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Abstract: Let H(x, p) ∼ H0(x, p) + hH1(x, p) + · · · be a semi-classical Hamiltonian on T ∗Rn, and

ΣE = {H0(x, p) = E} a non critical energy surface. Consider fh a semi-classical distribution (the

“source”) microlocalized on a Lagrangian manifold Λ which intersects cleanly the flow-out Λ+ of

the Hamilton vector field XH0
in ΣE. Using Maslov canonical operator, we look for a semi-classical

distribution uh satisfying the limiting absorption principle and Hw(x, hDx)uh = fh (semi-classical

Green function). In this report, we elaborate (still at an early stage) on some results announced in

[AnDoNaRo1] and provide some examples, in particular from the theory of wave beams.

1. Introduction

Our general motivation is to solve equations like (H − E)uh = fh, with fh(x) = h−nf
(
x
h

)
,

f ∈ L2(Rn), a “localized function” at x0 = 0. In case H = −h2∆, we apply h-Fourier transform

Fhuh(ξ) =
∫
e−ixξ/huh(x) dx

to get Fhuh(ξ) = F1f(ξ)
ξ2−E

. If E < 0, this is an elliptic equation, and uh has the same form as fh. If

E > 0 however,

(1) u+(x;E,h) = (2πh)−n
∫
eixξ/h

F1f(ξ)

ξ2 −E − i0
dξ

is defined through regularisation, so to satisfy the limiting absorption principle. Actually,

u+(x;E,h) = E+fh, E+ =
i

h

∫ ∞

0

e−it(H−E)/h dt

is the forward parametrix. When fh(x) is replaced by δ(x − x0), u+ is the Green function. Such a

distribution is very singular since there are infinitely many classical trajectories linking the “source”

x0 to x in time t; so it is suitable to consider instead F1f with compact support.

This problem has of course received considerable attention [Ke], [Ba], [Ku]; our special purpose is

to reformulate it in terms of Maslov canonical operator, and describe the solution globally, including

unfolding of Lagrangian singularities; this is of special importance in the context of wave propagation.

More generally, let fh = f(·;h) be a semi-classical Lagrangian distribution (or oscillatory integral)

defined on the manifold M (for all practical purposes, we shall assume here M = Rn), i.e. locally

f(x;h) = (2πh)−n/2
∫
eiϕ(x,θ)/ha(x, θ;h) dθ
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where ϕ(x, θ) is a non-degenerate phase function in the sense of [Hö], and a(x, θ;h) = a0(x, θ) +

ha1(x, θ) + · · · an amplitude. With f we associate the critical set Cϕ = {(x, θ) ∈M ×RN : ∂θϕ = 0}
and ιϕ : Cϕ → T ∗M with image the Lagrangian submanifold Λϕ = {(x, ∂xϕ) : (x, θ) ∈ Cϕ}. Choose

local coordinates ξ ∈ Rd on Λϕ and define the half-density in the local chart (Cϕ, ιϕ) by
√
dµϕ =

|detϕ′′|−1/2|dξ|1/2. The (oscillating) principal symbol of f in Λϕ is then defined (up to the factor√
dµϕ) as

eiφ(ξ)/hA0(ξ) = eiφ(ξ)/heiπ sgnϕ′′/4a0(x(ξ), θ(ξ))

where φ is a “reduced phase function”. Conversely, assume ι : Λ → T ∗M is a smooth Lagrangian

immersion, with a smooth positive half-density
√
dµ, it can be parametrized locally by phase functions

ϕ in canonical charts ιϕ : Uϕ → T ∗M . These phases can be chosen coherently, and define a class

of “reduced phase functions” φ, parametrizing ι locally. This gives the fibre bundle of phases Lh,
including Maslov indices, equipped with transition functions. We are also given local smooth half-

densities |dµϕ|1/2 on Λ, defining the fibre bundle of half-densities Ω1/2, equipped with transition

functions. The collection of these objects make a fibre bundle Ω1/2 ⊗ Lh over Λ. A section of

Ω1/2 ⊗Lh will be written as

f(x;h) =
[
Kh

(Λ,µ)A
]
(x;h)

where Kh
(Λ,µ) is called Maslov canonical operator. The “reduced phase function” and the “principal

symbol” of f are defined invariantly. See [M], [Du], [Iv], [DoZh], [DNS] for details.

So our general aim is to construct, in term of Maslov canonical operators, a representation of

E+f . Here are some examples of f (expressed in a single chart):

(1) Λ = {(x, ∂xϕ) : x ∈M}. WKB functions f(x, h) = eiϕ(x)/ha(x, h) or in Fourier representation

(2) f(x;h) =
eiπn/4

(2πh)n/2

∫
ei(xp+S(p))/hA(p;h) dp

(such an integral conveniently normalized including a phase factor, will be written
∫ ∗

(· · ·); here

sgn
(
x · p)′′ = −n).
(2) Gaussian functions f(x;h) = 1

hn exp(−ω2·x2

2h
) or more general (superposition of) coherent

states.

(3) A conormal distribution with Λ = T ∗
NRn, N = {xn = 0}

(3) f(x;h) =

∫ ∗

eixnpn/hA(x′, pn) dpn

(4) Λ = {x = X(ϕ,ψ) = ϕω(ψ), p = P (ϕ,ψ) = ω(ψ), ϕ ∈ R}, ω ∈ Sn−1, f identifies with a

“Bessel beam”, see Sect. 4.

2. Hypotheses and main result

Let Λ0 → T ∗M , Λ1 → T ∗M be smooth embedded Lagrangian manifolds, Λ1 with a smooth

boundary ∂Λ1 (isotropic manifold). Following [MelUh], we say that (Λ0,Λ1) is an intersecting pair iff

Λ0 ∩ Λ1 = ∂Λ1 and the intersection is clean, i.e.

∀ρ ∈ ∂Λ1 TρΛ0 ∩ TρΛ1 = Tρ∂Λ1
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In particular, near each ρ ∈ T ∗M , there is a canonical transform mapping Λ0 to T ∗
0R

n = {x = 0}
and Λ1 to

Λ0
+ = {(x, ξ) : x = (0, xn), ξ = (ξ′, 0), xn ≥ 0}

i.e. the flow-out of T ∗
0R

n by the Hamilton vector field Xξn = ((0, · · · , 0, 1), 0) of ξn, passing through

x = 0, ξ0 = (ξ′, 0).

Let now H(x, p;h) = H0(x, p) + hH1(x, p) + · · · be a symbol of class S0(m) and Hw(x, hDx;h)

its Weyl quantization, as a bounded operator on L2(M). Assume

(A.1) The energy surface ΣE = H−1
0 (E) is non critical.

(A.2) The set L = ΣE ∩ Λ is compact.

(A.3) The Hamiltonian vector field XH0
is transverse to Λ along L.

For t ≥ 0, let gtH0
= exp tXH0

, Λt = gtH0
(Λ), and Λ+ =

⋃
t≥0 g

t
H0

(L). The pair (Λ,Λ+) define a

Lagrangian intersection, and L = ∂Λ+. We assume also

(A.4) The Hamilton flow gtH0
|L extends for all t > 0.

(A.5) |πx(gtH0
|L)| → ∞ as t→ ∞ (non trapping condition).

Let ψ be a system of coordinates on L, completed (locally near L) to coordinates (ψ, τ) on Λ and

to coordinates (ψ, t) on Λ+, so that the positive measure on Λ (square of half-density) takes the form

dµ = |dτ ∧ dψ|. This implies the measures dµt = (gt∗H0
)−1(dµ) on Λt and dµ+ = |dt ∧ dψ| on Λ+.

We shall consider a partition of unity subordinated to a covering of the pair (Λ,Λ+), with cut-off

functions (of small enough support) χ̃0 ∈ C∞
0 (Λ), that depends only on τ (the “radial variable” on

Λ), with χ̃0(τ) ≡ 1 near L = {τ = 0}, and χ0 ∈ C∞
0 (Λ+), that depends only on t, χ0(t) ≡ 1 near

t = 0. Let also χT ∈ C∞(R+), χT ≡ 1 for t ≤ T/2, χT ≡ 0 for t ≥ T/2 where T is so large that

x /∈ πx(g
t
H0

|L) if t ≥ T (using the non-trapping condition (A.5)).

For simplicity, we state our main result [AnDoNaRo1] in the case Λ = T ∗
0M , so that all solutions

of Hamilton equations start from some (0, p), with p ∈ suppA. Representing E+ as a sum of Maslov

canonical operators associated with the pair (Λ,Λ+) in particular we shall retrieve the theorem on

propagation of singularities for wave-front sets WFh u ⊂ WFh(Hu) ∪ CharH.

Theorem 1: Let Ω ⊂M be a bounded domain. Under hypotheses (A.1)-(A.5) above, there is u = uh,

solution of Hw(x, hDx;h)uh = fh, satisfying the limiting absorption principle, which can generically

be cast in the following form

(4)

u(x, h) =

∫ ∗ (1− χ̃0(τ(p))A(p)

H(0, p)−E
eipx/h dp

+

∫ ε0

0

dt

∫ ∗

eiΦ(t,x,η)/he−iΘ(t,x,η)|detJ(t, x, η)|−1/2χT (t)χ0(t)χ̃0

(
τ(η)

)
A(η) dη dt

+Kh
(Λ+,dµ+)

[
χT (·)(1− χ0(·))e−iΘA+

]

up to O(h) terms; the summands on the right hand side are boundary, transient and wave part,

respectively. In Eq.(4), Φ(t, x; η) solves Hamilton-Jacobi equation (see Sect.3), and Θ(t, x, η) =
∫ t
0
H1◦

3



exp(sXH0
(0, η)) ds is the integral of the sub-principal 1-form, where we recall H1 is the sub-principal

symbol of H. Moreover J(t, x, η) is a Jacobian computed from Hamilton-Jacobi equation.

The case when Λ is slightly “tilted” with respect to the vertical plane, i.e. has generating function

φ(x, ξ) = xξ + S(ξ) can be formulated in a very similar way (see Sect.3). For more general f ’s, the

boundary part should be written as
[
Kh

(Λ,µ)
(1−χ̃0)A

H

]
(x;h), and the transient part as the integral over

t of a phase factor times
[
Kh

(Λt,µt)
χT (·)χ̃0(·)χ0(·)At

]
(x;h), At being the solution of the transport

equation along the projection of exp tXH0
with initial data A(η).

The boundary part is microlocalized on Λ, the wave part on Λ+. Let us make first a few comments:

1) (4) can be interpreted as “integrated” Van Vleck Formula [CdV], which expresses the semi-

classical propagator e−itH/h acting on a localized function.

2) The wave part contributes generally at x ∈ Ω only if t 7→ Φ(t, x, η) has a non-degenerate

critical point for all η ∈ supp f : let hDxn
be the “model” operator, and f(x;h) =

∫ ∗
eixp/hA(p) dp.

Then [MelUh]

uh(x) =
i

h

∫ ∞

0

χT (t) dt

∫ ∗

ei(x
′ξ′+(xn−t)ξn)/hA(ξ) dξ

verifies the limiting absorption principle and hDxn
u(x, h) = f(x, h) + O(h∞) for xn ≤ T/2; still uh

has no “wave part”.

3) Formula (4) is also valid near a focal point x ∈ Ω, or more generally when x is linked to x0

through a trajectory containing several focal points. The wave-part simplifies outside the focal points

to a WKB form, involving non trivial Maslov indices passing the first focal point.

4) The phase function Φ(t, x, η) can be also replaced by a Lagrangian action, in the spirit of

[DNS]. This will be discussed in detail in a future work.

We illustrate Theorem 1 by computing uh explicitely in the 2-D case for Helmholtz operator

with constant coefficient as in (1), but f with compact support. Let f also be radially symmetric; its

Fourier transform g = F1f is again of the form g(p) = g(|p|) = g(r) and extends holomorphically to

C2. For E = k2, k > 0, we rewrite (1) as uh(x) = u(x) = u0(x) + u1(x) with

u0(x) =
k + i ε

(2πh)2

∫ 2π

0

dθ

∫ ∞

0

exp[i|x|r cos θ/h] g(r)

r2 − (k + i ε)2
dr

u1(x) =
1

(2πh)2

∫ 2π

0

dθ

∫ ∞

0

exp[i|x|r cos θ/h] g(r)

r + k + i ε
dr

To compute u0 we use contour integrals. When θ ∈] − π
2
, π
2
[, we shift the contour of integration to

the positive imaginary axis and get by the residues formula

(5)

∫ ∞

0

exp[i|x|r cos θ/h] g(r)

r2 − (k + i ε)2
dr +

∫ ∞

0

exp[−|x|r cos θ/h] g(ir)

r2 + (k + i ε)2
idr =

2iπ
g(k + i ε)

2(k + i ε)
exp[i|x|(k + i ε) cos θ/h]

while for θ ∈]π2 , 3π2 [,

(6)

∫ ∞

0

exp[i|x|r cos θ/h] g(r)

r2 − (k + i ε)2
dr −

∫ ∞

0

exp[|x|r cos θ/h] g(−ir)
r2 + (k + i ε)2

idr = 0
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Summing up (5) and (6), integrating over θ ∈]0, 2π[ and letting ε→ 0, we obtain

u0(x) =
iπg(k)

(2πh)2

∫ π/2

−π/2

exp[i|x|k cos θ/h] dθ+
∫ ∞

0

dr

r2 + k2
[∫ π/2

−π/2

g(ir)−
∫ 3π/2

π/2

g(−ir)
]
exp[−|x|| cos θ|/h] dθ

Since g(ir) = g(−ir), the latter integral vanishes, so we end up with

u0(x) =
iπg(k)

(2πh)2

∫ π/2

−π/2

exp[i|x|k cos θ/h] dθ

It is readily seen that

WFh u0 ⊂ {x = 0} ∪ {(x, k x|x| ), x 6= 0} = Λ ∪ Λ+

Consider now u1. We let ε → 0 and set g̃(r) = g(r)
r(r+k)

. Since g̃(r)
√
r ∈ L1(R+), we have u1(x) =

H0(g̃)(
|x|
h
), where H0 denotes Hankel transform of order 0.

Let χ ∈ C∞
0 (R2) be radially symmetric, and equal to 1 near 0, since WFh fh = {x = 0}, we have

g = Fh(χfh) +O(h∞) = (2πh)−2Fh(χ) ∗ g +O(h∞)

so in the expression for u1 we may replace mod O(h∞), g̃(r) by a constant times ĝ(r) = (Fh(χ)∗g)(r)
r(r+m)

(see [Bad] for 2-D convolution and Fourier transform in polar coordinates). To estimate WFh u1, we

compute again the Fourier transform of (1 − χ̃)ĝ where χ̃ is a cut-off equal to 1 near 0, and we find

it is again O(h∞) if χ ≡ 1 on supp χ̃. This shows that WFh u1 ⊂ {x = 0}. See also [MelUh], Prop.

2.3. Note that the decomposition u0 + u1 is directly related with the corresponding one in Theorem

1 as the sum of the boundary (u1), and the wave part (u0). We conjecture that the transient part

in Theorem 1 can be removed (taking a limit suppχ0 → ∅) when the Hamiltonian flow XH0
enjoys

some non-degeneracy properties (see Sect.3), as in the case of a geodesic flow.

3. Maslov canonical operators associated with (Λ,Λ+)

Proof of Theorem 1 consists first in looking at the propagator e−itH/h acting on Lagrangian

distribution fh as above, i.e. the solution of the Cauchy problem
(
hDt+H

w(x, hDx)
)
v = 0, v|t=0 = fh.

Next step is to integrate with respect to t after introducing the partition of unity above.

In this report, we shall content to construct the phase functions by solving Hamilton-Jacobi

equation. First we recall from [Hö],Thm 6.4.5 the following:

Theorem 2: Denote the variable in T ∗Rd by (y, η) = (y′, yd; η
′, ηd). Let H be a real valued, smooth

Hamiltonian near (0, η) such that H(0, η) = 0, ∂ηdH(0, η) 6= 0, and let φ be a real valued, smooth

function on Rd−1 such that ∂y′φ = η′. Then there exists in a neighborhood of 0 ∈ Rd a unique real

valued solution Φ(y; η) of Hamilton-Jacobi equation H(y, ∂yΦ) = 0 satisfying the boundary condition

Φ(y′, 0; η) = φ(y′),
∂Φ

∂y
(0; η) = η

5



We consider here the case of a “maximally singular” chart U for Λ where Λ = Λφ has generating

function φ(x, ξ) = S(ξ)+xξ. Even if Λ is a plane, the outgoing manifold Λ+ may be very complicated

far away from x0, but changing the canonical charts, we can proceed step by step.

Without loss of generality we can also assume here E = 0, S(0) = 0, ∂ξS(0) = 0. Let η, τ such

that τ + H(0, η) = 0, by Theorem 2 (after slightly changing the notations), there exists Φ(x, t; η, τ)

such that

(7)

∂Φ

∂t
+H(x,

∂Φ

∂x
) = 0

Φ(x, 0; η, τ) = S(η) + xη

∂Φ

∂x
(0, 0; η, τ) = η,

∂Φ

∂t
(0, 0; η, τ) = τ

Moreover, when τ is small enough, the intersecting pair (Λ,Λ+) for energy level H = 0 extends to a

smooth family of intersecting pairs (Λ,Λ+(τ)) for energy levels H = −τ

Λ+(τ) = {(x, ξ) ∈ T ∗M,∃t ≥ 0,∃(y, η) ∈ Λ, (x, ξ) = exp tXH(y, η), τ +H(y, η) = 0}

intersecting along L(τ) given by ηn = η̃n(η
′, τ), with η̃n(ξ

′
0, 0) = 0.

So near x = x0 we can assume, possibly after permuting the ξ-coordinates, that H(0; ξ′0, 0) = 0,
∂H
∂ξn

(0; ξ′0, 0) 6= 0, and for τ small enough, the equation τ+H(x, ξ) = 0 is equivalent to ξn = ξ̃n(x, ξ
′, τ),

with ξ̃n(0, ξ
′
0, 0) = 0.

Now we want to set τ = 0 and therefore, given (x, η), solve the equation ∂Φ
∂t

= 0 for t ≥ 0. As we

have seen, uniqueness of solutions doesn’t always hold, as shows the “model case” hDxn
. Namely, the

phase function given by Hamilton-Jacobi theory is Φ(x, t; η) = φ(x′, xn − t, η), so ∂tΦ = 0 iff ηn = 0,

for all t. However the phase parametrizing Λ+ is given for small t by Taylor expansion

Φ(x, t; η) = xη + S(η)− tH(x, η) +
t2

2
∂ξH(x, η)∂xH(x, η) + · · ·

The following assumption in turn ensures existence of a finite number of solutions t = t(x; η) > 0 of
∂Φ
∂t

= 0. Denote by Exptx0
η = πx(exp tXH0

(x0, η)) the projection of the bicharacteristic of H starting

from (x0, η) near (x0, ξ0) at time 0. Assume:

(A′
0) ∃Ωξ ⊂ Rn open (small) neighborhood of ξ0, such that if x = Exptx0

η for some t > 0, and

η ∈ Ωξ, then the map ξ 7→ Exptx0
ξ is a local diffeomorphism near η; in other terms, x0 and x are not

conjugated along any trajectory that links them together within time t, with initial momentum ξ.

The set of such x is an open set Ωx.

Proposition 1: Under hypothesis (A′
0), for all (x, η) ∈ Ωx × Ωξ there is a finite number of tj =

tj(x, η) > 0 (1 ≤ j ≤ N) solutions of ∂tΦ(x, t; η) = 0 and tj are non degenerate critical points.

Moreover (A′
0) is generically fulfilled before occurence of the first focal point, as show the following

examples.

Let H0 be a geodesic flow, E > 0, f conormal to N = {x0} ; Ωx is a small enough ball centered

at x0, (geodesic ball), or Ωx is a neighborhood of a minimal geodesic {y = Expsx0
η, 0 ≤ s ≤ t0} for η

6



in some small neighborhood of η0. This applies when f is as in (2) and suppA is localized near η0.

The same holds with f as in (3) conormal to the hypersurface N = {xn = 0} (or more generally to a

surface N of positive codimension in M). For instance when N = {xn = 0}, (A′
0) holds with Ωξ an

open (small) neighborhood of η = (0, · · · , 1), and Ωx a neighborhood of a minimal geodesic from N to

some x1. This follows from a well-known property of minimal geodesics (see e.g. [HeSj], Proposition

6.3). In case of a Schrödinger operator with principal symbol H0(x, ξ) = ξ2 + V (x) − E (where E is

a scattering energy) we use Maupertuis-Jacobi principle to reduce again to a Riemannian metric dE

given by ds = (E−V (x))1/2|dx|. So we arrive at the same conclusions, the metric dE being conformal

to the standard metric. We proved the following:

Proposition 2: Under the minimality assumptions above, (A′
0) holds. For η ∈ Ωξ and x =

Exptx0
(η) ∈ Ωx, 0 < t < t0, the Lagrangian manifold Λt = exp tXH(Λφ) has same rank as Λ,

and is of the form ΛΦ(t,·). In particular

exp tXH0
(Λφ) = {(x, ∂xΦ(t, x; η)) : ∂ηΦ(t, x; η) = 0} ⊂ {exp tXH0

(x, η), (x, η) ∈ T ∗N⊥}

Moreover for all (x, η) ∈ Ωx × Ωξ there is a unique t(x, η) > 0 solution of ∂tΦ(x, t; η) = 0 and t(x, η)

is a non degenerate crtical point.

Extending the geodesic γ beyond the first focal point occuring in some Λt for some t = t0. we only

need another representation of the phase function. Using the mixed representation for Lagrangian

manifolds, we know that for any k = 0, · · · , n, (k = 0 corresponds to a maximally singular chart, k = n

to a regular chart, they are mapped onto each other by Fourier transform), there exists a partition of

variables x = (x′, x′′) ∈ Rk×Rn−k and ξ = (ξ′, ξ′′), such that if π̃ : R2n → Rn, (x, ξ) 7→ (x′, ξ′′), then

rank dπ̃ = n. In such a chart, the generating function for Λt takes the form φ(x, η) = x′′η′′+S(x′, η′′).

We can reformulate Hamilton-Jacobi equations as in (7) in these coordinates, which has again a unique

solution for small t − t0. Generically (i.e. under an assumption (A′
k) modeled after (A′

0) in the new

(x, ξ) coordinates), one still obtains a non degenerate phase function, which contributes to the fibre

bundle Lh over Λ+ together with Maslov index of γ. More explicit formulae will be given elswewhere.

Of course, γ may contribute a finite number of times in the expression for the Green function at x,

and a finite number of γ contribute to the wave part of the phase function.

4. Using eikonal coordinates.

The computations above can be simplified using special coordinates adapted to Λ, called eikonal

coordinates.

Let ι : Λ → T ∗M be a smooth embedded Lagrangian manifold. The 1-form p dx is closed on Λ,

so locally exact, and p dx = dS on any simply connected domain U . Such a S is called an eikonal (or

action) and is defined up to a constant. Assume dS 6= 0 on Λ, then S can be chosen as a coordinate

on U , which we complete by smooth functions ψ ∈ Rn−1.

We use here eikonal coordinates to construct a phase function solving Hamilton-Jacobi equation

in case of a positively homogeneous Hamiltonian of degree m with respect to p. To fix ideas, we take

7



n = 2 (for simplicity) m = 1 and

(8) H(x, p) =
|p|
n(x)

Example 1: Λ = {x = 0} intersects the energy surface H = 1 along L. Let us compute the eikonal

S on Λ+. Integrating Hamilton equations we have x = X(t, ψ), p = P (t, ψ) where ψ ∈ R2, hence

dS = p dx|Λ+
= 〈P (t, ψ), dX(t, ψ)〉. Since dx = 0 on Λ, we have S(0, ψ) = Const. = S0, and

(9) S(t, ψ) = S(0, ψ) +

∫ (t,ψ)

(0,ψ)

p dx|Λ+
= S0 +

∫ t

0

〈P (s, ψ), Ẋ(s, ψ)〉 ds

By Hamilton equations and Euler identity, we have on H = 1.

〈P (s, ψ), Ẋ(s, ψ)〉 = 〈P (s, ψ), ∂pH(X,P 〉 = mH(X,P ) = m

and S(t, ψ) = S0 +mt is the action on Λ+. So

mdt = 〈P (t, ψ), dX(t, ψ)〉 = 〈P (t, ψ), Ẋ(t, ψ)〉 dt+ 〈P (t, ψ),Xψ(t, ψ)〉 dψ

It follows that 〈P (t, ψ), Ẋ(t, ψ)〉 = m and 〈P (t, ψ), ∂ψX(t, ψ)〉 = 0. Now we complete the coordinate

system ψ on Λ by a smooth function r such that L is given by r = 1, and set

Φ(x, (t, ψ, r)) = mt+ r〈P (t, ψ), x−X(t, ψ)〉

where r can be interpreted as a Lagrange multiplier. Let us check that Φ satisfies Hamilton-Jacobi

equation. We have

(10)

∂tΦ = Φ̇ = m+ r〈Ṗ , x−X(t, ψ)〉 − r〈P, Ẋ〉 =
m(1− r) + r〈Ṗ (t, ψ), x −X(t, ψ)〉
∂rΦ = 〈P (t, ψ), x−X(t, ψ)〉
∂ψΦ = r〈∂ψP (t, ψ), x−X(t, ψ)〉

Last 2 equations in (Φ̇, ∂rΦ, ∂ψΦ) = 0 give an homogeneous linear system with determinant det(P,Pψ).

On x = 0 we get |p| = n(0) > 0, and in dimension n = 2, p = n(0)t(cosψ, sinψ). It follows that det

(P,Pψ) = |n(0)|2 so for small t, we get x−X(t, ψ) = 0, so the phase is critical with respect to (ψ, r)

for x = X(t, ψ). Substituting into the last equation (10) we get Φ̇ = 0 when r = 1. We complete the

proof that Φ is a generating function for Λ+ by checking d∂tφ, d∂ψΦ, d∂rΦ are linearly independent on

the set x = X(t, ψ). This can be done by examining the variational system associated with Hamilton

equations.

Moreover we can reduce this generating function by eliminating t by stationary phase. Again, of

course, this holds only for small t > 0, before unfolding of Lagrangian singularities.
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Example 2: We take H as in (8) with n(x) = n(|x|), n = 2 for simplicity and

Λ = {x = X(ϕ,ψ) = ϕω(ψ), p = P (ϕ,ψ) = ω(ψ), ϕ ∈ R, ω ∈ Sn−1}

ψ being the usual angles parametrizing ω ∈ Sn−1. When n = 2 this is the wave-front set of Bessel

function fh(x;h) = J0(
|x|
h ); such functions arise in the wave beam theory (see [Ki], [DoMaNa] and

references therein), so we call fh a “Bessel beam”.

Computing the action we find p dx|Λ = dϕ so coordinate ϕ will play the role of x in he previous

Example. We have n(|x|) = n(ϕ), and ϕ = Const. on L = Λ∩{H = 1}. The argument above extends

readily to this setting, in particular as in (9)

S(t,ϕ, ψ) = S(0, ϕ, ψ) +

∫ (t,ϕ,ψ)

(0,ϕ,ψ)

p dx|Λ+
= S(0, ϕ, ψ) +

∫ (t,ϕ,ψ)

(0,ϕ,ψ)

P (s, ϕ, ψ) dX(s, ϕ, ψ) =

S0 +

∫ t

0

〈P (s, ϕ, ψ), Ẋ(s, ϕ, ψ)〉 ds

and

〈P (t, ϕ, ψ), ∂ψX(t, ϕ, ψ)〉 = 〈P, ∂ϕX〉 = 0

Now we can apply the results of [DNS], Sect.2.2 on eikonal coordinates for a Lagrangian manifold in

a general position, with X
ψ̃
(ϕ̃, ψ̃) of rank k. Here ϕ̃, ψ̃ are coordinates in a local chart of Λ+ in the

extended phase space. More specifically, we take ψ̃ = (t, ψ), ϕ̃ = ϕ, try to make a change of variables

ϕ = ϕ(x, t, ψ), and seek for a generating function of Λ+ in the form Φ(x, (t, ψ, r)) as in the previous

Example. Details will be given elsewhere.

5. More examples and perspectives.

The methods above apply in a number of situations as:

(1) The water-wave Hamiltonian H(x, hDx;h) with H0(x, p) = |p| tanh
(
|p|D(x)

)
− E, together

with Λ = {x = x0} has been discussed in [DoNa], [AnDoNaRo2], in relationship with (11) or Helmhotz

operator H(x, hDx) = −h2∆ −
(
n(x)

)2
. The localized function f can be a Gaussian (even in x) or

a Gaussian times a linear function (odd in x), or can be of antenna type, i.e. its Fourier transform

localized in a cone in p.

(2) The kinetic part of Hamiltonian is of Lorenzian type (as −p20+p21), and f a localized function

(Gaussian) supported on Λ = {x = x0}, so that the semi-classical Green function uh is the linear

response to f localized on Kelvin angle (or Mach cone).

It should also be possible to construct semi-classical Green functions in case the pair (Λ,Λ+) is

no longer intersecting cleanly, but glancing. We then need second-microlocalization, and introducing

so called 2-phases, see e.g. [LaWi] in the standard (polyhomogeneous) calculus.
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