R. W. Impey, P. A. Madden, and .. R. Mcdonald, Hydration and mobility of ions in solution, J. Phys. Chem, vol.87, pp.5071-5083, 1983.

P. Jungwirth and D. J. Tobias, Specific ion effects at the air/water interface, Chem. Rev, vol.106, pp.1259-1281, 2006.

J. Chmiola, Anomalous increase in carbon capacitance at pore sizes Jess than 1 nanometer, Science, vol.313, pp.1760-1763, 2006.

T. Ohkubo, Restricted hydration structures of Rb and Br ions confined in slit-shaped carbon nanospace, J. Am. Chem. Soc, vol.124, pp.11860-11861, 2002.

J. Huang, B. G. Sumpter, and V. Meunier, Theoretical mode! for nanoporous carbon supercapacitors, Angew. Chem. Int. Ed, vol.47, pp.520-524, 2008.

A. Tanaka, Effect of a quaternary ammonium sait on propylene carbonate structures in slit-shape carbon nanospaces, J. Am. Chem. Soc, vol.132, pp.2112-2113, 2010.

M. Fukano, Vertically oriented propylene carbonate molecules and tetraethyl ammonium ions in car bon slit pores, J. Phys. Chem. C, vol.117, pp.5752-5757, 2013.

M. Deschamps, Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR, Nat. Mater, vol.12, pp.351-358, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00794669

S. Boukhalfa, L. He, Y. B. Melnichenko, and G. Yushin, Small-angle neutron scattering for in situ probing of ion adsorption inside micropores, Angew. Chem. Int. Ed, vol.52, pp.4618-4622, 2013.

A. C. Forse, Nuclear magnetic resonance study of ion adsorption on microporous carbide-derived carbon, Phys. Chem. Chem. Phys, vol.15, pp.7722-7730, 2013.

M. D. Levi, S. Sigalov, D. Aurbach, and L. Daikhin, In situ electrochemical quartz crystal admittance methodology for tracking compositional and mechanical changes in porous carbon electrodes, J. Phys. Chem. C, vol.117, pp.14876-14889, 2013.

C. Merlet, Highly confined ions store charge more efficiently in supercapacitors, Nat. Commun, vol.4, p.2701, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00909161

C. Prehal, Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering, Nat. Energy, vol.2, p.16215, 2017.

M. V. Fedorov and A. A. Kornyshev, Ionie liquids at electrified interfaces, Chem. Rev, vol.114, pp.2978-3036, 2014.

A. A. Kornyshev, Double-layer in ionic liquids: paradigm change?, J. Phys. Chem, vol.111, pp.5545-5557, 2007.

R. Hayes, G. G. Warr, and R. Atkin, Structure and nanostructure in ionic liquids, Chem. Rev, vol.115, pp.6357-6426, 2015.

M. Armand, F. Endres, D. R. Macfarlane, H. Ohno, and B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater, vol.8, pp.621-629, 2009.

J. L. Baiiuelos, Densification of ionic liquid molecules within a hierarchical nanoporous carbon structure revealed by small angle scattering and molecular d yn amics simulation, Chem. Mater, vol.26, pp.1144-1153, 2014.

W. Y. Tsai, P. L. Taberna, and P. Simon, Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons, J. Am. Chem. Soc, vol.136, pp.8722-8728, 2014.

F. W. Richey, B. Dyatkin, Y. Gogotsi, and Y. A. Elabd, Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry, J. Am. Chem. Soc, vol.135, pp.12818-12826, 2013.

A. C. Forse, NMR study of ion d yn amics and charge storage in ionic liquid supercapacitors, J. Am. Chem. Soc, vol.137, pp.7231-7241, 2015.

M. Mezger, Molecular l aye ring of fluorinated ionic liquids at a charged sapphire (0001) surface, Science, vol.17, pp.424-428, 2008.

S. Perkin, Ionie liquids in confined geometries, Phys. Chem. Chem. Phys, vol.14, pp.5052-5062, 2012.

M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Double layer in ionic liquids: overscreening versus crowding, Phys. Rev. Lett, vol.106, p.46102, 2011.

C. Merlet, On the molecular origin of supercapacitance in nanoporous carbon electrodes, Nat. Mater, vol.11, pp.306-310, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00853251

C. Péan, On the d yn amics of charging in nanoporous carbon-based supercapacitors, ACS Nana, vol.8, pp.1576-1583, 2014.

G. Feng and P. T. Cummings, Supercapacitor capacitance exhibits oscillatory behavior as a fonction of nanopore size, J. Phys. Chem. Lett, vol.2, pp.2859-2864, 2011.

S. Kondrat and A. A. Kornyshev, Superionic state in double-layer capacitors with nanoporous electrodes, J. Phys. Condens. Matter, vol.23, p.22201, 2011.

P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater, vol.7, pp.845-854, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02020693

R. Lin, Solvent effect on the ion adsorption from ionic liquid electrolyte into subnanometer carbon pores, Electrochim. Acta, vol.54, pp.7025-7032, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01281977

S. Kondrat, P. Wu, R. Qiao, and A. A. Kornyshev, Accelerating charging d yn amics in subnanometre pores, Nat. Mater, vol.13, pp.387-393, 2014.

S. Porada, R. Zhao, A. Van-der-wal, V. Presser, and P. M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sei, vol.58, pp.1388-1442, 2013.

D. Brogioli, Extracting renewable energy from a salinity difference using a capacitor, Phys. Rev. Lett, vol.103, p.59501, 2009.

T. C. Petersen, !. Yarovsky, I. K. Snook, D. G. Mcculloch, and G. Opletal, Structural analysis of carbonaceous solids using an adapted Reverse Monte Carlo algorithm, Carbon, vol.41, pp.2403-2411, 2003.

J. C. Palmer, Modeling the structural evolution of carbide-derived carbons using quenched molecular d yn amics, Carbon, vol.48, pp.1116-1123, 2010.

S. Kondrat, N. Georgi, M. V. Fedorov, and A. A. Kornyshev, A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations, Phys. Chem. Chem. Phys, vol.13, pp.11359-11366, 2011.

A. R. Choudhury, N. Winterton, A. Steiner, A. I. Cooper, and K. A. Johnson, In situ crystallization of ionic liquids with melting points below-25 ° C, Cryst. Eng. Commun, vol.8, pp.742-745, 2006.

T. !iyama, Molecular assembly structure of CCI, in graphitic nanospaces, J. Phys. Chem. B, vol.101, pp.3037-3042, 1997.

K. Fujii, Liquid structure of room-temperature ionic liquid, l-ethyl-3-methylimidasolium bis-( trifluoromethanesulfonyl) imide, J. Phys. Chem. B, vol.112, pp.4329-4336, 2008.

J. J. Hettige, H. K. Kashyap, H. V. Annapureddy, and C. J. Margulis,

, Anion, the reporters of structure in ionic liquids, J. Phys. Chem. Lett, vol.4, pp.105-110, 2013.

C. Lopes, J. N. Padua, and A. A. , Nanostructural organization of ionic liquids, J. Phys. Chem. B, vol.110, pp.3330-3335, 2006.

S. Maolin, Ordering layers of [bmim] [PF6] ionic liquid on graphite surfaces: molecular d yn amics simulation, J. Chem. Phys, vol.128, p.134504, 2008.

H. S. Weingartner, The static dielectric constant of ionic liquids, Z. Phys. Chem, vol.220, pp.1395-1405, 2006.

M. H. Cho and R. J. Silbey, Suppression and enhancement of van der Waals interactions, J. Chem. Phys, vol.104, pp.8730-8741, 1996.

C. C. Rochester, A. A. Lee, G. Pruessner, and A. Kornyshev, A. lnterionic interactions in conducting nanoconfinement, ChemPhysChem, vol.14, pp.4121-4125, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01863307

Y. Zhong, Transition metal carbides and nitrides in energy storage and conversion, Adv. Sei, vol.3, p.1500286, 2016.

M. P. Allen and D. Tildesley, Computer Simulation of Liquids, 1987.

W. A. Steele, The physical interaction of gases with crystalline solids: 1. Gas-solid energies and properties of isolated adsorbed atoms, Surf Sei, vol.36, pp.317-352, 1973.

V. Presser, M. Heon, and Y. Gogotsi, Carbide-derived carbons-from porous networks to nanotubes and graphene, Adv. Funct. Mater, vol.21, pp.810-833, 2011.

J. N. Lopes and A. A. Padua, CL&P: a generic and systematic force field for ionic liquids modeling, Theor. Chem. Ace, vol.131, pp.1129-1140, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00678655