Sectionﬁ The

corresponding spaces of solutions (u, §) embedding the local rescaling are denoted by P, e.g. :

~ 6
Py := {(% ") (itn, By) € (%)2}, d= VA, a= VI. (45)
Enriched spaces f’g’ , and ﬁj’; are defined similarly: when d and a are constant, the system (0) degenerates into the

a-dependent system (9) with @ = d?/a?, so using the associated solutions is still relevant for the modified formulation.
On the other hand, there is no physically-based counterpart to the space 7 ’é"" and attempts to define a similar enriched

space were not conclusive, see|Appendix Al
12



5. Numerical validation and illustrations

In this part, some general peculiarities of the implementation of the enriched FEM are first presented. Then,
the validation of the method is exposed: enriched spaces are compared with the reference first- and ninth-order
polynomial spaces on test-cases with analytical solutions. Finally, simulations of the vibrations of four beams with
various heterogeneous geometries are presented and discussed.

All the tests are performed on cantilever beams, glued at their left extremity x = 0, i.e. (1, 0)(0) = (0,0). In most of
the studied configurations, the chosen loading is a time-harmonic transverse force with unit amplitude imposed at the
right extremity x = L, i.e. one sets (N, M)(L) = (1,0), g = 0 and m = 0. In one occasion (Subsection @D, a nonzero
time-harmonic density of force is chosen instead, with the right extremity left free, i.e. one sets (N, M)(L) = (1,0),
q = ¢» # 0 and m = 0. The results were obtained with an implementation of the method in a MarLaB framework, and
using a good laptop (4 x 2.60 GHz CPU and 32 Go RAM).

5.1. Implementation choices

Numerical integration. To compute the matrices’ components (26[27[44), a classical Gauss quadrature [26, Sect. 8]
was chosen. In addition, the following procedure ensures that the integration of oscillatory basis functions remains
accurate even for large elements supporting several wavelengths.

A reference dimensionless wavelength independent of the considered beam is first introduced:

A:=2n/ky = 27t/ w, (46)

where ko is the reference wavenumber defined in Remark [T} This reference wavelength is the smallest wavelength in
homogeneous and exponentially varying beams at the high-frequency limit, as discussed in Section[2.2] Then, each
element is divided into Ns := [h/24] subelements of equal lengths, where 4 = max,=;_x, h, and [-] denotes the
ceiling function, so that [x]—1 < x < [x] for any x € R. Then, 10 Legendre-Gauss points are used in each subelement
to compute its contribution to the total integral. In this way, each subelement covers at most half of a wavelength A,
and there are at least 20 integration points per wavelength.

Static condensation. Since all the elementary bases presented above feature two nodal and eight inner basis functions,
the same static condensation (SC) procedure can be applied to the linear systems (24) and (@3)). This procedure is
described in details e.g. in the monograph by Ihlenburg [27 Sec. 4.7.3], and is also called dynamic reduction by some
authors [25] Sect. 2.3]. In short, it first intervenes in the matrices assembly process: the inner values are expressed in
terms of the nodal values by inverting each 8 x 8 inner elementary matrix. Then only the nodal values are retained as
unknowns, and the global matrix to be inverted is therefore much smaller than the initial one, e.g. 2N, X 2N, instead of
10N, x 10N, for a cantilever beam. This matrix is also better conditioned than the original one, while only the small
8 x 8 elementary matrices inverted at the condensation step suffer from bad conditioning. Finally a post-processing
operation (the decondensation) is needed to retrieve the inner values from the node values.

5.2. Error and expected results for varying resolutions

In the upcoming comparisons, the accuracy of a FE solution (uy,6;,) compared to the exact solution (u, 8) is
measured by the relative error E ; defined by:

E £ (up, ) = [l(un — u, 0, = Ol / 11(u, Dl (47)

where the Lagrangian-based norm || - || ¢ is:

1/2

L
@)l = (L, ) = (f [AW =67 + 8T (@) + o (A + 16| dx) ’ *9)
0

and L(u, 0) is the Lagrangian of the state (u, 6), i.e. the difference between the associated kinetic and elastic energies.
This norm was also chosen for its similarity with the weighted H _norm ||u||12q, P = ||u’||i2 + k2||u||i2 that appears in the
analysis of problems modeled by the Helmholtz equation —u’’ — k?u = f, to balance the weight of a function u and
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its derivatives for oscillating solutions. In practice, a discrete counterpart of the integral (@8)) is computed using the
middle-point method and a very thin dedicated mesh (1000 elements) independent of the FE meshes.

In most of the upcoming examples, the accuracy of the FE solutions will be sought for several resolutions A/h,
where h = max,—;_n, h, is the largest element length and A = 27/w is the reference wavelength. The resolution is an
indicator of the number of elements per smallest wavelength, that is a relevant criterion to compare several FE spaces
having the same number of basis functions per element when solving time-harmonic problems. The variation of the
resolution is performed in two ways:

e First, the frequency w is fixed and the error is computed for several regular meshes, i.e. for different element
length h. For piecewise-smooth profiles (A, 1), the exact solution is also piecewise-smooth. Therefore, using
the ninth-order polynomial space P, the error should decrease as O(h’) as the mesh size i decreases,
according to the classical theory for polynomial finite elements [27, 26] and provided that nodes are placed
at the singularities of the profiles or their derivatives. Based on previously proved results for similar enriched
spaces [39], the errors obtained with the ninth-order enriched spaces (7)‘5"’4, P’f”’é’, ...) are also expected to
decrease with the same rate.

e Then, the mesh is fixed and the frequency w increases. In this way, the frequency-dependent peculiarities of
the enriched spaces are observed. Indeed, the accuracy obtained with polynomial spaces depends mainly on the
resolution A/h, with a pollution error increasing with the frequency [27, Sect. 4.6]. On the contrary, the accuracy
of enriched spaces is expected to be more stable thanks to the oscillatory enrichment functions determined from
the frequency of each problem.

5.3. Validation of the method

First, the implementation of the polynomial and enriched FE bases are validated by comparison with the analytical
solutions recalled in Section [2.2]for homogeneous and exponential beams.

5.3.1. Homogeneous beams
For homogeneous beams, simulation results are omitted for brevity, but the following key properties have been
verified:

e The Timoshenko-enriched space #7’, that embeds the analytical solution, produces errors close to machine

precision when no distributed loadian is applied (g = 0 and m = 0).

e The other spaces (Py and $<,) produce errors that decrease with the same ninth-order rate at fixed frequency
(i.e. as O(h°) as h — 0).

Moreover, the initial and modified formulations are identical, thus the effect of the local rescaling cannot be observed.

5.3.2. Exponentially varying beams
The tests performed on an exponentially varying beam of length L = 10 are now presented in more details. The
chosen profiles are:
Ax) = I(x) = ¥, (49)

with ¢ chosen such that A(L) = 1/8. For these profiles, the space P‘l" ; does not contain the exact solution for

free vibrations (I7), but its “exponentially” enriched companion P‘l"’g’d does. Moreover, the initial and modified
formulations differ. Both the effects of the enrichments and of the modified formulation can therefore be observed.

Point-like loading. First, a cantilever beam whose motion is only due to a time-harmonic transverse force applied at
its right extremity, with amplitude N(L) = 1, is considered. In this case the exact solution is a combination of the free
vibrations solutions given by (7).

To illustrate the convergence properties discussed in Section[3.4] the three kinds of ninth-order spaces (polynomial
space Py and enriched spaces 7"5"’ 4, and ‘P‘l"é’ with respectively four and eight enrichment functions per elementary
basis) are compared to the simplest first-order polynomial space ;. To this end, the relative errors obtained at the
fixed frequency w = 5 are plotted in Figure[5]versus the number of degrees of freedom Ngor. Nine times more elements
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are used for #; than for the other spaces to obtain the same Ngor. As expected, all the ninth-order (polynomial and
enriched) spaces produce the same ninth-order convergence rate in the convergence regime, and therefore completely
outperform the first-order space that (i) enters the convergence regime later and (ii) converges much slower.

As a complementary illustration, Table[2]also provides a comparison of the meshes, numbers of degrees of freedom
and CPU times needed to reach a relative error less than 0.1%. The much larger number of elements needed with the
first-order space results in a considerably larger computational time than with the ninth-order spaces, to reach a similar
precision.

In the ensuing discussion, only polynomial and enriched ninth-order spaces are therefore compared. The effects
of the modified formulation are studied. The resolution (number of elements per wavelength) is used rather than the
number of degrees of freedom as indicator of the discretization. As the convergence order is always O(h’) for these
spaces, the slopes indicators are omitted hereafter.

100%&.;;&“\‘ """""
__—Q ~
@ —
2 T N
10 <
8
= 10 F
[}
S
Z 10%F
J¥]
108 £
e Py
T i)
& -Ps,
-e-P%
10t 102 108

Degrees of freedom

Figure 5: Relative errors for a cantilever beam with exponential profiles, with g = 2.5 and at frequency w = 5, versus the number of degrees of
freedom, using a first-order polynomial space and ninth-order polynomial and enriched spaces. The triangles indicate the theoretical slopes in the
convergence regime for first-order and ninth-order spaces.

FE space Error N, Niot | CPU time
P 9.9x 107* [ 10300 | 20600 | 11.6s
Py 3.7x107% 7 126 0.60's

P‘S"A 6.9x107* 4 72 0.42s
P‘l"é’ 53x107% 3 54 047 s

Table 2: Meshes and computational times needed to reach a relative error less than 0.1% for an exponential cantilever beam, at w = 5 (same
configuration than in Figure[). The CPU time includes the time taken by (i) the matrix assembly process, (ii) the resolution of the linear system
and (iii) the computation of the approximate solution on the grid points used to compute the error. It is measured using the functions tic and toc
of MatLAB and averaged over 10 realizations of the same process.

In Figure [6 are plotted the displacement and rotation fields (u,6) obtained at frequency w = 5 with a coarse
mesh made of only N. = 2 elements, so that the resolution is 4/h =~ 1/4 (four wavelengths per element). In this
case, the sine-enriched space ¢, outperforms the polynomial space # in the approximation of the displacement u
(i.e. replacing four polynomials by oscillating functions in the elementary basis already improves the quality of the
results) and is outperformed by the spaces enriched by Timoshenko solutions, which are the only ones able to capture
the oscillations of the rotation 6.

In Figure [/[a), the relative errors as the mesh is refined are plotted in terms of the resolution, incorporating the
behavior of all the ninth-order spaces. The following observations are made:
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Figure 6: Exact and approached solutions for (a) the displacement u and (b) the rotation 6, for a cantilever beam with exponential profiles, for a
circular frequency w = 5 and N, = 2 elements. The Timoshenko-enriched solutions (red and pink) are superposed with the exact one (solid black).

e For coarse meshes, the exponential-enriched space P‘l"’g"s that embeds the analytical solution reaches the ma-
chine precision as expected (see below for refined meshes).

e The local rescaling does not affect the precision obtained with the polynomial space 9 and the sine-enriched
space £¢,. On the other hand, it improves drastically, by several orders of magnitude, the precision obtained
with the Timoshenko-enriched space P’f % - This is expected in this particular case, because the amplitude factor
e~%* of the solution is exactly accounted for by the local rescaling.

e For all enriched spaces, there is a threshold above which the conditioning of the discrete system penalizes the
solution and the error begins to grow (see the discussion below). However, this threshold appears for small
relative errors, lower than 108 for all the spaces in this example, and very acceptable errors can be obtained by
choosing a medium-sized mesh. For instance, fixing 7 = A leads to relative errors varying between 1074 (P
and Py) to 10710 (PYy).

Finally, the influence of the frequency on the performances of the enriched spaces is investigated. To this end, the
errors obtained with a fixed regular mesh with N, = 10 elements, i.e. & = 1, and increasing frequencies are displayed
in Figure b). Errors obtained with polynomial spaces increase regularly with w (in fact, at rate w’ i.e. as (h/2)°
as expected for ninth-order polynomial spaces [27]]), until they reach a plateau. On the other hand, errors obtained
with enriched spaces (i) increase as w — 0 (i.e. as the resolution increases) due again to bad conditioning, (ii) reach
a minimum value for medium resolution and frequency and (iii) increase more slowly than with Py and finally seem
to reach a plateau at low error levels. Combined with the Timoshenko-enriched space P‘I‘f’ga, the local rescaling has a
remarkable frequency-dependent effect that leads to a large improvement for high frequencies.

Distributed loading. As a second validation test, the same exponentially varying cantilever beam is considered, this
time free at the right extremity, i.e. (N, M)(L) = (0,0), but submitted to a distributed loading. A linear density of
forces with amplitude g, corresponding to a particular solution (i, 6,), with u,(x) = (x/ L)? and linear 6,, is designed,

see [Appendix B| This way, the exact solution writes (u,6) = (up, 6;) + (uy, 64), where the “homogeneous” part
(uy, By) satisfies the system (T4) and therefore is a combination of the free vibration solutions (I7). This example is
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Figure 7: Relative errors for a cantilever beam with exponential profiles and g = 2.5: (a) fixed frequency (w = 5) and increasing resolution A/h
(Ne = 1to 25 elements); and (b) fixed mesh (N = 10 elements of length /2 = 1) and increasing frequency.

chosen so that none of the FE spaces contains the full solution: P9 and P2, contain the particular solution but not the

homogeneous part, and P‘f”g"s contains the homogeneous part but not the particular solution.

Remark 8. To address this specific loading, it would be easy to build a tenth-order space P’f ’;"5 by adding an addi-

tional second-order polynomial shape function to the elementary bases of P“]"g";, and therefore recover a space that
contains the exact solution. More generally, when a particular solution is known exactly or approximately, higher-

order FE spaces can be designed by adding relevant additional shape functions to the bases of existing spaces, using
the half-hat PU.

This solution (u, 6) is plotted in Figure([8]for w = 5, along with the approximations obtained with the studied spaces
and for N, = 3 elements. Again, for this configuration the enriched spaces clearly outperforms the polynomial space,
especially for the approximation of the rotation 6. Figure[9] presents the convergence of the errors for fixed frequency
and then fixed mesh. Contrarily to the previous example, all the enriched spaces present similar performances, due
to the additional force density. The local rescaling, which was designed by studying the Timoshenko system without
source terms, still provides a slight error decrease.

Conditioning and static condensation. Finally, to better understand the conditioning effects, Figure [T0] gives the
conditioning number of the matrices K — w?M (for the original formulation) and K — D — w?M (for the modified
formulation) for the frequency w = 5 and the meshes used in the two previous examples (Figures [7(a) and [Ofa)).
In Figure[T0fa) are plotted the average conditioning numbers of the 8 x 8 inner elementary matrices that gather the
contributions of the inner functions for each element. As the definition of the elementary polynomial basis does not
depend on the element size, the conditioning of the resulting matrices is almost insensitive to the resolution. On
the contrary, the inner functions ¢'* incorporated in the enriched bases become nearly linearly dependent as the
resolution increases, and the conditioning number of the matrices explodes. This bad conditioning is reflected on the
global matrices as seen on Figure[T0[b) and penalizes the accuracy of the solution for thin meshes (k < 1), as noticed
above in Figures[7]and 9}

This bad conditioning is partially addressed by applying the static condensation method presented in Section [5.1}
the condensed global matrices are not only smaller, but also well conditioned for all FE bases, as seen in Figure
[T0(c). However, in this case the bad conditioning of elementary matrices still affects the accuracy of the solution,
and results nearly identical to those displayed in Figures [7] and 0] (not plotted for brevity) were obtained with the
equivalent condensed system. Since the considered linear systems are sufficiently small-sized to be solved rapidly
without condensation, the full uncondensed matrices are used in the upcoming examples for simplicity.
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Figure 8: Exact and approached solutions for (a) the displacement « and (b) the rotation 6, for a cantilever beam with exponential profiles submitted
to a distributed loading g # 0, for a circular frequency w = 5 and N. = 3 elements. The Timoshenko-enriched solutions (red and pink) are

superposed with the exact one (solid black).
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Figure 9: Relative errors for a cantilever beam with exponential profiles and g = 2.5, submitted to a distributed loading ¢ # 0: (a) fixed frequency
w = 5 and increasing resolution A/h (Ne = 1 to 25 elements); and (b) fixed mesh (N, = 10 elements of length 2 = 1) and increasing frequency.

5.4. Comparison of the FE methods for four heterogeneous beams

To show the efficiency of the method combining enriched elements and local rescaling to handle the inhomogeneity
of the beam, results obtained for four cantilever beams are now presented. These beams feature several geometries
for which no analytical solutions are available, ordered by increasing complexity of the inhomogeneity:

1. a beam with constant thickness and quadratically varying width (so that A = T),

2. aconical beam with circular cross-section and linearly decreasing radius (so that A # 7 but the profiles are still
smoothly and simultaneously decreasing),
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3. abeam with oscillating thickness and width (so that the profiles oscillate with different periods),
4. aperiodically notched beam with non-smooth profiles (so that the mesh needs to be adapted to the singularities).

For each of these beams, only the “point-like” loading case is considered, i.e. the boundary conditions are set to
(u,6)(0) = (0,0) and (N, M)(L) = (1,0). For each considered circular frequency w, a reference solution (Uyef, Orer) 1S
computed using the polynomial space Py and a very thin mesh made of [4w] elements per unit length, i.e. elements
of length i = A/8x for integer values of w. For instance, for the computations performed on beams of length L = 10
at frequency w = 35, the reference solution is computed with N, = 200 elements. This resolution produced errors
close to machine precision for tests performed with homogeneous and exponentially varying beams. Then, in the
computations of the Lagrangian-based error E ¢ defined by (@7), the exact solution (u, §) is replaced by these reference
solutions (ref, Oret)-

5.4.1. Beam with constant thickness and quadratically varying width
The first example concerns a beam with rectangular cross-section, constant thickness and quadratically varying
width. With the scaling A, = A(0) and I. = 1(0), one has:

A(x) = I(x) = (1 + bx/L)*, (50)

with b = VA(L) — 1. Choosing L = 10 and A(L) = 1/8, one obtains the beam and profiles represented in Figure

This beam is very similar to the exponentially varying beam, and the convergence results discussed above are
retrieved in Figure with the following differences. First, using the space P‘l‘j’é”‘s instead of PV, i.e. enrichment
functions corresponding to exponentially varying beams instead of homogeneous beams, brings a stable improvement:
the error is divided by a factor ~ 2. A similar improvement was already observed for bars in the previous work [39].

On the other hand, the local rescaling improves the precision obtained with SD‘I"; by several orders of magnitude.

For the next examples, on the basis of this observation, the results obtained with the space P ”6 are not displayed:
the focus is instead on the space P’y (which is locally enriched for variable width, see Section ) and its counterpart

P\ incorporating the rescaling.

5.4.2. Conical beam
The second example addresses a conical beam with circular cross-section, whose radius 7(x) varies linearly:
F(X) = 7o + (Ff — 79)%/L for some (¥, 7, L). Recalling that in this case A = a7 and I = nr/4, using again the
scaling A, = A(0) and I, = I(0) (so that r. = 7(/2), one obtains:
A(x) =1 +bx/L)?* and I(x)=(1+bx/L)*, (51)
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Figure 12: Relative errors for a cantilever beam with quadratic profiles represented in Figure@ and g = 2.5: (a) fixed frequency w = 5 and
increasing resolution A/h (N = 1 to 25 elements); and (b) fixed mesh (N, = 10 elements of length 4 = 1) and increasing frequency.

with b = (7, — 7)/Tp. Choosing L = 10 and b such that A(L) = 1/8 as in the previous example, the resulting beam
and profiles are represented in Figure[I3] Similar “tapered” beams are studied in [13] [T4].

Again, in Figure[I4]is it seen that enriched spaces perform better than the polynomial space, but for this example
the gap is thinner between the Timoshenko-enriched and the sine-enriched spaces. The change of unknowns still does
not affect the performances of the polynomial and sine-enriched spaces, but enables to gain an additional stable factor
on the error (between 2 and 3) while using Timoshenko-enriched spaces.

The gap between the various errors becomes wider as the frequency increases, as displayed in Figure[I4](b), and
the same remarks than for the previous example can be done: the errors obtained with enriched spaces increase more
slowly than with the polynomial space, and reach a plateau for error values smaller than 1% for the Timoshenko-
enriched space. The gain brought by the modified formulation stays noticeable but not as significant as it was for the
previous example.

(a) o.z

-0.5

Figure 13: Conical beam with linearly varying radius: (a) representation and (b) profiles.
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Figure 14: Relative errors for the conical cantilever beam represented in Figure@and g = 2.5: (a) fixed frequency w = 5 and increasing resolution
A/h (Ne = 1 to 25 elements); and (b) fixed mesh (N = 10 elements of length 4 = 1) and increasing frequency.

5.4.3. Beam with oscillating thickness and width
The third example concerns again a beam with rectangular cross-sections, whose profiles A and I are defined in
terms of the dimensionless width b, and thickness b5 as:

A(x) = by(x)b3(x) and  I(x) = by(x)(b3(x))’. (52)

More specifically, oscillatory functions are chosen for these geometric parameters: by(x) = 1 — 0.5 sin(27rx/€) and
b3(x) = 1 +0.5sin(2x/¢). In this way, A remains close to 1, while 7 oscillates with a wider amplitude as represented
in Figure[T3(b) for L = 10 and € = 6.

As seen in Figure[T6{a), for the fixed low-frequency simulation the improvement brought by the enriched spaces
is lower than in the previous examples. On the other hand, for this example the local rescaling improves the results
obtained with all spaces: in the convergence regime the error obtained using the polynomial space (resp. enriched
spaces) is reduced by a factor =~ 2 (resp. = 10).

As displayed in Figure [I6(b), when the mesh is fixed and the frequency increases, this overall improvement
progressively disappears and the Timoshenko-enriched space remains the only one to benefit from its association with
the modified formulation, as observed on the previous examples.

P s e ,
50, N , N
’ \ - - I(z) ’ AR
1 N B
A ’
\ , \\
05 \\ // N
0 L L - L L
0 2 4 6 8 10

Figure 15: Beam with rectangular cross-sections and oscillating thickness and width: (a) representation and (b) profiles.

5.4.4. Periodically notched beam

The last example, inspired by the work [9], concerns a periodically notched beam represented in Figure [I8]a),
made of six straight segments and five notches with constant width and varying thickness as specified in Figure[I7] In
this case, before the mesh definition, the beam is divided into subdomains whose boundaries match the singularities
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Figure 16: Relative errors for the cantilever beam with oscillating profiles represented in Figure@ and g = 2.5: (a) fixed frequency w = 5 and
increasing resolution A/h (N = 1 to 25 elements); and (b) fixed mesh (N, = 10 elements of length # = 1) and increasing frequency.

of the profiles, i.e. there is one subdomain per straight segment and two per notch. Each subdomain is meshed
independently.

The figure[T9a) illustrates the convergence rate obtained as the resolution increases for a fixed frequency w = 50
and regular meshes. A high frequency was chosen to avoid the high-resolution and badly-conditioned configurations,
since regular meshes must have at least 34 elements. One observes again the stable improvements brought by the
enrichment strategy and the rescaling.

For the convergence study with fixed mesh, the coarsest possible mesh is chosen to demonstrate the capabilities
of the method: each subdomain contains only one element, for a total of only N, = 16 elements (corresponding
to the subdivision displayed in Figure [I8(a)). This coarse mesh is particularly justified for the straight subdomains
since the exact local solution is then embedded in the Timoshenko-enriched basis of the space P‘f’g’ As seen in
Figure [[9(b), the polynomial and sine-enriched spaces are largely outperformed by the Timoshenko-enriched spaces
for high frequencies. Moreover, combining the modified formulation with Timoshenko-enriched bases results in a
very acceptable relative error (less than 0.05%) on the whole interval of frequencies w € [2, 64].

121518 °

Figure 17: Variations of the thickness throughout the unit cell of the periodically notched beam.

6. Discussion

The numerical experiments of the previous section demonstrated the usefullness of the proposed enriched FEM to
tackle time-harmonic Timoshenko problems, for various inhomogeneous beams. To complete these findings, possible
extensions are now discussed, notably (i) theoretical investigations that could assess the properties of the method in a
more general setting and (ii) applications to eigenfrequency search and time-domain simulations.

Theoretical investigations. An analysis of the method should lead to a better understanding of the respective contri-
butions of its two components. The analysis of the enrichment with oscillatory functions would benefit on the many
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Figure 19: Relative errors for the periodically notched beam represented in Figure@, with g = 2.5: (a) fixed frequency (w = 50) and increasing
resolution A/h (regular meshes composed of 4n elements per straight subdomain and 2n elements per notch, i.e. Ne = 34n and h = 0.3/n, with
n = 1...4.); and (b) fixed mesh (coarsest irregular mesh: one element of length #; = 1.2 per straight subdomain and two elements of length
hy = 0.3 per notch, for a total of N. = 16 elements) and increasing frequency.

results on plane wave enrichment for Helmholtz-like problems, see [39] and the references therein. Accounting for
the several wavenumbers associated with the Timoshenko system at a fixed frequency would be an additional diffi-
culty. One may also seek other relevant enrichment functions, e.g. generalized plane waves [44], and complete first
attempts in this direction presented in The analysis of the local rescaling should enable to propose a
priori estimates of the error reduction for given profile functions of a beam.

Computing natural frequencies of beams. Many papers on Timoshenko beams focus on the computations of their nat-
ural frequencies. Numerous methods are proposed [3]] to build stiffness and mass matrices and obtain approximations
wy, of these frequencies as the solutions of the generalized eigenvalue problem:

Find (wy, U) such that (K — w}M) - U = 0. (53)

The enriched bases presented in this work are adapted to solve vibration problems at a specific frequency w, and
therefore a priori seem poorly adapted to the search of natural frequencies. However, a procedure similar to the one
developed for bars by Arndt et al. [23] could be investigated. Such procedure aims at determining precisely natural
frequencies by (i) running an eigenfrequency search with a traditional piecewise-polynomial FE basis, and (ii) enrich
the FE basis with functions corresponding to a frequency determined at step (i), to include functions close to the
mode shape in the approximation space and improve the accuracy of the eigenvalue approximation for this particular
frequency. Finally, the step (ii) can be repeated with the newly computed eigenfrequencies to improve the precision.
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Time-domain wave propagation in Timoshenko beams. Time-domain computation can be achieved in two ways. On
the one hand, a numerical scheme can be used to discretize the considered time interval. In this case, the mass matrix
should be inverted at every time step. The spectral finite element method, which produces diagonal mass matrices,
is particularly adapted in this case [30} 28]]. In contrast, the enriched FEM produces non-diagonal mass matrices;
moreover it is built to be efficient for one particular frequency, thus it is not expected to be very efficient to retrieve
solutions of a time-domain problem with a wide frequency spectrum.

On the other hand, one can apply a discrete Laplace transform [10, [15] or a Fourier transform [2} 25] to the time-
domain problem, then solve the resulting time-harmonic problems in the Laplace or Fourier domain for a relevant
range of frequencies, and finally come back to the time-domain by an inverse transform. For this approach, the
proposed enriched bases may be useful: at each frequency the computation could be accelerated by coarsening the
mesh and using an appropriate enrichment, at the cost of computing the w-dependent stiffness and mass matrices. In
view of the results obtained in Section[5|for fixed meshes and increasing frequencies, one may even use the same mesh
for a wide range of frequencies while keeping reasonable error levels, which could facilitate parallel computations and
post-processing operations.

7. Conclusions

In this paper, a finite element approach dedicated to the computation of vibrations of heterogeneous beams is
presented. The method relies on (i) an enrichment method incorporating solutions of Timoshenko systems into the
approximation space and (ii) a local rescaling that accounts for the heterogeneous geometry. The resulting discrete
solutions were compared with solutions obtained using classical polynomial FE spaces on several examples. With the
same implementation easiness and similar computational costs, the proposed enriched FEM outperforms the polyno-
mial FEM on the tested configurations, especially when coupled with the local rescaling. On the one hand, for a fixed
frequency, all errors converge with the same rate as the mesh is refined, but using the enriched FEM improves the
precision by a factor ranging from about one to several orders of magnitude depending on the considered geometry.
On the other hand, using the enriched FEM enables to use the same coarse mesh to solve time-harmonic problems in a
wide range of frequencies (several octaves), while keeping the error level at very acceptable levels (typically less than
0.1%), whereas the polynomial FEM fails to follow the fast oscillations of the solutions at high frequencies without
mesh refinement. Several extensions and applications of the method were finally discussed.
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Appendix A. Other enriched spaces

This appendix presents other attempts made to define relevant enrichment families, that produced no noticeable
improvement compared to the spaces presented in Sections [3.4and [.3] for the examples of Section 3]

Enrichment family resulting from the Taylor expansion of Timoshenko system for arbitrary profiles. To build relevant
enrichment functions for a given equation with varying coefficients, an idea proposed by Imbert-Gérard and Després
[44] (who study Helmholtz equations with variable wavenumbers) is to replace these coefficients by their Taylor
expansions about the middle x, of an element and look for the solutions of the obtained equations, called generalized
plane waves [44]). Here, denoting (a, 26, 23) the values of the coefficients of the system (5) at the middle-point x, (i.e.
their 0-th order Taylor expansion):

A A I
a= 7()@), 26 = ﬁ(xe), and 28 = T(xe), (A.1)

and keeping only these leading-order contributions in the equations (3)), the resulting system is:

2 (A2)
—wO=a -0)+g(2Bo +8").
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This system does not correspond to an actual beam when § # 8 and therefore its relevance is hard to determine using
physical insights. The dispersion relation is found to be:

(w? — (K = 2i6k))(w® — g(k* — 2iBk) — @) — a(k* — 2i6k) = 0, (A.3)

or:
—28i(6 + BK> — (W*(1 + g) + 4g6B)k* + 21w’ (S + gB)k + w? (w* — @) = 0. (A4)

The roots {ky,}me1._4 Of this equation may be computed numerically for each set of parameters (w, , 9, ), and the basis
of solutions is then given by:

le,oz,é,ﬁ — {x — ei/me} (AS)

m=1..4"

This family was used to build a space SD‘M % similar to 7’“’" and P‘I’é";, for which the e-th elementary basis is
determined from the values of («, ¢, 3) computed with @]} However, no significant improvement was observed
compared to the simpler space Py, and compared to P’y ° for beams with constant thickness.

The same idea was applied to the system (&1)) arising after the change of unknowns (u,6) — (i, §). By retaining
only the middle-point values of all the variable coefficients (d”/d, d’/a, ...), writing the dispersion relation of the
resulting system and computing its roots, one may define a new family ‘I"”d“ of enrichment functions and build
the corresponding space Pwd“ similarly than above. This space was used instead of 7’ to discretize the modified
formulation (@2)), but again, no clear improvement was observed.

Enrichments inspired by the Stable generalized FEM. Given an enrichment family {i,,}, there are alternative ways
to add inner functions (i.e. functions that vanish at both nodes of the element) to an elementary basis. In particular,
one of the ideas of the Stable GFEM [33]] is to substract the linear interpolant of the enrichment functions on each
element. Using this idea, alternative Timoshenko-enriched spaces Pg’ f were built, for which only four additional
inner functions are added to a fifth-order polynomial basis. These functions read:

FH(E) = e g 1), m=1...4, (A6)

where the wavenumbers k,, are defined by (T2)). In particular, one may expect these bases to produce better-conditioned
systems (as each enrichment function appears only once in the elementary basis). However, on the examples presented
in Section , these spaces were found to perform poorly compared to the spaces P‘l"é’, that uses the same enrichment
functions but multiplied by the “half-hat” local PU.

Appendix B. An exact solution for nonzero density of forces
For an exponential beam, a particular solution of the Timoshenko system (3)) is sought by imposing u,(x) = (x/L)>

and m(x) = 0. Then the unknown rotation 6, and density of forces g,(x) = A(x)g,(x) are the solutions of the system:

{u{,’ — 0, +26(t, — 6,) + Wup + 3o = 0 B.1)

g (07 +260) + a(u, — 6,) + w6, = 0.

The rotation 6, and the force density factor ¢, are determined successively thanks to the second and the first equation.
Finally, the particular solution

x? 1 2a 2g6
W= 6= 53— (x e wz) (B.2)

is obtained by imposing the linear density of forces:

(B.3)

_ 20 2 4gas*
gr(x) = A(X)qp(x) = ¢ —* X+ 26w X + W + 4l .
L? a - w? a— w?
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