Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data

Abstract : In this article we prove highly improved and flexible Strichartz-type estimates allowing us to generalize the asymptotics we obtained for a stratified and rotating incompressible Navier-Stokes system: for large (and less regular) initial data, we obtain global well-posedness, asymptotics (as the Rossby number ε goes to zero) and convergence rates as a power of the small parameter ε. Our approach is lead by the special structure of the limit system: the 3D quasi-geostrophic system.
Type de document :
Pré-publication, Document de travail
2019
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-02050137
Contributeur : Frederic Charve <>
Soumis le : mardi 26 février 2019 - 20:54:32
Dernière modification le : mercredi 6 mars 2019 - 08:46:56

Fichiers

PEgen9.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02050137, version 1
  • ARXIV : 1902.10609

Citation

Frederic Charve. Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data. 2019. 〈hal-02050137〉

Partager

Métriques

Consultations de la notice

43

Téléchargements de fichiers

19