Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition, Proc. 27th Asilomar Conf. on Signals, Sys. and Comp, vol.1, pp.40-44, 1993.

S. Chen, S. A. Billings, and W. Luo, Orthogonal least squares methods and their application to non-linear system identification, Int. J. Control, vol.50, issue.5, pp.1873-1896, 1989.

A. J. Miller, Subset selection in regression, 2002.

S. F. Cotter, J. Adler, B. D. Rao, and K. Kreutz-delgado, Forward sequential algorithms for best basis selection, IEE Proc. Vision, Image and Signal Processing, vol.146, pp.235-244, 1999.

L. Rebollo-neira and D. Lowe, Optimized orthogonal matching pursuit approach, IEEE Signal Process. Lett, vol.9, issue.4, pp.137-140, 2002.

S. Foucart, ;. , D. Bilyk, and L. D. Carli, Stability and robustness of weak orthogonal matching pursuits, Recent advances in harmonic analysis and applications, vol.25, pp.395-405, 2013.

B. L. Sturm and M. G. Christensen, Comparison of orthogonal matching pursuit implementations, Proc. Eur. Sig. Proc. Conf, pp.220-224, 2012.

M. Iordache, J. M. Bioucas-dias, and A. Plaza, Sparse unmixing of hyperspectral data, IEEE Trans. Geosci. Remote Sensing, vol.49, issue.6, pp.2014-2039, 2011.

E. Esser, Y. Lou, and J. Xin, A method for finding structured sparse solutions to nonnegative least squares problems with applications, SIAM J. Imaging Sci, vol.6, issue.4, pp.2010-2046, 2013.

T. Virtanen, J. F. Gemmeke, and B. Raj, Active-set Newton algorithm for overcomplete non-negative representations of audio, IEEE Trans. Audio, Speech, Language Process, vol.21, issue.11, pp.2277-2289, 2013.

R. Bro and S. De-jond, A fast non-negativity-constrained least squares algorithm, Journal of Chemometrics, vol.11, issue.5, pp.393-401, 1997.

M. Slawski, R. Hussong, A. Tholey, T. Jakoby, B. Gregorius et al., Isotope pattern deconvolution for peptide mass spectrometry by non-negative least squares/least absolute deviation template matching, BMC Bioinformatics, vol.13, issue.291, pp.1-18, 2012.

J. A. Högbom, Aperture synthesis with a non-regular distribution of interferometer baselines, Astron. Astrophys. Suppl, vol.15, pp.417-426, 1974.

S. Petra and C. Schnörr, Average case recovery analysis of tomographic compressive sensing, Linear Alg. Appl, vol.441, pp.168-198, 2014.

P. O. Hoyer, Non-negative matrix factorization with sparseness constraints, J. Mach. Learn. Res, vol.5, pp.1457-1469, 2004.

J. Rapin, J. Bobin, A. Larue, and J. Starck, Sparse and non-negative BSS for noisy data, IEEE Trans. Signal Process, vol.61, issue.22, pp.5620-5632, 2013.
URL : https://hal.archives-ouvertes.fr/cea-01816377

P. L. Combettes and J. Pesquet, Proximal splitting methods in signal processing, pp.185-212, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00643807

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, vol.3, pp.1-122, 2011.

G. Gasso, A. Rakotomamonjy, and S. Canu, Recovering sparse signals with a certain family of nonconvex penalties and DC programming, IEEE Trans. Signal Process, vol.57, issue.12, pp.4686-4698, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00439453

H. A. Le-thi, B. T. Nguyen-thi, and H. M. Le, Sparse signal recovery by difference of convex functions algorithms, Intelligent Information and Database Systems, vol.7803, pp.387-397, 2013.

A. Björck, Numerical Methods for Least Squares Problems, Society for Industrial and Applied Mathematics, 1996.

C. L. Lawson and R. J. Hanson, Solving least squares problems, Society for Industrial and Applied Mathematics, pp.149-199, 1974.

M. H. Wright, Interior methods for constrained optimization, Acta Numerica, vol.1, pp.341-407, 1992.

F. Benvenuto, R. Zanella, L. Zanni, and M. Bertero, Nonnegative least-squares image deblurring: Improved gradient projection approaches, Inverse Probl, vol.26, issue.2, pp.1-18, 2010.

M. Slawski and M. Hein, Sparse recovery by thresholded non-negative least squares, Adv. Neural Inf. Process. Syst, vol.24, pp.1926-1934, 2011.

M. Slawski and M. Hein, Non-negative least squares for high-dimensional linear models: Consistency and sparse recovery without regularization, Electron. J. Stat, vol.7, pp.3004-3056, 2013.

R. Peharz and F. Pernkopf, Sparse nonnegative matrix factorization with 0 constraints, Neurocomputing, vol.80, pp.38-46, 2012.

A. M. Bruckstein, M. Elad, and M. Zibulevsky, On the uniqueness of nonnegative sparse solutions to underdetermined systems of equation, IEEE Trans. Inf. Theory, vol.54, issue.11, pp.4813-4820, 2008.

M. Yaghoobi, D. Wu, and M. E. Davies, Fast non-negative orthogonal matching pursuit, IEEE Signal Process. Lett, vol.22, issue.9, pp.1229-1233, 2015.

M. Yaghoobi and M. E. Davies, Fast non-negative orthogonal least squares, Proc. Eur. Sig. Proc. Conf, pp.479-483, 2015.

T. Blumensath and M. E. Davies, On the difference between Orthogonal Matching Pursuit and Orthogonal Least Squares, 2007.

J. Nocedal and S. J. Wright, Numerical optimization, Springer texts in Operations Research and Financial Engineering, 2006.

S. Leichner, G. Dantzig, and J. Davis, A strictly improving linear programming Phase I algorithm, Ann. Oper. Res, vol.47, pp.409-430, 1993.

K. N. Ramamurthy, J. J. Thiagarajan, and A. Spanias, Recovering non-negative and combined sparse representations, Digital Signal Process, vol.26, issue.1, pp.21-35, 2014.

D. Kim and J. P. Haldar, Greedy algorithms for nonnegativity-constrained simultaneous sparse recovery, Signal Process, vol.125, pp.274-289, 2016.

Z. Wang, R. Zhu, K. Fukui, and J. Xue, Cone-based joint sparse modelling for hyperspectral image classification, Signal Process, vol.144, pp.417-429, 2018.

X. Chen, F. Xu, and Y. Ye, Lower bound theory of nonzero entries in solutions of 2-p minimization, SIAM J. Sci. Comput, vol.32, issue.5, pp.2832-2852, 2010.

S. Foucart and D. Koslicki, Sparse recovery by means of nonnegative least squares, IEEE Signal Process. Lett, vol.21, issue.4, pp.498-502, 2014.

C. Herzet and A. Drémeau, Bayesian pursuit algorithms, Proc. Eur. Sig. Proc. Conf, pp.1474-1478, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00539109

C. Soussen, J. Idier, D. Brie, and J. Duan, From Bernoulli-Gaussian deconvolution to sparse signal restoration, IEEE Trans. Signal Process, vol.59, issue.10, pp.4572-4584, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00443842

T. Zhang, Sparse recovery with orthogonal matching pursuit under RIP, IEEE Trans. Inf. Theory, vol.57, issue.9, pp.6215-6221, 2011.

A. Bonnefoy, V. Emiya, L. Ralaivola, and R. Gribonval, Dynamic screening: Accelerating first-order algorithms for the lasso and group-lasso, IEEE Trans. Signal Process, vol.63, issue.19, pp.5121-5132, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01084986

L. Belmerhnia, E. Djermoune, C. Carteret, and D. Brie, Simultaneous regularized sparse approximation for wood wastes NIR spectra features selection, Proc. CAMSAP, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01241851

K. Wagner, T. Schnabel, M. Barbu, and A. Petutschnigg, Analysis of selected properties of fibreboard panels manufactured from wood and leather using the near infrared spectroscopy, Int J. Spectrosc, vol.2015, p.691796, 2015.

Y. Lin, J. P. Haldar, Q. Li, P. Conti, and R. M. Leahy, Sparsity constrained mixture modeling for the estimation of kinetic parameters in dynamic PET, IEEE Trans. Med. Imag, vol.33, issue.1, pp.173-185, 2014.

D. Needell and J. A. Tropp, CoSaMP: Iterative signal recovery from incomplete and inaccurate samples, Appl. Comp. Harmonic Anal, vol.26, issue.3, pp.301-321, 2009.

T. T. Nguyen, C. Soussen, J. Idier, and E. Djermoune, Sign preservation analysis of orthogonal greedy algorithms, Tech. rep., Univ. Lorraine, CentraleSupélec, LS2N, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01971697