Two-Dimensional MXene with Controlled Interlayer Spacing for Electrochemical Energy Storage
Patrice Simon

To cite this version:
Patrice Simon. Two-Dimensional MXene with Controlled Interlayer Spacing for Electrochemical Energy Storage. ACS Nano, American Chemical Society, 2017, 11 (3), pp.2393-2396. 10.1021/acsnano.7b01108. hal-02049143

HAL Id: hal-02049143
https://hal.archives-ouvertes.fr/hal-02049143
Submitted on 26 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author's version published in: http://oatao.univ-toulouse.fr/21807

Official URL: https://doi.org/10.1021/acsnano.7b01108

To cite this version:

Any correspondence concerning this service should be sent to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr
Two-Dimensional MXene with Controlled Interlayer Spacing for Electrochemical Energy Storage

Patrice Simon*†‡

†Université Paul Sabatier, CIRIMAT UMR CNRS 5085, 118 route de Narbonne, 31062 Toulouse, France
‡Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 33 rue Saint Leu, 80039 Amiens, France

ABSTRACT: In this issue of ACS Nano, Luo et al. report the preparation of pillared two-dimensional (2D) Ti\textsubscript{3}C\textsubscript{2} MXenes with controllable interlayer spacings between 1 and 2.708 nm. These materials were further intercalated by ion exchange with Sn(IV) ions. The results show improved electrochemical performance due to improved ion accessibility into the 2D structure as well as the confinement effect, which limits volume expansion during the Li-alloying reaction. Beyond this specific example, the demonstration that the interlayer spacings of MXenes can be fine-tuned by creating pillared structures based on the spontaneous intercalation of surfactants opens new perspectives in the field of electrochemical energy storage.

Climate change and the decreasing availability of fossil fuels require society to move toward sustainable and renewable resources. As a result, recent decades have seen increases in harvesting and utilizing renewable energy from sources like solar energy and wind, as well as the development of low-CO\textsubscript{2} emission hybrid electric vehicles and electric vehicles (EV). The development of these technologies highlights the need for efficient, high-performance electrochemical energy storage (EES) devices to store and to deliver the energy produced from renewable sources. The current generation of commercial Li-ion batteries (LiBs) offers the best performance in terms of energy density, reaching values of 200 Wh\textpercm3. Advanced LiBs (using active materials such as Si for the anode or Li-rich materials for the cathode) and new chemistries (Li–sulfur, Li–air) are also under development with the aim of pushing the energy density of LiBs to new heights. Going back to the example of the EV, the energy density of the battery defines the autonomy of the car—how far we can drive—while the power density determines the acceleration rate. Thus, both the energy density and the power density are important performance metrics for EES devices, and there is an inevitable trade-off between the two for batteries. Energy storage in LiBs is achieved through electrochemical Li-ion intercalation, or insertion, into the bulk of microporous active material particles, and the electrochemical potential of the redox couple and the specific capacity (mAh\textpercm2) define the energy density. Li+ diffusion in the bulk of the solid active material is the rate-limiting step of this electrochemical reaction, and it follows that this process limits the power performance of the cell. Decreasing the diffusion length by reducing the active material particles to the nanoscale has been proposed to improve the intercalation reaction rate and thus the power performance, but this approach has fallen short in most cases, due to the intrinsic reactivity of the nanoparticle surfaces. When using electrode materials with operating potentials close to that of the electrolyte stability potential window, the nanoscale particles drive unwanted decomposition reactions of the electrolyte at a rate much higher than that of their bulk counterparts. Another route for improving the ionic transport inside the materials is to use exfoliated two-dimensional (2D) materials, where most of the surface area of the material is in contact with the electrolyte. Graphene was the first 2D material successfully prepared, but graphene is limited to the chemistry of carbon, does not tap into metal redox reactions, and its conductivity is substantially decreased by the addition of redox-active functional groups. It suffers from low volumetric performance due to low density, as well as restacking issues. Transition metal dichalcogenides (TMDs) such as MoS\textsubscript{2} have been extensively employed as active materials for batteries and supercapacitors. However, their electrochemical performances are mainly limited by their low electronic conductivity, structural instability, or low areal capacity (mAh\textpercm2) due to low electrode weight loadings or the use of thin films when employed as raw electrode materials.

MXenes are a novel family of 2D early transition metal carbides, nitrides, and carbonitrides. MXenes are produced by selectively etching the A element from MAX phase ceramic materials with M\textsubscript{1-x}AX\textsubscript{x} chemistries, where “M” is an early transition metal, “A” is an A group element (mostly groups 13 and 14), “X” is carbon or nitrogen, and n = 1, 2, or 3. Immersing MAX phases in HF solutions, or in acidic solutions

DOI: 10.1021/acsnano.7b01108
containing a fluoride salt like LiF, results in the “A” atoms being selectively etched away. MXenes are usually referred to as M_{n+1}X_nT_x, where T represents surface termination groups (═O, −OH, and/or −F) and x is the number of terminating groups per formula unit (see Figure 1).

MXenes offer key advantages over other 2D materials for energy storage applications. First, the oxygen and/or fluorine groups present at the surface of the M_{n+1}X_nT_x layers weakly bond the individual layers together, resulting in MXenes being susceptible to exfoliation to produce colloidal solutions of single MXene flakes. Also, the rich transition metal chemistry of MXenes enables tuning their electronic properties from metallic to semiconducting, depending on the nature of M, X, and the surface termination groups. For example, OH-terminated Ti3C2 is metallic, with electrical conductivity as high as 6500 S·cm⁻¹,6 which is of great importance for designing high-power battery electrodes. Last, MXenes can be used as host materials for the Li-ion intercalation/deintercalation reaction, and capacities up to 280 mAh·g⁻¹ at a rate of 1C have been reported for V_{C/2}.6 During Li-ion intercalation, charge compensation is achieved through the change of the valency of the “M” transition metal in the M_{n+1}X_nT_x layer. However, one of the main concerns of MXenes for Li-ion battery applications lies in the large potential range where the Li-ion intercalation/deintercalation occurs, from ca. 0 to 2 V versus Li⁺/Li and beyond, which is too great a range for a battery anode material. Since narrowing the potential range would come with a decrease in the delivered capacity, an alternative approach is to combine MXenes with another material that is electrochemically active versus Li ions at lower potential.

To achieve this combination, specific synthesis routes have to be developed for designing tailored structures where the active material is entrapped between the MXene layers, thus offering (i) improved ion accessibility to the MXene surface due to an accessible structure and (ii) confinement to limit the volume expansion of the active material during Li-ion intercalation. As an example, such an approach would enable the use of Li-alloying materials, which are known to have extremely high capacity at low potentials but to suffer from significant volume expansion during the alloying reaction, which limits their cycle life.3

MXenes offer key advantages over other 2D materials for energy storage applications.

As described in this issue of ACS Nano, Luo et al. succeeded in preparing pillared Ti3C2 MXenes with 10 nm Sn particles between the MXene layers for use as negative electrodes in hybrid devices in combination with activated carbon electrodes.8 Inspired by the interesting structure of pillared interlayered clays (PILCs), they prepared pillared MXenes, which are “highly conductive clays”, via a facile liquid-phase prepillarizing and pillarizing method. Figure 2 shows a schematic illustration of the preparation of Ti3C2 MXene containing Sn(IV)-complexed ions, labeled as CTAB-Sn(IV) Ti₃C₂. The synthesis was achieved in two different steps.8 First, they prepared a prepillarized Ti3C2 MXene by intercalating cationic surfactants with various lengths of hydrophobic alkyl chains. When Ti3C2 was immersed in the cationic surfactant solution, the cationic surfactant was spontaneously self-assembled and intercalated between the negatively charged layers of Ti3C2 by electrostatic interactions, causing an increase in the interlayer spacing between Ti3C2 layers. Interestingly, they were able to control and to tune the interlayer spacing between Ti3C2 layers by playing with the nature of the surfactant used and the alkyl chain lengths, as well as the temperature of the solution. Although the interlayer spacing did not change linearly with the alkyl chain length and the temperature of the surfactant solution, they were able to prepare Ti3C2 with controllable interlayer spacings between 1 and 2.708 nm. By comparison, the original interlayer spacing for the unmodified Ti₃C₂ MXene has a value of 0.977 nm.

In a second step, due to the increase of the interlayer spacing, Luo et al. intercalated Sn(IV) ions between the Ti3C2 layers prepillarized with cetyltrimethylammonium bromide (CTAB@Ti3C2) that had an interlayer spacing of 2.23 nm. After immersion of the CTAB@Ti3C2 in a solution of SnCl₄, Sn⁴⁺ was successfully intercalated into the CTAB@Ti3C2 by an ion-exchange mechanism with CTA⁺ groups. The potential energy storage space and the exchangeable organic cation group in the CTAB@Ti3C2 were believed to facilitate the selective adsorption of Sn⁴⁺ to form Ti—OSn bonds at the MXene surface. This was possibly due to the smaller radius of Sn⁴⁺ (0.069 nm) compared to the interlayer spacing of the CTAB@Ti3C2 (2.230 nm). Transmission electron microscopy images show that Sn is present under a nanosized stannic hydroxide Sn(IV) complex (about 2−5 nm size particles) uniformly distributed in the host matrix, leading to the CTAB-Sn(IV)@ Ti₃C₂ nanocomposites with Sn contents of 8.4 wt %. The CTAB surfactant not only acts as a spacer between the Ti₃C₂ layers but also impedes the agglomeration of the tin-based nanoparticles. This impedance is of great importance because
As described in this issue of ACS Nano, Luo et al. succeeded in preparing pillared Ti₃C₂ MXenes with 10 nm Sn particles between the MXene layers for use as negative electrodes in hybrid devices in combination with activated carbon electrodes.

Perspectives and Outlook

Beyond the specific example of hybrid devices, these results open new research paths for improving the performance of MXenes for supercapacitor and battery applications. So far, MXenes, such as the most studied Ti₃C₂Tₓ, have demonstrated high volumetric and gravimetric capacitance (about 1000 F cm⁻³ and 500 F g⁻¹, respectively) in aqueous electrolyte, such as shown in Figure 3a.¹⁰ In these electrolytes, MXenes store charge through fast, reversible redox reactions involving proton intercalation and the resulting change of the valency of the transition metal (Ti, for instance).¹³

Moving from aqueous to organic electrolytes to extend the operating voltage window (and thus the energy density of the system) came with limitations in the electrochemical performance, and lower volumetric and gravimetric capacitances were reported.¹²,¹³ There are multiple reasons for these limitations, but the larger sizes of the charge carrying ions, lower electrolyte conductivity, differences in ion solvation energy, and the loss of proton-induced pseudocapacitance are the main factors responsible for the performance limitations of MXenes in organic systems.¹⁰ The pre-intercalation of MXene layers with organic electrolyte salt from the simple solvent exchange method has already improved the performance in nonaqueous electrolyte (see Figure 3), but the gap in performance is still important.

The demonstration that the interlayer spacing of MXenes can be fine-tuned by creating pillared structures based on the spontaneous intercalation of surfactants opens new opportunities for the field. By carefully selecting the types of surfactant

Figure 3. (a) Cyclic voltammograms at different scan rates for a freestanding Ti₃C₂Tₓ MXene clay electrode in 1 M H₂SO₄. Adapted with permission from ref 6. Copyright 2017 Macmillan Publishers Limited. (b) Cyclic voltammograms at different scan rates of a Ti₃C₂Tₓ MXene ionogel film in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) neat liquid electrolyte. The MXene was pre-intercalated with EMI-TFSI ions before tests using the solvent exchange method to improve ion accessibility to the MXene surface. Adapted with permission from ref 13. Copyright 2016 Elsevier.
molecules, it should be possible to prepare pillared MXene structures with interlayer spacings that match the sizes of the ions of the electrolytes, thus facilitating the adsorption/intercalation of the ions inside the host structure and maximizing the adsorption capacitance, similar to what has been previously demonstrated in porous carbons.14,15

In addition, pillared MXenes could be used as model materials for studying the adsorption/intercalation of multivalent ions (e.g., Al3+, Mg2+, Zn2+), which is one of the main challenges in electrochemical energy storage. There is also a need to develop methods for controlling the surface chemistry of MXenes in order to achieve uniform surface terminations for predictable and controllable modification of MXene layers.

The successful development of these approaches would provide guidance for the development of electrode materials for the next generation of batteries and supercapacitors.

AUTHOR INFORMATION

Corresponding Author

*E-mail: simon@chimie.ups-tlse.fr. Tel: +33(0)5.61.55.68.02.

ORCID

Patrice Simon: 0000-0002-0461-8268

Notes

The author declares no competing financial interest.

ACKNOWLEDGMENTS

P.S. thanks Z. Lin, T. Mathis, and Y. Gogotsi for fruitful discussions.

REFERENCES

