Fredholm determinant solutions of the Painlev\'e II hierarchy and gap probabilities of determinantal point processes

Abstract : We study Fredholm determinants of a class of integral operators, whose kernels can be expressed as double contour integrals of a special type. Such Fredholm determinants appear in various random matrix and statistical physics models. We show that the logarithmic derivatives of the Fredholm determinants are directly related to solutions of the Painlev\'e II hierarchy. This confirms and generalizes a recent conjecture by Le Doussal, Majumdar, and Schehr. In addition, we obtain asymptotics at $\pm\infty$ for the Painlev\'e transcendents and large gap asymptotics for the corresponding point processes.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-02049070
Contributor : Mattia Cafasso <>
Submitted on : Tuesday, February 26, 2019 - 9:51:55 AM
Last modification on : Friday, May 10, 2019 - 12:14:02 PM

Links full text

Identifiers

  • HAL Id : hal-02049070, version 1
  • ARXIV : 1902.05595

Collections

Citation

Mattia Cafasso, Tom Claeys, Manuela Girotti. Fredholm determinant solutions of the Painlev\'e II hierarchy and gap probabilities of determinantal point processes. 2019. ⟨hal-02049070⟩

Share

Metrics

Record views

14