
HAL Id: hal-02049006
https://hal.science/hal-02049006

Submitted on 26 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Style Transfer and Extraction for the Handwritten
Letters Using Deep Learning

Omar Mohammed, Gérard Bailly, Damien Pellier

To cite this version:
Omar Mohammed, Gérard Bailly, Damien Pellier. Style Transfer and Extraction for the Handwritten
Letters Using Deep Learning. ICAART 2019 - 11th International Conference on Agents and Artificial
Intelligence, Feb 2019, Prague, Czech Republic. �hal-02049006�

https://hal.science/hal-02049006
https://hal.archives-ouvertes.fr


Style Transfer and Extraction for the Handwritten Letters Using Deep
Learning

Omar MOHAMMED1,2, Gérard BAILLY1, Damien PELLIER2

1Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France
2Univ. Grenoble Alpes, CNRS, LIG, 38000 Grenoble, France

omar-samir.mohammed@grenoble-inp.fr

Keywords: Generative models, Deep Learning, Online Handwriting, Style Extraction

Abstract: How can we learn, transfer and extract handwriting styles using deep neural networks? This paper explores
these questions using a deep conditioned autoencoder on the IRON-OFF handwriting data-set. We perform
three experiments that systematically explore the quality of our style extraction procedure. First, We compare
our model to handwriting benchmarks using multidimensional performance metrics. Second, we explore the
quality of style transfer, i.e. how the model performs on new, unseen writers. In both experiments, we improve
the metrics of state of the art methods by a large margin. Lastly, we analyze the latent space of our model, and
we see that it separates consistently writing styles.

1 Introduction

One aspect of a successful human-machine inter-
face (e.g. human-robot interaction, chatbots, speech,
handwriting . . . ) is the ability to have a personalized
interaction. This affects the overall human experience,
and allow for a more fluent interaction. At the mo-
ment, there is a lot of work that uses machine learning
in order to learn to model for such interactions. How-
ever, most of these models do not address the issue of
personalized behavior: they try to average over the dif-
ferent examples from different people in the training
set. Identifying the human styles during the training
and inference time open the possibility of biasing the
models output to take into account the human prefer-
ence. In this paper, we focus the problem of styles in
the context of handwriting.

However, defining and extracting handwriting
styles is a challenging problem, since there is no for-
mal definition for these styles (i.e. it is an ill-posed
problem). A style is both social – depends on writer’s
training, especially at middle school – and idiosyn-
cratic – depends on the writer’s shaping (letter round-
ness, sharpness, size, slope . . . ) and force distribution
across time. To add to the problem, till recently, there
were no metrics to assess the quality of handwriting
generation.

There are two questions: what is the task itself?
and what is the style used to achieve this task?. In
handwriting, the task space is well defined (i.e. which

letter we want to write), thus, allowing us to focus on
the second part, of extracting styles for achieving this
task.

In this paper, we address the problem of style ex-
traction by using an conditioned-temporal deep autoen-
coder model. The conditioning is on the letter identity.
The reason we use an autoencoder is that there is no
explicit way that we know about to evaluate the qual-
ity of the handwriting styles other than using them
to generate handwriting, and evaluate this generation.
(Mohammed et al., 2018) introduced benchmarks and
evaluation metrics in order to assess the quality of
generating handwritten letters. In comparison to the
those benchmarks and metrics, we achieve higher per-
formance, while extracting a meaningful latent space.

We also hypothesize that the latent space of styles
is generic, i.e. that it will generalize over unseen writ-
ers, thus achieving a “transfer of style”. To test this
hypothesis, we assess our model on 30 new writers.
We compare the tracings generated by this model to a
benchmark model already proposed for online hand-
writing generation.

In addition, we explore the latent space of our
model for each letter separately. This revealed that
there is a limited number of ’unique’ styles per letter,
categorical as well as continuous. We report our anal-
ysis for some of the letters, since a full analysis is out
of the scope for this paper.

Thus, our contributions in this paper are the follow-
ing:



• We test and compare our deep conditioned autoen-
coder with the state of the art benchmarks. We
show that this model greatly improves the genera-
tion performance over a state of the art benchmark
model.

• We experiment on performing style transfer on
new writers using this model achieves, and we
show that it achieves much better results than the
benchmark model.

• Finally, and maybe most interestingly, we further
analyze the extracted the latent space from our
model to show that there is a limited number of
styles for each letter and that the style manifold is
not a continuous space.

2 Related work

2.1 Generative models

Recent advances in deep learning (Goodfellow et al.,
2016) architectures and optimization methods led to re-
markable results in the area of generative models. For
static data, like images, the mainstream research builds
on the advances in Variational Autoencoders (Kingma
and Welling, 2013) and Generative Adversarial Net-
works (Goodfellow et al., 2014).

For generating sequences, the problem is more dif-
ficult: the model generates one frame at a time, and
the final result must be coherent over long sequences.
Recent recurrent neural networks architectures, like
Long-Short Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and Gated Recurrent Units (GRU)
(Chung et al., 2014), achieve unprecedented perfor-
mance in handling long sequences.

Theses architectures has been used in many ap-
plications, like learning language models (Sutskever
et al., 2014), image captioning (Vinyals et al., 2015),
music generation (Briot and Pachet, 2017) and speech
synthesis (Oord et al., 2016).

Focus was dedicated to use these powerful tool in
order to extract meaningful latent space. One such
work that inspired the investigation in this paper is
(Ha and Eck, 2017). In their work, they investigated
the problem of sketch drawing (Google, 2017) using
a Variational Autoencoder. The latent space emerged
encoded meaningful semantic information about these
drawings. In our work, we simple a similar architec-
ture, without the variational part, showing that similar
behaviour.

2.2 Data Representation

For handwriting, a continuous coordinate representa-
tion (e.g. continuous X, Y) seems the natural option.
However, generating continuous data is not straight-
forward. Traditionally, in neural networks, when we
want to output a continuous value, a simple linear or
Tanh activation function is used in the output layer of
the neural network.

However, Bishop (Bishop, 1994) studied the lim-
itations of these functions and showed that they can
not model rich distributions. In particular, when the
input can have multiple outputs (one-to-many), these
functions will average over all the outputs. He pro-
posed the use of Gaussian Mixture Model (GMM) as
the final activation function of a neural network. The
alliance of neural networks and GMMs is called Mix-
ture Density Network (MDN). The training consists
in optimizing the GMM parameters (means, covari-
ances). The inference is done by sampling from the
GMM distribution.

To simplify the process, and focus our study on
investigating of styles, we extract two features for the
tracings: directions and speed (explained in section
3), and we quantize these features. Thus, we can
model each point in the letter tracings as a categorical
distribution, and use a simple SoftMax function as the
output of the network, which is much simpler than
MDN. This was inspired by the studies done in (Oord
et al., 2016), where they report impressive results on
originally continuous data, using suitable quantization
policy. A categorical distribution is more flexible and
generic than continuous ones.

2.3 Evaluation metrics

The objective evaluation of a generative model is a
challenging task, since there is no consensus for ob-
jective evaluation metrics. In many cases, a subjective
evaluation is performed to overcome this problem. For
handwriting of Chinese letters, (Chang et al., 2018)
proposed two metrics: Content accuracy and Style dis-
crepancy. In the first metric, a classifier is trained to
determine the type of the letter on the reference letters,
then it is used to evaluate the generated letters. How-
ever, it is not clear how to reliably use the classifier
trained on one distribution (reference letters) to evalu-
ate new distribution (the generated letters). The second
metric is not applicable to our case, since it assumes
the use of Convolution Neural Network (CNN) on the
image of the letter, while we us the pen sequence of
drawing the letter (i.e., temporal data) with RNNs.

(Mohammed et al., 2018) also addressed the prob-
lem of evaluation of handwriting generation. They



used the BLEU score (Papineni et al., 2002) (a metric
widely used in text translation and image captioning)
and the End of Sequence (EoS) analysis (both metrics
are explained in section 5). They showed that these
metrics correlate with the quality of the generated let-
ter. We use these metric in our experiments.

3 Dataset

In this study, we use the IRON-OFF Cursive Hand-
writing Dataset (Viard-Gaudin et al., 1999), which
contains isolated handwritten letters. To summarize
this dataset:
• Around 700 writers in total. We use the 412 writers

who have written isolated letters.
• 10,685 isolated lower case letters, 10,679 isolated

upper case letters, 4,086 isolated digits and 410
euro signs.

• The gender, handiness (left or right handed), age
and nationality of the writers.

• For each example (letter, digit, euro sign), we have
that example’s image - with size around 167x214
pixels, and a resolution of 300 dpi -, pen movement
timed sequence comprising continuous X, Y and
pen pressure, and also discrete pen state. This data
is sampled at 100 points per seconds on a Wacom
UltraPad A4.
We focused on the uppercase letters only, and we

did not use the pen state or the pen pressure. The idea
was to limit number the possible style factors, so that
we can better study them. 90% of the data is used for
training, and 10% for validation.

One challenging issue with this dataset however is
that we have only one example for each writer-letter
combination. This makes the task more difficult, be-
cause it is hard to extract a writer style using very few
items (the 26 letters/writer in this case).

We represent each letter tracing by two features:
directions and speed of the pen between each two
consecutive points. Each feature is quantized into 16
levels and represented as a one-hot encoded vector.
Freeman codes (Freeman, 1961) is used in order to
encode the direction feature. It belongs to a family
of compression algorithms called Chain Codes. We
can use N freeman codes (where N are the number of
directions), depending on the needed resolution.

4 Model architecture

The model architecture is illustrated in figure 1.
The trace of the letter is first fed to encoder module.

The final hidden state of that module summarizes the
letter. In order to allow this module to focus on learn-
ing the style embedding, we complement this last hid-
den state with the one-hot encoding of the letter iden-
tity, and use a projection of them as the bias input to
the generator. Thus, we decouple the task space – the
letter – from the style space: the encoder is free from
the need to learn the letter identity, and can focus learn-
ing additional information that enables the generator
to better approximate the ground truth tracings.

In the decoder, we follow the framework proposed
by (Vinyals et al., 2015) in order to bias the model: we
create an extra time step at the beginning, which has
the information we want to bias the model with. In
this case, this time step is the projection of the encoder
last hidden state and the letter encoder. This has a
much lower dimension than encoder hidden state (the
hyperparameters are discussed in section 4.1). This
further encourage the model to learn only necessary
style information, as suggested in (Skerry-Ryan et al.,
2018).

4.1 Hyper-parameter tuning

We ran random hyper-parameter search for a wide
range of parameters (learning rate, size and the number
of layers for the encoder and the decoder, dropout
percentage, etc). GRU layers (Chung et al., 2014)
is being used in this model. We use Adam (Kingma
and Ba, 2014) optimizer. In order to allow for faster
exploration of different hyper-parameters, we use an
early stopping of 20 epochs (no improvement happens
during these epochs).

4.2 Training

The encoder and the decoder parts have the target of
modeling the next time step in the sequence, xt+1,
given the previous time steps, or in other words,
P(xt+1|x1,x2, ...,xT ), where xt is the tracing point at
time t, and T is the length of the input sequence. To
achieve this, the model is given the ground truth in-
put of points x1,x2, ...,xT−1 and is asked to output the
sequence x2,x3, ...,xT .

The model is trained to minimize the negative log
likelihood loss of the correct point at each time step.
For each feature (speed and freeman codes), it is cal-
culated as in equation 1. The final loss is the average
loss of the two feature, as in equation 2.

Loss =− log
T

∏
t=1

p(xt |x1,x2, ...,xt−1)

=−
T

∑
t=1

log p(xt |x1,x2, ...,xt−1)

(1)



Figure 1: Schematic diagram of the model we used. Both the encoder and the decoder have 2 layers, with size of 128. A
dropout of 0.2 is used for the decoder. Learning rate selected is 0.001. During the training time, the input to the model is
always the ground truth. During the inference time however, the input to the decoder (generator) part at each time step is its
own predication in the previous time step.

TotalLoss = (Lossspeed +Loss f reeman)/2.0 (2)

During the training, the output of the model at each
time step is the:

xg
t+1 = argmaxx p(x|xt ,ht) (3)

where xg
t+1 is the generated/predicted next time step

by the model, xt is the ground truth input at the current
time step t, and ht is the hidden state of the GRU at the
current time step. To sample from the model, we used
the Temperature Sampling strategy from he Softmax
output.

5 Evaluation metrics

Evaluation is a challenging problem when using
generative models. We want metrics to capture the
distance between the generated and the ground truth
distributions. Similar to the work done in (Mohammed
et al., 2018), we use the same two evaluation metrics
in our model:

• BLEU score (Papineni et al., 2002) It is a well
known metric to evaluate text generation applica-
tions, like image captioning (Vinyals et al., 2015)
and machine translation (Sutskever et al., 2014).
Since we discretized the letter drawings, this fits
nicely within our work. The general intuition is
the following: if we take a segment from the gener-
ated letter, did this segment happen in the ground
truth letter? We keep doing this for segments of
increasing length (the length of the segment here
is the number of grams used in the BLEU score).
For our work, we report the results on segments
from 1 to 3 time steps. Each part of the letter has
two parallel segments: freeman codes and speed,

thus, we report the BLEU score for both of them.
The equation to compute the BLEU score is the
following:

BLEUN =
∑C∈G ∑N∈C CountClipped(N)

∑C∈G ∑N∈C Count(N)
(4)

ScoreN = min(0,1− LR

LG
)

N

∏
n=1

BLEUn (5)

where: G is all the generated sequences, N is
the total number of N-grams we want to consider.
CountClipped is clipped N-grams count (if the num-
ber of N-grams in the generate sequence is larger
than the reference sequence, the count is limited
to the number in the reference sequence only),
LR is the length of the reference sequence, LG is
the length of the generated sequence. The term
min(0,1− LR

LG
) is added in order to penalize short

generated sequences (shorter than the reference
sequence), which will deceptively achieve high
scores.

• End of Sequence (EoS) The length letter is an-
other aspect of the style. The distribution of
length in the generated examples should follow
the ground truth examples. In order to perform
this analysis, we compute Pearson correlation co-
efficient between the generated examples and the
ground truth data.

6 Experiments and results

6.1 Letter generation with style
preservation

The objective here to compare the quality of the gen-
erated letters to the state-of-the-art benchmarks. As



mentioned earlier, we compare using the BLEU score
metric and the EoS analysis. The BLEU score results
can be seen in table 1, and the results for EoS analysis
results are in table 3. We can see that the BLEU-3
score results of our model achieves 32.3% accuracy
in Speed feature and 38.7% accuracy in Freeman fea-
ture, compared to 25.1% and 28.3% accuracy using
the benchmark model on both features respectively.

The same goes for the EoS analysis. In compar-
ing the Person Coefficient, our model achieves 0.99
score compared to 0.55 for the benchmark model (the
highest score is 1.0). This is a support that our model
capture the style of handwriting better than the bench-
mark.

Examples for the generated letters can be found in
figure 11.

6.2 Style transfer across writers

One of the hypotheses we want to test is whether there
is a limited number of styles needed, to generalize over
new writers. To achieve this, the learned representation
for styles should extract generic information about the
styles.

In order to test this hypothesis, we expose our
model to 30 writers that have not been seen before.
We compare our model performance on these writers
with a model is biased by the writer and letter iden-
tities (the benchmark model). The latter model was
not constrained from seeing those writers (thus, the
reported results of the comparison overestimates the
actual performance of that model).

The BLEU scores can be seen in table 2. Our
model achieves on BLEU-3 score 32.2% and 42.1% ac-
curacy on the Speed and Freeman code features, com-
pared to 25.3% and 27.7% on the benchmark model
for the same features respectively.

The EoS analysis can be seen in table 4. Our model
achieves a coefficient value of 0.99, compared to 0.5
for the benchmark. Thus, the new model clearly out-
perform the current benchmarks on the transfer task,
on both BLEU score and EoS analysis.

6.3 Styles per letters

One of the nice consequences of using our model is
that we can have a better look at the styles. We explore
the latent space for multiple letters, and see that we
can uncover interesting writing styles. A full scale
analysis is beyond the scope of this paper. We project
the latent space using Principal Components Analysis
(PCA) (Jolliffe, 2011) and t-SNE (Maaten and Hinton,
2008).

As a start, we take a look at letter X. Beforehand,
we identified a style feature in letter X: some writer
draw X clockwise, and some draw it anti-clockwise.
We manually annotated the whole dataset for this fea-
ture; the result can be seen in figure 2. Almost half of
the writers draw the letter X clockwise, and the other
half draw it anti-clockwise. If our assumption is cor-
rect, our model should be able to capture this feature.
We project the latent of the model using PCA on all
the letter X, which can be seen in figure 3. The model
latent space clusters almost perfectly based on rotation.
Examples for letters from both clusters are in figure 4.

Encouraged by the results on letter X, we explored
more letters. For letter C, we can see the latent space
project in figure 5. It can be seen that there are at
least two main clusters. Examples from this cluster in
the red ellipse are in figure 7. The indicated cluster
represents the Edwardian handwriting style. The rest
of the writers (in the big cluster) have a very similar
style (this is expected, since the drawing of the letter
C is quite simple).

For letter A, our model latent space create two
main clusters, figure 6. We give examples from those
two in figure 8, where we can see clear difference in
the style. Some people start drawing the letter from
down-left, other writers start from the top of letter A,
move down, then continue drawing of the letter.

Another example is for letter S bottleneck, figure
9. There are three resulting clusters which we investi-
gated. The indicated cluster (in red) is clearly different
from the other two clusters (not indicated). Examples
can be seen in figure 10. The indicated cluster is again
for people with Edwardian handwriting style. We did
not find a clear difference between the other two clus-
ters though, but this is an expected outcome of using
t-SNE (since it does not have the clear objective of
clustering styles).

These examples show is that we can use our model
to extract verbose style information.

Figure 2: Results of the manual annotation for the rotation
of letter X drawings over the whole dataset. Almost half the
writers drew X clockwise, the other half anti-clockwise. The
undefined styles were unclear to determine.



Aspect/Feature Speed Freeman
Model / B-score B-1 B-2 B-3 B-1 B-2 B-3
Letter + Writer bias 51.5 41.4 25.1 56.7 39.4 28.3
Style Extractor 71 51.7 32.3 65.6 51.5 38.7

Table 1: BLEU scores for different models for known writers.

Aspect/Feature Speed Freeman
Model / B-score B-1 B-2 B-3 B-1 B-2 B-3
Letter + Writer bias 55.4 39.6 25.3 50.2 38.6 27.7
Style Extractor 72.4 52.4 32.2 70.4 55.6 42.1

Table 2: BLEU scores for different models for style extraction for 30 new writers (style transfer).

Models Pearson coefficient
Letter + Writer bias 0.55
Style Extractor 0.99

Table 3: Pearson correlation coefficients for the End-Of-
Sequence (EoS) distributions for the different models on the
normal generation scenario

Models Pearson coefficient
Letter + Writer bias 0.50
Style Extractor 0.93

Table 4: Pearson correlation coefficients for the End-Of-
Sequence (EoS) distributions for the different models on 30
new writers (style transfer).

Figure 3: Projection for latent space for letter X using PCA.
The colors show the ground truth of the X rotation: blue
is counter clockwise, orange is clockwise, and the few red
points are undefined.

7 Conclusions and future work

In this paper, we explored the concepts of styles of
handwriting, using a deep neural network paradigm.
We have approached the problem systematically. First,
we compared our generation results to the benchmark
reported in the state-of-the-art on this problem, and
we show that our model outperforms the benchmark.
Second, we explore the ability to perform style trans-
fer, by testing the model’s performance on 30 new
writers. We hypothesize that there is a limited number
of style components that describe handwriting, and a

Figure 4: Examples for writing of letter X. Starting point is
marked with the blue mark. Each raw is randomly sampled
from each cluster in the bottleneck. The clusters shows
that almost half the writers draw the letter clockwise (first
row, first cluster), and the other half draw it anti-clockwise
(second row, second cluster).

Figure 5: Projection for latent space for letter C using t-
SNE. The cluster surrounded by the red circle has a clear
interpretation, where writers have a cursive style.

Figure 6: Projection for latent space for letter A using PCA.



Figure 7: Examples for writing of letter C from the selected
cluster (first row) versus the rest of the letter drawings (sec-
ond row). Starting point is marked with the blue mark. The
drawings from the selected cluster show people with Edwar-
dian style of handwriting.

Figure 8: Examples for writing of letter A from the selected
clusters. Starting point is marked with the blue mark. Each
row is from one cluster. The first row show people who
start drawing the letter from the top, going down, and then
continue the drawing of the letter. The second row show
people who start drawing from down directly.

Figure 9: Projection for latent space for letter S using t-
SNE. We manage to interpret the indicated cluster as the
Edwardian style in drawing. The other two clusters (not
indicated) did not show clear difference in the style, but this
is an expected behavior from using the t-SNE algorithm,
since it does not try to cluster styles as an objective.

good style extraction model should generalize well to
new writers. Last, we analyze the latent space of our
model for multiple letters, and show that the model
separate the different styles in different clusters. We
are interested in further investigating the concept of
style transfer. In this work, we fixed the task (the up-
percase letters), and performed transfer of style across

Figure 10: Examples for writing of letter S from the selected
cluster (first row) versus the other two clusters (second row).
Starting point is marked with the blue mark. The drawings
from the selected cluster is always Edwardian style.

writers. Our plan is to investigate style transfer while
changing the task (e.g., learn style on uppercase letters,
and transfer them to the lowercase writers).

Based on the results of the latent space analysis,
our next objective is to build an latent space structure
and objective function that disentangle the style man-
ifold. So far, we used multiple projection techniques
in order to explore the style information in the latent
space. We would like this to emerge on its own in the
latent space. This step is usually known as Knowledge
Restructuring, which enable the addressing of several
interesting questions, like: What are all the different
styles available for different letters? Can we use the
styles from those different letters to build a footprint
for each writer (i.e. style embedding for the writer)? If
so, how good is this embedding in learning to generate
letters using it as a prior knowledge only?

Acknowledgements

This work is supported by PERSYVAL (ANR-11-
LABX-0025) via the project-action RHUM.

REFERENCES

Bishop, C. M. (1994). Mixture density networks. Aston
University.

Briot, J.-P. and Pachet, F. (2017). Music generation by
deep learning-challenges and directions. arXiv preprint
arXiv:1712.04371.

Chang, B., Zhang, Q., Pan, S., and Meng, L. (2018). Gen-
erating handwritten chinese characters using cyclegan.
CoRR, abs/1801.08624.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Em-
pirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv preprint arXiv:1412.3555.

Freeman, H. (1961). On the encoding of arbitrary geomet-



Figure 11: Examples of generated letters. The blue mark is the starting point. The traces in green is the ground truth, and the
red is the generated ones by our model.

ric configurations. IRE Transactions on Electronic
Computers, 2:260–268.

Goodfellow, I., Bengio, Y., and Courville, A. (2016).
Deep Learning. MIT Press. http://www.
deeplearningbook.org.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., and Bengio, Y.
(2014). Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–
2680.

Google (2017). The quick, draw! dataset.
Ha, D. and Eck, D. (2017). A neural representation of sketch

drawings. CoRR, abs/1704.03477.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term

memory. Neural computation, 9(8):1735–1780.
Jolliffe, I. (2011). Principal component analysis. In In-

ternational encyclopedia of statistical science, pages
1094–1096. Springer.

Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kingma, D. P. and Welling, M. (2013). Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114.

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data
using t-sne. Journal of machine learning research,
9(Nov):2579–2605.

Mohammed, O., Bailly, G., and Pellier, D. (2018). Handwrit-
ing styles: benchmarks and evaluation metrics. In First
International Workshop on Deep and Transfer Learn-

ing - Fifth International Conference on Social Net-
works Analysis, Management and Security (SNAMS),
Valencia, Spain. IEEE.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals,
O., Graves, A., Kalchbrenner, N., Senior, A., and
Kavukcuoglu, K. (2016). Wavenet: A generative model
for raw audio. arXiv preprint arXiv:1609.03499.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th annual meeting
on association for computational linguistics, pages
311–318. Association for Computational Linguistics.

Skerry-Ryan, R. J., Battenberg, E., Xiao, Y., Wang, Y., Stan-
ton, D., Shor, J., Weiss, R. J., Clark, R., and Saurous,
R. A. (2018). Towards end-to-end prosody transfer
for expressive speech synthesis with tacotron. CoRR,
abs/1803.09047.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to
sequence learning with neural networks. In Proceed-
ings of the 27th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’14,
pages 3104–3112, Cambridge, MA, USA. MIT Press.

Viard-Gaudin, C., Lallican, P. M., Knerr, S., and Binter,
P. (1999). The ireste on/off (ironoff) dual handwrit-
ing database. In Document Analysis and Recognition,
1999. ICDAR ’99. Proceedings of the Fifth Interna-
tional Conference on, pages 455–458.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015).
Show and tell: A neural image caption generator. In

http://www.deeplearningbook.org
http://www.deeplearningbook.org


Computer Vision and Pattern Recognition (CVPR),
2015 IEEE Conference on, pages 3156–3164. IEEE.


