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Haddadin,Member, IEEE Alin Albu-SchaefferMember, IEEE and Etienne Burdetylember, IEEE

Abstract—Humans can skilfully use tools and interact with
the environment by adapting their movement trajectory, con
tact force, and impedance, as was described in [1]. Motivate
by the human versatility, and using the algorithm from [1],
we develop here a robot controller that concurrently adapts
feedforward force, impedance and reference trajectory whe
interacting with an unknown environment. In particular, th e
robot's reference trajectory is adapted to limit the interaction
force and maintain it at a desired level, while feedforward brce
and impedance adaptation compensates for the interaction ith
the environment. An analysis of the interaction dynamics uisg
Lyapunov theory yields the conditions for convergence of th
closed-loop interaction mediated by this controller. Simlations
exhibit adaptive properties similar to human motor adaptation.
The implementation of this controller for typical interact ion tasks
including drilling, cutting and haptic exploration shows that this
controller can outperform conventional controllers in contact
tooling.

I. INTRODUCTION

geometry [3]. For instance, in [3], [4] the surface geometry
is estimated from the interaction force and position infarm
tion. By regulating the relationship between the environime
deformation and the force responsapedance contrdb] can
deal with environments that are not precisely known. Howeve
controllers with fixed impedance do not a-priori consider th
instability arising from tool use, nor can they adapt to umkn
surface conditions [6], [7], [8].

In contrast, humans can carry out unstable tooling tasks
with ease, such as carving wooden pieces with knots, using
a screwdriver, cutting with a knife, etc. This is arguablyedu
to their capability to automatically compensate for thecés
and instability in their environment [9], [10], [11]. We rextly
developed a computational model of this learning, which
enabled us to simulate the characteristics of human motor
learning in various stable and unstable dynamic envirorisnen
[12], [13].

The dynamic properties of this learning controller were

Contact tooling, such as drilling and carving, require deainalysed in [14], and used to demonstrate its capabilities f

ing with the intrinsic instability resulting from the suda
irregularities, unknown material properties, and motoiseo

robot interaction control. This new robot behaviour canpada
its end-point force and impedance to compensate for environ

This control problem is exacerbated by the large forcesoftgental disturbances. This controller increases roboefarith
encountered during these tasks. Furthermore, contadhgpolthe signed error relative to a given planned trajectorydases
involves deformation or penetration of an object’s surfacéhe impedance when the unsigned error magnitude is larde, an
such that visual feedback is of little help to controllerdl Adecreases impedance when the magnitude is small. While our
these issues requisite the development of a suitable d¢onftevious controller in [14] can adapt to various environtsen
strategy for regulating the movement and interaction for@ obstacle on the robot reference trajectory can lead tie fo

during contact tooling tasks.

to increase and become very large.

Various interaction control techniques have been proposediow does the human sensorimotor control address this

by previous works. These include thwbrid force-position

issue? Recent works that examined how humans interact with

control [2], that decouples the force and position control ifigid objects [15], [16] found that the reference trajegtis
space, regulating position along the surface of an objedt agieformed by the interaction with the object’s surface, Wwhic
force normal to it. Good performance with this techniquéimits and regulates the interaction force. We introduced i
thus requires knowledge or good estimation of the surfafd a model of the concurrent adaptation of impedance, force
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and trajectory characterising the human adaptive behgviou
and showed in simulation how it could predict human motor
adaptation in various conditions. The extended nonlindapa

tive controller implementing this model adapts impedanu a
force, and guarantees the interaction stability by comautam

for the disturbance from the environment, as is analysedén t
present paper. The interaction force is continuously estih

and used to adapt the reference trajectory so that the actual
interaction force can be maintained at a desired level.

The model of human motor adaptation in [1] can be
analysed using Lyapunov theory, and used as a novel iter-
ative learning controller (ILC) for robots. Specifically,ew
show in the present manuscript how the coupling between



force/impedance adaptation and trajectory adaptationbeanness and damping, using Lyapunov theory. The nomenclatures

resolved. Simulations are used to study and exhibit thieat will be used are summarised in Table I.

adaptation features. Implementations on DLR’s 7-degfee-o

freedom light Weight robot (LWR) [17], [18] expllo.re itsA Controller design

use for representative tasks such as cutting, drilling and

haptic exploration similar to polishing, and demonstrage i The dynamics of a1-DOF robot in the operational space

versatility. Initial results were reported in [19], [20] wida are given by

extensive results are presented and analysed in this pa- .. Ny B

per. A video illustrating the experiments can be found at M(@)#+Cla,q)2+Glg) =u+f @)

https://www.youtube.com/watch?v=UZFL60THQBg or on lasttherez is the position of the robot ang the vector of joint

author’s website. angle.u is the control input and the interaction force applied
While ICL has been investigated extensively [21], [22],][23 by the environment) (¢) denotes the inertia matrix; (g, ¢)z

[24], the present paper analyzes for the first time the cagplithe Coriolis and centrifugal forces, aii#{q) the gravitational

between impedance and/or force adaptation and trajectéwyce, which can be identified using e.g. nonlinear adaptive

adaptation. This coupling is interesting, since the uptlateontrol [25].

impedance and/or force is used to adapt the reference traThe control inputu is separated in two parts:

jectory and conversely the updated reference trajectoajsis

used to adapt the impedance/force. Section Il and Appendix A u=v+w. )

extend the algorithm of [14] with trajectory adaptationtelgt |, g equationy is designed using a feedback linearisation

force cqntrol and adaptatlon_of the shape and |m_pedanceagfproach to track theeference trajectory:, by compensating
the environment. Section Il interprets the theoreticauls ¢, the robot's dynamics, i.e.

of Section Il, Section IV illustrates the controller’s fuitms
through simulations, and Section V demonstrates its efffagie v=M(q) .+ C(q,q) te + G(q) — Te 3

in implementations.
where

TABLE | fe=d,—ae, e=x—x,., a>0, (4)
NOMENCLATURE

actual Trajectory vecior T IS an .auxnla}r_y vana_bl_e and is the Fracklpg error_l“ is a
joint angle vector symmetric positive-definite matrix having minimal eigeluea

x

q

M,C,G inertia, Coriolis and centrifugal, gravitationg Ani (1") > Ar > 0 ande is the sliding error
matrices min -

u control input —

; . ) e=é+ae 5
I interaction force from the environment ( )
v

ggﬂg&'ifg?:]pﬁggnragflre%’gffnsat'on of robofs ., the second part of the control input is to adapt

w control component for adaptation of force, stif- impedance and force in order to compensate for the unknown
ness and damping to interact with a novel interaction dynamics with the environment, as will be de-

environment . . . . .
. reference trajectory scribed in th!s paragraph\ssgmmg that the_ environment can
e tracking error be characterized (locally) by its visco-elastigitiie interaction
Te auxiliary trajectory force can be expanded as
€ auxiliary tracking error
T linear control gain for free movements _ * Kok *
L positive-definite gain matrices f=Fy + Kg(x —ap) + Kpi, (6)

F* Kg, K,z parameters of linear expansion of the envirgn-

ment mechanics: force, stifiness, damping and whereF (t), K&(t) and K}, (t) are force, stiffness and damp-

rest position ing experienced during interaction with the environmest, r

F,Ks,Kp fee‘ifolrlwafd force, stiffness and damping pf  gpectively,zj(t) is the rest position of the environment visco-
controller .. . .

Or.Ox.Qp,Or | leaming rates for force, stifiness, damping ahd ela_st|C|ty. We use Eq.(6)_ to d_escrlbe a general environment
trajectory which can be either passive with the force comporféht= 0

lﬁp gecfiydff?ti of f?fce,f stiffness and damping or active, such as a human arm or another robot. In this paper,

d esired interaction force . .

Jodeidyid costs of impedance residual errors, tracking W€ _cor_1$|d¢r that the environment parameters are unknown but
error, contact force error, and overall cost periodic withT":

T movement trial or period

. o* — o: difference of Fi(t+T)=Fj(t Ket+T)= K&t

Ne o(t+T) — o(t): change of a factor during ong 0*( ) - 0 (*) ’ Si ) . i( )
period Kipt+T)=Kp(t), xpt+T)=axi(t). (7)

The periodicity of the environment parameters is a realisti
assumption for a repeatable interaction task, e.g., thiair
exploration presented in the simulation of Section IV. In
this example, the properties of the environment surface are
In the following we derive a general ILC for the interactiorthe same for every session, so they are periodic along the
of a robot with an environment solely characterized by if§-st time axis. In many applications, the environment pararseter

Il. ADAPTATION OF FORCE IMPEDANCE AND PLANNED
TRAJECTORY



are constant thus also periodic. To simplify the analysis, VC. Trajectory adaptation

rewrite the interaction force of Eq.(6) as The investigation of adaptation to stiff and compliant en-
. . . vironments of [15] has shown that humans tend to apply a

fEF +Kgr+ Kpi 8) constant force Em Ehe surface, resulting in a differenen‘aj?)? ’
fadaptation strategy depending on the surface stiffness. To
model this observationwe assume that the trajectory is
adapted to maintain a desired contact fordg, with the

w=—F — Kgx — Kpi (9) environment's surfacen particular, assuming that there exists

a desired trajectory., yielding Fy, i.e. from EQ.(6)

where I', Kg and K are feedforward force, stiffness and . . " . .
damping components in the control input. As explained irt nex Fo = Fy+Kglwa—p) + Kp i
paragraph, the contact stability is ensured through aagpti = "+ Kgzq+ Kpiq (15)
F,Kg, Kp to match the environment’s valuds®, K3, K7,.

with F* = Fy — Kgaf the feedforward force component o
the environmentw in Eq.(2) is then defined as

we propose to adapt the reference in order to trackxy.
However,z4 is unknown, because the parametgrs K§ and
K7, in the interaction force are unknown. Nevertheless, we
know thatx, is periodic withT', as F'*, K and K}, are

By substituting the control input into Eq.(1), the closed- periodic withT and we also sef’; to be periodic withT'.
loop system dynamics are described by In the following, we develop an update law to learn the
desired trajectory:,. First, we define

§dEK§xd—|—K}5:bd, frEstr—FKDj?r- (16)
F=F"-F, Ks=K;—Ks, Kp=Kp—-Kp. Then, we develop the following update law

B. Force and impedance adaptation

M(q)é+Clq,q)e+Te=F+Ksx+Kpi, (10)

In this equation, we see that the feedforward faftestifiness A& (1) = &(t) — & (t —T) = L™ 1Q,[Fa(t) — F(t) — &:(t)]

K s and dampind<p ensure contact stability by compensating (17)

for the interaction dynamics. Therefore, the objectiveamté where@, and L are positive-definite constant gain matrices.

and impedance adaptation is to minimise these residuatserrd his update law is developed to minimise the error between

This can be carried out through minimising the cost functiotie desired forcéy; and control force-w = F'+¢,. as detailed

L in Appendix A. To consider the coupling of adaptation of
. =T =17 7 -1 7 force and impedance and trajectory adaptation, we modédy th
Jelt) = 2 /t_TF Qp'F +vec (Ks)Qg'ved Ks) adaptation of feedforward force Eq.(12) to

+vec” (Kp)Qp'ved Kp) dr (11) AF(t) = Qrle(t) — BA)F(t) + QTAE (). (18)

whereQr, Qs and()p are symmetric positive-definite matri-Then, we obtain the update law for trajectory adaptation
ces, and veg) stands for the column vectorization operation.

This objective is achieved through the following updatedaw Az, =2, (t) — 2. (t = T) (19)
AF(t) = F(t)-F(t—T)=Qrle(t) ~ B(H)F(t)]  (12) by solving

AKs(t) = Ks(t) = Ks(t —T) = Qsle(t)a(t)" — 5(t)Ks(1)] A¢ = Ks Az, + Kp Ai, + AKsz, + AKp#, (20)

AKp(t) = Kp(t)—Kp(t—T)=Qplei(t)" —B(t)Kp(t)]

using A¢,.(t) from Eq.(17), andAKs, AKp from Eq.(12).

whereF, Ks and K p are initialised as zero matrices/vectors With Egs.(12), (17) and (18) we now have an algorithm able
with proper dimensions when their arguments are withfi® adapt force, impedance and trajectory in various dynamic
[0,7), and3 is a decay factor. Concurrent adaptation of forc@nvironments. This is carried out by minimising the overall
and impedance in Eq.(12) corresponds to the computatiof@pt/ = J. + Je + J. where
model of human motor adaptation of [12], [13], [14]. 1 [t oo

Now that we have dealt with the interaction dynamics, Jr = i/t—:r(& — &) Qr (& — &a) dr. (21)
trajectory tracking control can be obtained by minimisihg t

cost function The result of this minimisation is summarised in the follogi

theorem:
Theorem 1: Considering the robot dynamics (1) and the
interaction force model (8), the controller (2) with the wbel
) . laws for stiffness and damping (12), feedforward force (18)
Consequently, we use a combined cost function and reference trajectory (17) will guarantee that the tctmy
error A&, and tracking errore are bounded and satisfy

Jo(t) = 50T M(q)=(0). (13)

1
2

J=J.+ Je (14) 3
Arllell” + ALl A ® < 5 (IF7I” + ved K5)[1” + [ved Kb)*)
that yields concurrent minimisation of tracking error aadid- (22)
ual impedance errors to adapt force and mechanical impedanfor ¢ — oo, where A\r and Ay, are the minimal eigenvalues
during movement. of I and L, respectively. It follows thaA¢, and e can be



made arbitrarily small by choosing sufficiently large: and condition of persistent excitation (PE) as in traditionddptive
Ar. Moreover, A&, and e will converge to zero fo3 = 0. control [26]. This will be illustrated in Section IV.

A proof of Theorem 1 is given in Appendix A based on In summary, the proposed controller ensures that the in-
Lyapunov theory and the structure of the novel controller igraction forcef follows the desired force; and that the
illustrated in Fig.1. reference trajectory,. follows x4, the trajectory which yields

Fy due to the physical properties of the environment. The
controller parameter$’, K¢ and Kp can trackF™, K& and
K7, respectively if the signals and: are persistently exciting.

f

v “| Robot | B. Important special cases
[Eq.(1)]
v If no force is exerted on the environment = 0, the
controller componenty = 0 from Eq.(24). According to
the definitions ofw in EQ.(9) and¢,. in EqQ.(16), we have
F+¢&. = —w = 0. Therefore, if we choosé; = 0, according
to the update law Eq.(17), the reference trajectory will not
adapt, as expected.
e X Another important case is when tfeedforward forcej =
- ‘ 0, dampingK}, = 0 and stiffnessK’g # 0, then Eq.(8) yields

x = zjy if we chooseF,; = 0 since f = Fy. This indicates that

the actual position follows the rest position of the envimamt,
Fig. 1. Block diagram of proposed controller for dynamicenmaction | o its surface.
with and adaptation to unknown environments. The controfias three . . . .
components: the dotted block represents the componenaro feedforward If we neglect the dampingomponent in the interaction
force and impedance in order to compensate for the interadorce from force f of EQ.(8), the trajectory adaptation described by
the environment; the trajectory adaptation component imamtain a desired ; i
interaction force; and the compensation component conapesnsor the robot Eqs'(17) and (20) can be S|mpl|f|ed to
dynamics.

Az, =L 7Q.(Fy— F — Ksx,). (26)

Correspondingly, the update laws for force and impedance in

IIl. I NTERPRETATION OFTHEOREM 1 -
EqQ.(12) need to be modified as

A. Parameters convergence

To simplify the interpretation of Theorem 1, let us loosely AF =Qp(c — BF + QF Ax,),
state that fort — oo, A&, = ¢ = 0 (thuse = 0 if limy_ o0 € AKg = Qs(ex’ — BKs + 2 QT Ax,)  (27)
exists). With Eq.(17), we obtaid; = F + &.. According
to the definitions ofw in Eq.(9) and¢, in Eg.(16), we have in order to obtain results similar to those described in Taep
F+ ¢, = —w thus 1. The interaction dynamics analysis, similar to the cagl wi
Fi— . (23) damping, is detailed in Appendix B.

On the other hand, the right hand side of Eq. (10) is zero. o o _
According to the definitions off in Eq.(8) andw in Eq.(9), C. Implicit and explicit force sensing

we have In contrast to traditional methods for surface following

—w=f. (24) Where the force feedback is used to regulate the interaction
force e.g. [27], force sensing is not required in the above
It follows f = F,, which indicates that the desired interactioframework. In particular, force and impedance adaptation
force Iy is maintained between the robot and the environmenggs.(12) and (18)) is used to compensate for the intemactio
According to the definitions of and F; in Egs.(8) and (15) force from the environment. During this process, the unkmow
respectively, we thus have actual interaction force is estimated when the trackingrerr
goes to zero, i.e., Eq.(24). Using this estimated intepacti
force, a desired force in Eq.(15) can then be rendered by
which leads tox — z4 if K¥ and K}, are both positive adaptation of the reference trajectary (Egs.(17) and (20)).
definite. If the robot system is equipped with a force sensor, force
However, note that the analysis of Appendix A does nééedback can replace the force and impedance adaptation.
show thatF', K¢ and Kp converge to the respective valuedn this way, trajectory adaptation will not depend on the
F*, K% and K7, of the environment. This can be seen fronforce estimation process and can in principle happen faster
Eq.(10): F+Ksz+Kpi = 0does not imply that’, Kg and However, the potential advantages of a force sensor depend
Kp become negligible. In order to achieve the convergenceaf the quality of its signal, its cost and the difficulty of its
F, Ks and K to zero, the signals andz need to satisfy the installation and use.

Ksxqg+ Kpig=Kgr+ Kp (25)
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Fig. 2. Concurrent adaption of force, impedance and trajgcivithout noise (A) and with noise satisfying persistertition (B). From top to bottom:

interaction force, actual trajectory (solid) and updatefénmence trajectory (dotted), updated stiffness, and teddi@edforward force. From left to right: after
learning in a rigid environment, in a compliant environmépibtted from blue to red in every 16 trials), and exposittora rigid environment after learning
in the compliant environment.

V. SIMULATIONS The interaction force of Eq.(8) is computed as

: : : f=F+Kgy (29)
We will now illustrate how the learning controller of
previous section functions, by simulating the human moteorresponding to the rest position The rigid environment is
adaptation in a representative interaction task [16]. Bhisly characterised by™* = —4N and K} = —1000N/m and the
observed the adaptation of force and trajectory in humaosmpliant environment b§™* = —3N and K% = —300N/m.
during contact with a rigid or compliant environment. SimThe environment is rigid for the first 200 triajs= 1. ..200
ilarly, we simulated the adaptation of the reference ttajgc and compliant for another 200 trials = 201...400. The
occurring when one is required to push against environmestmtrol and learning parameters used for simulationcare
of various stiffnesses. In this simulation, the desirecéoin 10, = 200,53 = 0,Qs = 6 x 10*, QF = 3.6, Q, = 0.02.
forward direction is specified as Simulation results are shown in Fig.2A. The left column/
panels exhibit that the desired force is achieved in the chae
—5[1 — cos(mt)|N, 0<t< 1s; rigid environment. The middle panels illustrate that whiea t
Fa= { —10N, otherwise. ( environment suddenly becomes compliant, the desired force
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Fig. 3. Simulation of haptic exploration of a surface of uokm shape and mechanical properties along x-axis with tinéraiter of [14] (A) and with the
new controller (B). The top panels show the robot’s trajgctand the bottom panels the contact force. The new contralleids large interaction force and
enables to regulate the force, while identifying the intdoa surface geometry.

cannot be reached because of the trajectory control compod trajectory observed when humans interact with various
nent. However, the trajectory iteratively moves forwardl anstable, unstable, stiff and compliant environments [28], [
the interaction force increases. After learning, the mfee [29], [13], [15], [16].

trajectory has adapted to penetrate the environment suafat ~ To illustrate the difference of the new controller relative
the desired interaction force is achieved again. Note thdlew to adaptive controller of [14], Fig.3 presents a simulatain
the same desired force is achieved in the rigid environntleat, polishing along (the x-axis of) a curved surface with both of
reference trajectory changes with the different enviromtsie these controllers. As shown in Fig.3A, as the controller of
The right panels illustrate the “after-effects” of the leiaig: [14] tries to track the original reference trajectory (whiis
when the environment becomes rigid again, the interactiset as a straight line along the x-axis), this leads to a large
force surpasses the desired force. contact force of around 20N, which is undesirable. In cctira

These results correspond to the behaviour observed in Ifig-3B shows that with the new controller the robot’s trégeg
man experiments [16]. Note the adaptation of force, impedarfomes close to the surface with learning (see “150th trial”)
and trajectory involved in the evolution: the referencgera bY tracking the updated reference trajectory while the acint
tory adapts to achieve the desired force, while feedforwal@fce tends to the desired force of about 1N. Therefore, the
force and impedance adapt to track the updated referef@ adaptive controller is extending the controller of [14]
trajectory. However, in Fig.2A the updated feedforwarc:éor is able to successfully perform tasks requiring contach wit
and impedance do not converge to the values of the envirdigid surfaces of unknown shape, and to identify the geoynetr
ment. This is due to the redundancy between the feedforwaid impedance properties of the surface it is interactirth.wi
force and impedance as explained in Section IlI-A. While
the combination of the feedforward force and impedance V. ROBOTIC VALIDATION
guarantees compensation for the interaction dynamics it i
not set to identify each component’s contribution.

The identification of the environment’s parameters can
addressed by introducing persistent excitatior(PE) signal 5 yigig surface, cutting, drilling and haptic exploratiovhich
y|eld|ng sufﬂuenj[ly rich |nformat_|on of thg system. Weud- e described in this section.
trate this by adding a random binary excitation to the system
as exhibited in Fig. 2B. It can be seen that the identified
interaction force and position values are similar to thase A. Adaptive interaction with a rigid surface

Fig.2A, but in this case the updated feedforward force andg jjjystrate the trajectory adaptation to a rigid enviraemt
impedance converge to the environment's values. The Bshe axis of the robot was programmed to repeat a move-
in Figs.2A and 2B also illustrate the meaning of redundangyents of 0.7 radian amplitude following a smooth fifth order
between the feedforward force and impedance, as diﬁer%ﬂﬂynomial reference, with zero start and end velocity and
values of feedforward force and impedance lead to the saBy&eleration as shown in Fig.5. After the robot converged on
interaction force and position. In practice, noise leadmthe the reference trajectory (dashed blue trace), it was ptegen
environment identification could stem from a rough surfaGgith a virtual obstacle in velocity space (blue trace) that
along which the robot is moving (see Fig.2B), while slidingrevented it from following the reference. This obstacleswa
on a smooth surface would lead to results similar to that Henerated by disconnecting the proposed controller output
Fig.2A. the motor, and instead moving the robot along the obstacle
These results, together with the results of [1], show that thusing a high gain PD controller while the proposed controlle
model of Section Il predicts the adaptation of force, impesa was still active in the background. This simulated a situati

The proposed controller was implemented on the DLR
lightweight robot shown in Fig.4 [17], [18] and tested in
rious experiments. Four tasks were carried out: adaptédi



different tasks and environments without any manual tuning
of the learning parameterg§),. was set as zero in the cutting
and drilling experiments.

We performed two cutting experiments using a scalpel that
was fixed on the LWR end effector using a customized tool
holder. The scalpel blade was maintained at/™ angle
to the surface. We used a heterogeneous test object in the
first experiment that was made of2anm balsa wood layer
covered by @mm layer of materials with different mechanical
properties: balsa wood, plastic honeycomb panel and brown
S, corrugated cardboard. As can be seen in Fig.6B, the stifnes

- : 2 and feedforward force were automatically adapted durirg th
S task to the specific material: stiffness increased due to the
ﬁry' vibrations generated during the crossing of the carton and
| 74 z honeycomb sections and decreased during the crossing of
the balsa wood section. On the other hand, the feedforward
Fig. 4. Setup of experiments described in Section V with th&ghtweight force increased during the crossing of the balsa wood sgctio
robot (LWR), the Dremel driller attached to the robot enfitetbr in the pecause the wood is dense and generates a constant resistanc
zoomed end-effector and the scalpel in the main panel. to cutting.

The second cutting experiment was performed oBce

where the controller was unable to generate sufficient mofgick expanded styrofoam board (made4ofum polystyrene
output to overcome the obstacle. balls agglomerated together, but with a smooth surfaceg. Th

When the obstacle was suddenly removed in the fiffqp surface of the board was painted in black to illustrate
adaptation trial, the robot movement was found to mirror t{8€ damage done to the surface by the scalpel. Due to the
obstacle (red trace), as the robot initially tried to ineeea Material properties of styrofoam, it tends to stick to thadal
the torque to counter the obstacle. The obstacle was then38d téar when the depttl is too large f(?,r a given speed. We first
introduced from the sixth trial onwards. When the obstaais wdetermined a constant “depth/velocity” pair for our blablatt
removed again in the 25th trial, the actual trajectory (blad®2ds to material tear (due to stick-slip) during cuttingtthg
trace) and reference trajectory (dashed black trace) can 'S then carried out with this “depth/velocity” pair, firsting
clearly seen to have adapted to the shape of the obstacle. #h&e€d high impedancel00N/m) then with the proposed
robot movement no longer mirrored the obstacle, i.e. it h@daptive controller starting from the sam&)0.V/m stiffness
learnt not to apply a too large force in order to counter thé&/Ue. AS it can be seen in Fig.6C, our adaptive controller
obstacle, but instead has adapted its reference trajedtbey avoided the tearing phenomenon genergted by the specific set
actual trajectory (black trace) can be seen to lie to thetrighf Parameters (e.g., blade angle, velocity and depth) thoug
of the plan (dashed black trace), indicating that the rotibit s /OWering the robot stiffness.
did apply some contact force onto the obstacle after ZEstria& -

e Drilling

This behaviour is similar to the adaptation observed in man - )
[15] as was analysed in [1]. We then compared drilling of a heterogeneous material

using a fixed impedancel§00N/m), and with adaptation
) ) using the proposed controller. Drilling was tested using a
B. Cutting experiment Dremel hand driller attached to the end-effector (throuuh t
Several experiments were then carried out to test adaptatforce/torque sensor) at approximatelgcm from the end-
of impedance and force during the interaction with unknoweffector main axis. The force/torque sensor was used for the
environments. In this purpose, a cutter or a drill was magdintpurpose of recording but not used in the proposed controller
on the LWR as shown in Fig.4. Different from above simula¥he 3.2mm diameter drill had to penetrate an heterogeneous
tion and the first experiment, in the next experiments itenat block of material made of balsa wood layers (easy to dril) an
was in time rather than by repeating a trajectory. In thisscasome dense carton layers (requiring larger forces forimgil
the LWR moved at low speed so that adaptation could catch #he can be seen in Fig.7, our controller was able to perform
environment characteristics along the trajectory. Thearofier the task with results similar to the rigid impedance con-
was programmed to tune the adaptation gains differentlycalotroller. However, at certain drilling speeds, the rigid iedance
each axis of the end-effector franfe,, e, e.}. A fixed high controller exhibited a “resonance” phenomenon (see Fig.7B
stiffness R000N/m) was maintained at the robot end effectothat generated large vibrations in the horizontal planeogeh
in the {y = 0} plane while the adaptive controller was usedmplitude was proportional to the penetration of the diit),b
in the x and z directions. Stiffness saturation was set and consequently poorer quality of the drilled hole (larger
2000N/m in all directions during the experiments. The sameariations in the diameter of the hole, as seen in the bottbm o
set of adaptation gains of = 0.01, Qr = 5, Qs = 120, Fig.7C). The proposed controller attenuated these vitmati
Q- = 0.01 was used during all the experiments in order teesulting in a hole with a diameter closer to the real dritl bi
test the versatility of the adaptive controller in dealinghw diameter.

\
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Fig. 6. Cutting through different materials. A: View of therface assembled
with different materials (balsa wood, cardboard and hooryx plastic). B:
From top to bottom: blade trajectory across the section efstirface in the
vertical plane; variations of the forcds, and F, alongz and z directions,
recorded by the 6-DOF force/torque sensor mounted betweemobot and
the scalpel; stiffnessK, and K ) and feedforward force{F, and F'F)
adaptation during the cutting task. C: Visual results oftiogt expanded
styrofoam with/out biomimetic adaptation and associatede profile (along
the cutting directionz).
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Fig. 7. Drilling heterogeneous material. A: Section of tHeck. B: Com-
parison of vibrations level in the horizontal plane trarsed to the robot
structure (read on the force sensor) when using a drilleedsgenerating
“resonance”, without (red) and with (green) stiffness ddtpn. C: Adapting
impedance reduced the hole carried out by the drill.

D. Haptic identification

To test concurrent adaptation of force, impedance and tra-
jectory, we implemented a haptic exploration experimehe T
robot was required to traverse various surface profiles esta t
surface while maintaining a constant contact force, a taak t
is similar to the polishing of an unknown surface. However,
we designed the task to test the ability of the new controller
to “skim” a surface with minimum force. We purposely used
a very low desired interaction force level of 0.05N and a soft
foam surface so as to be able to visually check whether the
robot would push and deform this surface (see the video in
https://www.youtube.com/watch?v=UZFL60THQBQ).

The test surface was developed on a wooden plank sized
85 x 95¢m. Various profiles, including convex bumps, concave
troughs and cylindrical obstacles were created on thisasarf
by fixing metal and plastic objects (Fig.8A). Bcm thick
layer of packing foam was then overlaid on the surface. The
test surface included a high friction pad created usingtédis
nylon ropes and a hole in the surface. The test surface was
placed on a table under the robot which was equipped with
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Fig. 8. Haptic exploration of a surface with unknown geometnd mechanics. From left to right: A: Photo of the test siafthat was used for the pilot
experiment. B: 3D scan of the test surface. C: Volume idewdtifly the robot while scanning the surface along the line rsmpesed on top and two lateral
views. D: End point stiffness during exploration. E: Neatlynstant interaction force of abo0t05/N maintained on the surface.

a 12em long aluminium finger at the end-effector. The robaoto various environments, despite large sensorimotor noise
reference was set to scan the plane of the table over a rahgefact, human intelligence has been characterised by the
of 120cm and with a constant speed 6flm/s (except for skilful use of tools [30], and specific neural structureslidou
the accelerations and de-accelerations in the movemeitg)im be identified in humans [31] that correspond to force and
The reference was set in the task space and the trajectory \magedance adaptations. While we do not pretend to match such
developed using the interpolator of the manipulator. manipulation intelligence, the controller analysed irs thaper
Fig.8B shows the surface traced by the robot. Fig.8C showshibited a versatile interaction behaviour, and was diswa
the tool-tip coordinates of the robot in they plane of the to model human interaction properties in typical situagifti.
table with the colour gradient representing theoordinate  Our controller for contact tooling and haptic identifi-
(height above the table). Fig.8D plots the endpoint stdfnef cation automatically adapts feedforward force, mechanica
the robot as it performed the surface exploration whilegkg. impedance and trajectory to the environment dynamics iarord
shows the contact force along the vertieahxis as measured to minimise trajectory error and effort while applying a ied
from the end-point force/torque sensor (not used for céntroforce. It compensates for the interaction force and inktabi
We conducted an analysis of the force sensor inside thecgurféo track the planned reference trajectory. During this pss¢
boundaries which exhibits a force of 0.0338N in average withe controller is able to estimate the interaction forcevtfite
a standard deviation of 0.0088N. To show that this is not amknown environment through adaptation of feedforwarddor
offset on the force sensor, or noise, we compared this valaied impedance. It extends the functionality of the corgroll
to the one from outside the surface in the same experimentroduced in [14], by automatically adapting its referenc
The value from outside the surface (when there is no contaggjectory to comply with rigid environments, and to mainta
is 0.0151N in average with a standard deviation of 0.0109¥,desired interaction force.
which is statistically smaller than the one inside the stefa The proposed controller, developed based on the assumption
boundaries)f < 0.001). Stiffness is maintained at a low valuepof a linearised interaction force (Eq.(6)), can interacthma
throughout the exploration and increases only in the ed§esrigid environment or a compliant force field, or with humans.
the surface and in the region with irregularities. The 8&ffs |t can be used to automatically tune physical assistance in
change thus indicates the texture properties of the surfacee.g. a rehabilitation robot [32]. It does not require a force
sensor as the force is estimated by the algorithm. Usingce for
VI. DisCUSSION sensor will however speed up the adaptation of feedforward
Many tasks with end-effector held tools are inherently anstforce, stiffness and trajectory, although this may depend o
ble, require large contact forces and are subject to dishats the quality of the force signal and on its noise.
due to the irregularities on the tooled surface. While rebot The stability and convergence of this novel nonlinear adap-
have been conceived to address these challenges in spetifee controller have been rigorously analysed using Lyapun
and well defined situations, humans routinely use tools theory. An implementation on the DLR 7-DOF LWR demon-
different tasks such as drilling, cutting and polishingapiihg strated its effectiveness and versatility in represergdtiter-
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action tasks including cutting, drilling and haptic ex@tion. Considering the definition of,. in Eqg. (21), we have
With this controller the robot constantly adapts its bebavi
to the environment, rather than rigidly trying to go through AJr(t) = Jr(t) = Jr(t = T)

Feedforward force adaptation is essential for tasks like cu 1 [* T AT

ting, where the material irregularities continuously nfpdhe 2 /t,T[&(T) ~ &M Qr [ (7) — Lalm)] dr

required cutting force. Impedance adaptation helps counte 1 [t o

these variations while maintaining minimum stiffness o# th "3 /FT[&(T) — &GP Qe (T = 1) = &alr = T)]dr
cutting tool. Trajectory adaptation enables maintenantce o 1/t S

contact force during tasks like polishing and prevents tet T3 /tiT[fr(T) —&a(T)] Qr & (1 = T) = &a(r = T)]dr
from applying very high forces in the presence of unforeseen 1/t -

obstacles. —3 /t T[Er(T =T)=&(r=T)] Q; x

Experimental results demonstrated superior performahce o [&(r = T) = &a(r — T)] dr
the novel adaptive controller relative to a fixed impedance 1t S
controller: smoother interaction, reduced control effard - E/H[&m = &(T)] Qr A& (1) dr
automatic adaptation (avoiding tedious trial-and-errad ine

t
tuning). Moreover, the properties of the unknown environme +%/ [6r(r = T) = Ca(r = )" Qr A& () dr
could be identified through adaptation during slow intdoarct LT 1
movements yielding haptic exploration. As in any toolingkka = &r —&a— EA&]TQ?A& dr (aséq(t) = &a(t —T))
our algorithm does require some basic parameter definition =T
for each tooling operation such as cutting speed and depth ok [Qr(&n(T) = Ea(T))]" AL () dr . (30)
cut prescribed by tool manufacturer for a given tool-sugfac t=T

combination. However, it does not require any information o
model of the surface irregularities, material and shapehef t
tooled surface.

t

The proposed controller can be applied to interact with AJ. < / [Qr(& — Fy+ F + F)TA¢, dr
environments that can be described by Eq.(6), charactidnige o
periodic or constant parameters. If the environment patarse
keep changing and the periodicity condition is not satisfied
e.g. when interacting with a human arm, the controller c
still successfully adapt as long as the environment parame
changes areslow, but may fail otherwise. Larger controller
learning rates@r, Qx, @ p, Q) may enable it to adapt to fast

According to Egs.(15) to (17), we rewrite this inequality as

/ CLTAG O F)TAG . (31
t—T

ep 2: Residual impedance error
onsider the difference betwedp of two consecutive periods

changing environments, although too large learning rateg rré = Je _th(t -7) (32)
reduce the system robustness. On the other hand, improper _ 1/ [(FVTQflj;\V -~ ﬁT(T -~ T)Qflﬁ(T ~ 7))
choice of initial controller parameters may lead to taskifai. 2 Ji_r o r

For instance, during a surface polishing task, a controlidr +r(KEQ3'Ks — KE(r — T)Q5'Ks(r —T)

high initial stiffness can make the robot get stuck in rough
stiff surface. The interesting meta learning issue of chaps

the appropriate learning rates and initial parameters need .
be in\f)epstigpated in furthgr studies P where tf-) stands for the trace of a matrix. We compute

+HELQp' Kp — Kb (1 —T)Qp' Kp(r — T)) dr

FI(r)Qz F(r) = F'(r = T)Qi F(r — T)
= [F'()QF F(r) - F'(r)Qz F(r ~ 7))

APPENDIX +HF'(NQR'F(r = T) = F' (1 = T)Qz' F(r = T)]
= —FT'(MQa*AF(r) — FT (1 — T)QR'AF(7)
A. Proof of Theorem 1 - _(2~ﬁT( 7) + AF(m)Qp AF(7)
< —2FT (1) QR AF(7)
A Lyapunov-like analysis of the closed-loop learning con-— —2F7(r)[e(7) — B(7)F(7) + QT A& (7)]. (33)

trol is carried out here in four steps. The first three steps
consider the difference between two consecutive periods Sifilarly we have
the Lyapunov function candidate’ (error of contact force),
J. (residual impedance errors) arg (tracking error), respec- tr[KS( )leKS(T) Kg(r)( T)Qles(T -7
tively. Step 4 then uses the results of the first three steps to 2tr{K ()e() ) — B()Ks(r)]}
examine the difference between two consecutive periodseof t S o ) T T ’ 5_1 =
overall costJ = J, + J, + J.. (K5 (1)Q Kp(r) — Kh(t — T)Qp' Kp(r — T))
Step 1: Contact force error < 2K (1) (e(r)aT (1) — B(T)Kp(T))]. (34)

I(T
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Substituting Inegs. (33) and (34) into Eq.(32) and congider B. Stability analysis when neglecting damping

Ineq. (31), we obtain
t
AJ, +AJ. < / —AETLAE, — FT (e — BF) (35)
t—T
—tr[KZ (ea” — BKg)] — t[K 5 (i — BKp)] dr.

Step 3: Tracking error

The rest of the derivations deals with the residual in aboveAJ, <

inequality, which is similar to that in [14]. For completesse

Consider the cost function

¢
J = %/ (zr —2a) ' K5 QT (2, — 24) dr . (43)
t—T

Following similar procedures to Inegs. (30), (31), we obtai

t
/ [—LTAz, + Q.(F + Ksx,)|" Az, dr. (44)
t—T

we outline this in the following. In particular, we considbe Considering further the cost function

time derivative of.J,

1 [t ~ ~ ~ ~
. : J. = —/ FTQ.'F +ved (Ks)Qg'ved Ks)dr  (45)
Je =eTMé + %aTMa =eTMé+eTCe (36) 2 Jier " &
33 and following similar procedures from Inegs.(32) to (35 w
as [33] o T obtain
22 Mz=22"Cz Vz. (37)

Considering the closed-loop dynamics Eq.(10), above émuat
can be written as

Jo(t) =T (FT + KL o+ Kb i —Te). (38)
Integrating./. from ¢t — 7' to ¢ and considering Ineq. (35), we
obtain

t
AJ, = / —eTTe+ FTe + tr(KLea™) + tr(Khei™) dr . (39) s
t

=T
Step 4: Overall cost.J
Considering Ineq.(35) and Eq.(39), we can now calculate
AJ AJe+ AJr + AJe
t
/ —&"Te — AT LAE,
t—=T

+B[FTF +t(KEKs + KhKp)| dr

(2]

(31

IN

(4]

t
/ —e"le — AT LAE, — BIFTF +tr(KEKs + KL Kp))
t—T [5]

+B[FTF* +t(KE K5+ KpKp)| dr. (40)
According to (40), a sufficient condition fakJ < 0 is (6]
Arell? + ALl|Ag |12 -|—~5(|\13||2 + ||veq~l~{5)||2 7]
+||Vedffp)||2) = BUFIE" + [lved Ks)| [ ved Kg)||
+|lvedKp)|[[[ved K)[]) = 0 (41)

8
Therefore, the following inequality is satisfied: )

Al + ALIAG 2 + SUIFIE + veaRs)|* + [ved Kp)[F) 1)

< SUF I + Iveo5)P + e 5) ) 42) o

The above inequality can be proved by contradiction: assum-
ing the above inequality is invalid yielda.J < 0 and thus
J decreases iteratively. This indicates thaf], [|AS, |, ||F|
|lved Kg)|| or |[ved Kp)|l (and thus the left hand side of the
above inequality) become even smaller, which contradies t
hypothesis. [t
From the above inequality, we obtain Ineq.(22), which
indicates thatA¢, and ¢ can be made arbitrarily small by
choosing sufficiently larger and Ar,. Moreover, if we select
8 =0, A&, ande will converge to zero.

[11]

2]

(23]

t
AJ + AT, < / ~AzF LAz, — FT(c — BF)
t=T

—tr[KE (e 2™ — BKg)] dr . (46)

The rest is similar to the case with damping and thus omitted.
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