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Asymptotic behavior for the Vlasov-Poisson
equations with strong external curved magnetic field.
Part II : general initial conditions

Mihai BOSTAN *

(February 4, 2019)

Abstract

We discuss the asymptotic behavior of the Vlasov-Poisson system in the
framework of the magnetic confinement, that is, under a strong external mag-
netic field. We concentrate on curved three dimensional magnetic fields. We
derive second order approximations, when the magnetic field becomes large, for
general initial particle densities.

Keywords: Vlasov-Poisson system, averaging, homogenization.

AMS classification: 35Q75, 7T8A35, 82D10.

1 Introduction

The asymptotic analysis of the transport of charged particles under strong magnetic
fields is a very important topic in plasma physics [7, 8, 9, 10, 14, 15, 11, 12, 13, 1,
2, 3, 4, 5]. Tt is related to real life applications, such that the energy production
through magnetic confinement. When the particle velocities are small with respect to
the light speed, the evolution of the particle density f = f(t,z,v) is described by the
Vlasov-Poisson system

8tf5+v-V$f€—|—% (E[fF(0)](x) + v AB ()} Vof =0, (t,2,0) € Ry xR¥xR3. (1)

BL(0)] =~ V.l 0, el = 12 | FUTV) gy

" dmeg Jrafrs |z — 2

where € > 0 is a small parameter, entering the strong external non vanishing magnetic

field .
BS(z) = B*(2)e(z), B(zx)= f), le(z)| =1, z € R®.
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The potential ®[f¢] satisfies the Poisson equation

—AP[fE(t)] = 1z fe(t,z,v) do, (t,z) eRy x R?

€0 JR3

whose fundamental solution is z — ﬁz‘, 2z € R?\ {0}. Here €y represents the electric
permittivity. For any particle density f = f(x,v), the notation E[f] stands for the
Poisson electric field

z—x

q / ! / !
— dv'd 2
6043R3f<x,v>|x_x,|3 Jda )

Blf)(z) = .

and p[f], j[f] are the charge and current densities respectively

p[f]:q f(‘,U) d’l}, j[f}:q f<"’ZJ)UdU.
R3 R3
The above system is supplemented by the initial condition
(0, 2,v) = fun(z,v), (z,v) € R®x R

In [6] a regular reformulation (when € Y\, 0) of the Vlasov-Poisson system has been
derived, in the three dimensional setting, for well prepared initial particle densities. In
this work we extend the previous analysis to general initial particle densities. Consider-
ing general initial conditions leads to fast oscillations in time. In order to describe the
asymptotic behavior (when € N\ 0), we need to introduce a fast time variable s = t/e.
The analysis follows closely that in [6] and the arguments rely on averaging along the
flow of a vector field. As a fast time variable has been introduced, we need to consider
the extended phase space (s, z,v) for averaging functions and vector fields.

Our paper is organized as follows. The average operators on the extended phase
space and main properties are discussed in Section 2. The regular reformulation of the
Vlasov-Poisson problem with strong external magnetic field is derived in Section 3 and
revisited in the last Section 4.

2 Average operators and main properties

As in [6], we introduce the relative velocity with respect to the electric cross field drift

Es(t,z) N e(x)
B(x) '

V=v—¢

Accordingly, at any time ¢ € [0, 7], we consider the new particle density

E[f*®)](z) Ae(z)
B(x)

fet,x,0) = f¢ (t,x,f} + ¢

),@mewxw.

The particle densities f¢, f have the same charge density

p[fa(t)] =dq s ]?E(t> '7’5) do=g¢q s fg(tﬂ '7U) dv = p[fa(t)]a te [O’T}
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implying that the Poisson electric fields corresponding to f¢, f€ coincide
E[f*()) = E[f*(1)], te€[0,T).

Therefore we can use the same notation E*(t) for denoting them. We assume that the
magnetic field satisfies

By := inf |B(x)| > 0 or equivalently wy := inf |w.(z)| > 0.
2CR3 z€R3

The new particle densities ( f)eso verify

2 . EfAe 5 OE° Ne EsNne\ (. E°Nhe =
o f +<v+£ 5 >-me e{—B —|—8w< g ><v—|—a iz )} Vif

q(EE-e)e}-vﬁf*f:o, (t,2,7) € [0,T] x R® x R (3)

m

We -
+[—v/\e+
3

F2(0,2,8) = fin (a:v L LU ]gg(l; e(x)) . (2,7) € R® x RS,

As in [6], thanks to the continuity equation
Orpf*] + divaj[f7] = 0

we obtain the following representation for the time derivative of the electric field £¥,
in terms of the particle density f¢

0Bl = v [ 20w (A0 + ol PO

We introduce the new Larmor center & = x + 2242 which is a second order ap-

we(z) ?
proximation of the Larmor center x + 5%(%). We decompose the transport field in

the Vlasov equation in such a way that Z remains invariant with respect to the fast
dynamics. We will distinguish between the orthogonal and parallel directions, taking
as reference direction the magnetic line passing through the new Larmor center , that
is (Z) (which is left invariant with respect to the fast dynamics)

0= [0—(0-e(@))e(D)] + (0 e())e(7).

Finally the Vlasov equation (3) writes

E=(t,2") Ne(a) ,
Blx) ) dx’.

O+ (1) Vi J* e’ ()] Vs otV =0, (1,2,0) € 0, T]x B xR
(4)

where the autonomous vector field % -V, is given by

Y Vs =5 (0 e@) efd) + A, )] - V. + 2L

(0N e(T))- Vs

and for any particle density f, a° [ f] Vs, | f] -V, stand for the vector fields
UV = (& _/ﬁ) vt |-a, (%) (W:%)

B
b [ 0 (m +spmw> (') da’ e(a:)] v,

B



U1 Vo = (0-e(@) ) V. [wl)o n LA 4 L1 ef0)) o) -V
—- | L fl-e(x)) e(x) — wD 1 elx SﬁAe(m) oA efx) s| -V
— |21 ) ) — i [ one (o2 ) AT 4] g,
+ (- eld)) efd) - ¥,

The vector field AS(x,?) - V, will be determined by imposing that the Larmor center
Z is left invariant by the fast dynamics

b Vas (x + 81)@:\0(6:]5?)) =0

that is

[13 + 20, ("’ " e)} A (2, 5) = —0, (“ A e) = (5e(2) e(@)]— S =@ ) Gae(a)).

We We €

The method employed in [6] applies as well when the initial particle density is not well
prepared. In this case we deal with two time scales: the slow time variable ¢t and the
fast time variable s = t/e. We need to average in the extended phase space(s, z, ).
We say that a function v = u(s,z,0) is S = S(x, 0) periodic with respect to s iff

u(s + S(x,0),2,0) = u(s,z,0), (s,z,7) € RxR* xR

Similarly, we say that a function v = u(s,z,?) is S¢ = S%(z, 0) periodic with respect
to s iff

u(s + S(x,0),2,0) = u(s,r,0), (5,2,9) € R x R*x R
With the notations in [6] Propositions 3.1, 3.2, we observe that if u is S periodic with
respect to s, therefore the function (s,z,?9) — w(A®(s;z,0),T¢(x,v)) is S° periodic
with respect to s. For establishing that, notice that

A (s+ S°(x,0);2,0) = A°(s;2,0) + S(T°(x,0)).

Indeed, we have, thanks to Proposition 3.2 [6]

s+S5¢(z,0) N
Ao(s 550, 0)i0,0) = [ N(C(010,0), V¥ (012,0)) dor
0

s _ S€(z,0) ~
:/0 N(XE (03 ,0), Ve (0 2, D)) d0+/0 AT, Vo) (73 (X5, V9) (55 2, 0))) AT

SE((X,V2) (s;,0))

= 8(8;w,@)+/0 (00, V7) (75 (X7, V°) (5.2, 0)) ) dr

(O, V)5, 0)
+ S((X, V)(A*(s; 2, 0); T (2, )
+ S(T¢(z,0)).



It is easily seen that

w(A°(s + S°(x,0);2,0), T¢(x,0)) = u(A°(s;2,0) + S(T°(x,0)), T¢(x, 0))
u(A°(s;2,0), T (z,0))

saying that the function (s, z,0) — w(A®(s;x,0),T¢(x,0)) is S periodic with respect
to s.
Observe that for any (s,x,7) € R x R* x R?, the characteristics of 95 +b-V, 5 ,0s +
b° -V, issued from (s,z,0) are
(5 + 0, X(032,9), V(o5 2,8)), (5 + 0, X033, 8), V(r3.2,))
respectively. We define the average operators for continuous S periodic, S¢ periodic
functions by

1
S(z,0)

S(z,0) B
(W) (5,2, 5) = / (s +0,X( 2, 8), V(o:2,8)) do, (5,2, 7) € R x R® x R?
0

S¢(z,0)
(u)_ (s,2,0) = ! - / u(s+o,X(o;2,0), V(05 2,0)) do, (s,z,7) € RxR3xR®.
Se(x,0) Jo

Notice that the above operators extend the corresponding average operators defined
in Proposition 3.1 [6] for continuous functions, not depending on s. As in Proposition
3.2 [6], we establish a relation between the average operators (-),(-).. We will work
under the hypothesis V,w. = 0, implying that S(x,0) = S¢(x,0) = 27 /w., \*(x,0) =
1,A%(s;2,0) = s, (s,2,0) € R x R® x R3.

Proposition 2.1

Let u € C(R x R3 x R?) be a S periodic function with respect to s such that supp u C
{(s,z,0) € RxR*xR*® : || < R} for some R > 0. For any ¢ > 0 satisfying
eR||0zel| L /|we| < 1 we have

(u(-, 1)), = {u) (-, T°).

Proof.
It is enough to consider (s,z,7) € R x R3 x R3 such that [0| < R. In that case we
have, cf. Proposition 3.2 [6]

<mﬂﬂ%@%mzélzm+@r«wﬁmm%m»m

— %/0 u(s + o, (X, V)(0; T (2, ))) do
= <u> (3,T6($,1~})).

We also need to adapt the result in Proposition 3.3 [6] for S periodic functions.

Proposition 2.2
Let 2 € C(R x R3 x R3) be a S periodic function of zero average

s
(z)(s,a:,ﬁ)zE/ 2(s+o,2,V(o;2,9)) do =0, (s,7,7) € R x R® x R®.
0



1. There is a unique continuous S periodic function u of zero average whose deriva-
tiwe along the flow of Os +b- V5 isz

(0s+b-Vys )u=2 (u)=0.

If z is bounded, so is u and

S

||l c®rxB(R) < B(RS)) < §||Z||C(R><B(RZ)XB(R5))

for any R,, Rz > 0. Ifsupp z C Rx B(R,) x B(R3), then supp u C Rx B(R,) x
B(R;).

2. If z is of class C1, then so is u and we have for any R,, Rz > 0
IVsullo@xnra ey < SV3|IVazllomxnr <)
|Vaullc@xpraxpr)) < C (|Vezllo®xbraxbrs)) + RollVazllomxpr) xB(rs)))

10sullc@xn(r) « B < 2llo@x (R xB(R) T 2V3Rs||Vazllc@x b, xB(R))

for some constant C' depending on ||0¢||L~ and S.

Proof.
1. Take
I i
u(s,x,0) = §/ (0 —8)z(s+0,(X,V)(o;2,7) do, (s,2,0) € R x R* x R?.
0

2. Use the vector fields (¢" - V.5 )1<i<g, see Proposition 3.1 [6], which are in involution
with 0s +b-V, 5 , since V,w, = 0. O

3 The limit model and convergence result

We are ready to investigate the limit model in (4) as € \, 0. In this case we intend to
capture the fast oscillations due to the operator 0; + % - V5 . We are looking for a
development whose dominant term belongs to the kernel of 0, + b; Vg5 . It is easily
seen that for any function u € ker(ds +b- V.3 ), we have u(-, T°) € ker(0s +b°- V5 ),
since

u(s + o, T5((X5, Vo) (o 2,0))) = u(s + o, (X, V)(o; T%(x,0))) = u(s, T°(z,7)).

Similarly, for any S periodic function of zero average (u) = 0, the S periodic function

u(+,T¢) has zero average
(u(-,T%). = () (-,T7) = 0.

The previous discussion suggests to consider the Ansatz

FE(8) = ot t/e) o T° + (8, /2) o T + E2[2(t,t/e) o T% + .. (5)

£

where (8, +b- Voz )fe = 0, <f1> = 0. As in [6], at the leading order, the particle

density fs has no fluctuation (with respect to the extended average operator), and the

6



averages at the orders O(e°), O(e) combine together in fo(t,t/e) oT*. Notice also that
the constraint (Js +b- V5 )f- = 0 is equivalent to f.(t,s,z,7) = F.(t, (X, V)( s;x,0)),
for some function F.(t). We are looking for a closure determining f., f1. The error
estimate will require to introduce the second order correction 2 fg (t,t/e)oT*. Plugging
the Ansatz (5) in (4) we obtain

—8fs(t §) 0T + 0, f-(t,s) o T 4+, f1(t,s) 0 T° + 0, f1(t,5) 0 T° + Dy f2(t,5) 0 T° + ...

+Efelt,s) o T° +efi(t,s) o T+ |- VI(fe - efi 4. )(t,5) o T7]
+ed|(fe+ .. )(t,8) o T - V[(fe +...)(t,8) 0 T7

()

b < . -
+ - VIt efl + 22+ .. )(t,s) o T°] = 0.
By construction we have (9, + b* - V)(f 0 T%) = 0, and therefore we deduce

Dpfe(t,s) o T+ (Dy + b5 - V)((fL +f2)(t,5) 0 T°) + edy f1(t,5) o T* (6)
+E(fet+efl)(ts) o T - VI(fe + e fH)(t, 5) 0 T
+eaf[f-(t,s) o TF] - V[fu(t, s) o T] = O(£?).

We will take the (extended) average of (6) by discarding all second order contributions.
Obviously we have

(0fe(t )0 T7) = 0ifelt, ) o T*

£

(@45 -V, )(F +22)(t) 0 T9)) =0

(02t 0T7) = {0 fi(t,)) o T° = 0, (fi(t,)) 0 T° =0

£

and
eaa[fe(t, s)oT?]- Vs [fe(t, s)oT¢| = e(a[fs(t, $)] - Vs fg(t, s)) o T 4+ O(?)

which implies, cf. Proposition 2.1

(e lfelts) o T Vg [Felt ) o T71) = £ ((@lfelt, )] Vi Jelt,)) 0 T7) + O(&?)

=& (alf(t, )] Ve t,)) o T + O(£2).
We concentrate now on the term corresponding to the vector field ¢ - V, ;

ENfe+efD(t,s) o T - [(fe + efN)(t,s) o TF] = [ fo(t, 5) 0 T%] - V(fa(t, s) o T%)
+8(c€[fs<t,s)]~Vf§(t,s>>oT€+8—[ E[fX(t,s)] - e)(e- Vi fo(t,s)] o T + O(?)

= (colfe(t,9)] - V [ty 5) o T +€(01[f( $)] - V[t ) o T°
+ecolfelt s)] - VI (t,5) o T° +€— (BIfA(t5)] - e)(e- Vif)] o T° + O(?)
where
colf]  Ves = (0-e)e-V, + %(E[f] ce)e- Vi —[0AOe(DNe)]- V.

7



We claim that the average along the flow of 9, +b- V.5 of (E[f1(t,s)]-e)e- Vi fa(t,s)
vanishes. Indeed, as e - V; is in involution with respect to d; +b -V, 5 , we have

(83 +b- vm,ﬁ )(6 : vf)fs(t)) =¢€- Vﬁ((as +b- vm,f} )fe(t» =0

implying that
(B ) - e)e - Vafe)) = (BIFED] - ¢) e Vafu(t) = 0

because the charge density of f L(t) has zero average

<p[f€1(t)]> (s, ) / Rgf (t,s+ o,2,0) dodo

= _/ fAt, s+ 0,2,V(0;2,0)) dido
SJo Jes

= q/RS <f;(t)> (s,2,7) o = 0.

Therefore, thanks to Proposition 2.1 we obtain

<[(E[f§<t>] ce)(e- Vi f(t)] o T€> = <<E[f;<t>] “e)(e - vﬁﬁu))} 0T =0

£

and thus

(CUt ) + a2t ) o T VIl )+t 0 T) = (alfelt, )] V() o T*
e (alfelt )] V) o T + e (alflt, )] - V) o T2 + O(E).

The previous computations lead to the following model for the particle density f-

0uft,5) + (olfelt, ) VI ) + e ((alfelt. )+ el ) - VEE)) ()
te <co[f€(t, - Vi, -)> —0, (ts,2,7) € [0,T] x R x R® x R®

together with the constraint (0s +b- V.5 ) f. = 0. The equation for the fluctuation fal
comes by comparing (6) with respect to (7). Indeed, we have

(05 +07 - V(2 +ef2)(t,8) o T = Ou(f2 + e f2) o T + QT0 - [V(f! +ef2)] o T°
boTe

= [0 +b-V)(f2 +ef2)] o T°
and therefore (6) also writes

Ouf(t.8) + (O + - V)(f2 +ef2) + 20 J! + ol fo(t,5)] - Vot 5) (8)
+e(alfot, o)) + el ot s)]) - VIt s) +ecol [t 5)] - V2 (1 5)

+ 5%(1@[];51(25, s)]-)(e- Vifa(t, 5)) = O(e?).



Taking the difference between (8), (7) yields

[t 9)] - VIt s) = (ol ot )] VI(8)) + 2al ot )] + eal £t 5))) - Ve 5)
— e (it )] + el it ) - VEE )

+eeol ety s)] - VIt ) — 2 (el flt, )] VAL (E )

e L (B 5)] - e)e - Valilt, ) + (0 + b V)(F! +2f2) + 07t = O,

The above equality suggests to determine the fluctuation fel by

lfelt, )] VIt 5) = (ol ot )] - VE(4)) + (@ +b- V)t ) =0, (f1) =0 (9)

and to consider the corrector ff such that

(alfelt,5)] + el folts ) - V() = ((alfelt, )]+l ft, ) - VA8 )
+ ol folt )] - VIt ) = (ol felt)] - VR

+ %(E[fi(t, s)]-e)(e- Vafe(t,s)) + 0 fl + (85 +b-V)f2 =0, <f2> —0.

The well posedness of (7), (9) is stated in Section 4, see Theorem 4.1. As in Theorem
1.2 [6], we can establish the following error estimate. The proof details are left to the
reader.

Theorem 3.1

Let B = Be € C}(R?) be a smooth magnetic field such that V,B = 0,div,B = 0.
Consider a non negative, smooth, compactly supported initial particle density G e
C3(R® x R?) and §(s,x,0) = G(x,V(—s;z,7)),(s,2,0) € R x R® x R®. We denote
by (f)o<e<1 the solutions of the Viasov-Poisson equations with external magnetic field
(1), (2) on [0,T],0 < T < T(fw), cf. Theorem 2.1 [6], corresponding to the initial
condition

f2(0,2,0) = (3 +¢3") (0,37‘1‘5 ), (z,v) € R® x R3

where
cold] - Vg = {colg) - V) + (95 +b-V)g' =0, (g") =0.

For e €]0,e7] small enough, we consider the solution f. = f.(t,s,z,0) on [0,T] of the
problem

Oufe(t ) + (ol et )] VIt ) + & (@t )] + eal flt o)) - VEA))
+e <c0[f;(t, ) Vi, -)> —0, (L,s,2,7) € [0,T] x R x R x R®

CO[fe(tv S)] ) Vfa(t7 S) - <CO[fa(ta )] ) vfa(tv )> + (88 +0b- v)fal(tv S) =0, <fsl> =0

9



corresponding to the initial condition
£-0,8,2,0) = Gz, V(=s;2,0)) = §(s,2,0), (s,2,7) € RxR*x R,

Therefore there is a constant Cp such that for any 0 < e < ep

sup / /
te[0,7] R3JR3

S CT€2.

et zv) = (f-+efl) (t,t/e,a; T 51};\ . gE[fs(tvé/E)] A e>

5 1/2
dvdzx }

4 Equivalent formulation of the limit model

We determine now the equivalent formulation for (7), (9) by computing the average of
the vector fields entering this model. Most of the computations has been performed in
6], where the formulae for (a) - V, (co) - V, (¢1) - V are detailed, and we only need to
complete them by treating the extra terms due to the presence of the fast time variable.

Proposition 4.1 3
Assume that e € C*(R?), Vyw, = 0,div.e = 0 and let us consider f. € C*([0,T] x R x
R? x R3). Then f. solves

oufe+ (lfl- V) + e ((alf + alf)) - V) +e (lfd - Vi) = 0.0, +b- V). =
(10)

alf)- Vi = (alf) - V) + @ +b- )il =0, (f1)=0 (11)

iff f- satisfies fg(t, s,x,7) = F.(t, (X,

)(—s;x,0)), where

V)
atﬁg+<c0[ﬁa]>-vﬁg+s(< > < >> VE +eD[F]-VE =0 (12)

DIF]-Vyy = i1 3603 fRS L X - ;fr;oéX))j[F](X/) X’ /\e(X)] -V
+ %e@e (E (e.rotxe)(vw' 2 Ve -VxF > +do(X, V)| - Vg
di (X, V) = <(Eg Vs )Z[(‘Ak)—s cos(ksw.) + (Bk)—s sin(kjswc)]> (0,X,V)

fit, s,z,0) = Z[Ak((fx, V)(—s;x,0)) cos(kswe) + Be((X,V)(—s; z, 7)) sin(ksw,)]

(Ve FL(0))((X, V) (=53 2,0)) (13)

10



where N (e, z,€') = (l3—e®e) K (2)(Il3—€'@€ )—M[e] K (2) M [€'], K (2) = (I3 — 3z ® 2/|2|*) /|2|®
A(X, V) = % /S F(s,X,V)sin(ksw,) ds, Bp(X,V) / F(s,X,V)cos(ksw,) ds

for k€ {1,2,3} and

F(s, X, V) = 0, 5V(—5; (X, V) (5; X, V)T ((X, V) (s; X, V))
Co(z,0) Ve = (0-€e)e-V,—[0ADe(vAe)]- Vs

Proof.
Clearly the constraint (9,4 b- V) f. = 0 writes f.(t,s,z,0) = F.(t, (X, V)(—s;z,0)) for
some function F, = F.(t, X, V) € C?([0, T]xR?xR?). We need to compute the averages

<c0[f5]-st>,<( [f€]+cl[f5])-Vf€>,<co[f€]~Vf51> along the flow of 9,+b-V, ; and

to invert the operator J, +b- V.5 on zero average functions, in order to solve (11).
Recall that for any particle density f, the vector field a[f] - V,; writes

alf] - Vas = (% - Ax(x,@)> "V, 0, (E[fz]a/\ e) 5.V,

1 _ eex
" IreB (dw‘” /ﬂvm ® jlf](z") dz’ A e(q;)) Vs

We have p[f.(t,s)] = p[F:(t)] implying that E[f(t,s)] = E[F.(t)] and

Gt 9))(x) = R(—swe, e(2))j[FL(8)) (x)

and therefore

a[fo(t, 8)] - Vs = alFe(t)] - Vas +@[Fe(t)] - Vs

where

G, Vs = —— <divx/RLx,/|3 & [R(—swe, e(a) — L] j[Fu](x )dx’/\e(x))-vf,.

4reg B sl — x
Thanks to the equality f-(t,s,2,0) = f-(t,s + o, (X, V)(c;2,7)) we have
Vs fo(t,s,2,0) = (X, V)(0;2,0)(Vf)(t, s+ o, (X, V)(0;2,7))
implying that
(V) s +0,(X,V)(os2,8) = "X, V)(=0; (X, V)(052,0))V f(t, 5,7, 7)

and

(alf2] - V)(t, s+ 0, (X, j?)(a; z, @))~
= (X, V)(=03 (X, V)(0;2,9))alF g )](( V)(o;2,9)) - Vfu(t, s, 2, )
+ R(0we, e(x))asro[Fe()]() - Vo felt, s, 2, D).
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Averaging with respect to o, we obtain cf. Proposition 5.1 [6]
_ _ 1 /9 - -
<a[f5] VE) (ts.0) = 5 | 000D (=0 (X V) o3,8)al X V)03, dor
e Jo(t,5,2,0) / R(owe, e(x))asio[F-(1)](z) do - Vi falt, s, x,D)
= <a[]:}(t)]>( 0) - Vs fe(t,s, @, 0) / R(0we, e(2))asio[F-(1)](z) do - Vi falt, s, z,D)
O(X, V)(~s:2,7) (a [F<>J>< 5) - (Vg Pt (X, V) (=3, 0))
/ R((5 + 0)we, €(2))Tsyo[Fr ()] (2) do - (Vi EL)(t, (X, V)(—s;2,7))
= (alB(0)]) (X, V) (~s22.9) - (V y g )0, (X, V) (55,7

4 % / R(owe, e(x))a,[F.(D)] () do - (Vi o) (¢, (X, V) (=53 2, 7))

where (a) - V has been computed in Proposition 5.4 [6]. Notice that in the last equality
we have used the involution of <a[FE(t)]> -V with respect to the vector field b -V, cf.
Proposition 5.1 [6]. For the last average, observe that

% /0 R(ow, e(x))aa[ps(t)](aj) do

_ 47r6235 /0 SR(awc,e(x)) (divx /R T R(—owe, (@) ()] () dx’/\e(w))da

sle — a3

S
= InesBS /0 [cos(owe) (I3 — e(z) @ e(x)) + sin(ow.) M [e(z)] + e(z) @ e(z)]

divx/ i ® [cos(owe)(Is — e(z') @ e(z)) — sin(owe) M[e(x)] + e(z') ® e(z")][F.(t)] da’

i
47;3 e (d /ﬁ @ [I; — (') ® e(2)[j[F=())(«’) da’ A e(sc))
47%03 ( | = ;f,|3 MIe(@)jIF(1))(") da’ A e<x>)
e 5\0/ ol S (ﬁ:)a](x “Ihdilly — efa') @ el ED) @)}
gﬂe}g Ty M[ifﬂ(jjp i (el IE- ) 0
- /| o Ne@ha = @il d
- Aﬁi‘%ﬁ? s /x_xq_a{[l?’ — () ® e(x)]ﬁ ® I — e(2') ® e(a)] ’i — ;
+ M) © Mo E= R0 do(s)
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where K(z) = (Is = 355 ® |)/|z[3 z € R3\ {0}, N(e,z,¢) = (Is —e®e)K(2)(I3 —
¢ ®e)— Mle]K(z)M[e],e,z,¢ € R¥\ {0}, |e] = |¢/| = 1. Performing the change of
variable ' = x 4 dz in the last integral yields

/ (T — e(z) ® e(a))
|lx—a’|=0

M e(o)] E = @ M) =R (0] o)

= | |:1{(]3 —e(r)®e(x))z® (I3 —e(x + 02) @ e(z + 02))z

+ Mle(z)]z ® Mle(x + 62)]2}[Eo(t)] (x + 62)do(z)

~o ), |{(1]3 —e(z) @ e(x))z @ (Is — e() @ e(x))z + Mle(x)]z @ Mle(x)]z}do(2) j[F.(1)](x)

_ /| Al s = o) © @) SR

= Ty~ () @ e(e) IR0 @)

Therefore the average of a 8] Vi fa writes

L@y efa!) @ ela))

[z — 2P v =

[
<a[f5] 'st> (t,s,2,0) ( alF. > VXVF )) (X, V) (=s;x,0)) (14)
B (875—2“”1  N(e(@)w =l e(@)gF) ) dx’) (Ve E(0)(X, V)(~5;, 7))

JIE@)](x) A elz)
+ 3€OB

We inquire about the convergence, when ¢ \, 0 of

AV E () (X, V) (=532, )).

| ]Y(i(?)x —a',e(a"))j[F)(a") da’ = k‘f\’_(@,(lf%J — ' (@) (j[F2)(2") - j[F] (2)) da’
5<|]X—(:’$§1)%’ x— ' e()) da’ j[F.](z)

for R large enough. We are done if we establish the convergence of [ 1¢5<ju—o<ry N (e(z), 2—
2’ e(2')) do’ when 6 N\, 0. But we can write

6<|N(€(\fz)%7 r—12 e(x)) da = /<(N(e|(<xR), r—12' e(x))) — N(e(z),z — 2, e(x))) da’

+ | Nie(x),z—a' e(x)) da’

o<|z—a2'|<R
and therefore it is enough to prove the convergence, as 6 \, 0, of [ Ls<|s—a|<my N(e(z), 2—
', e(x)) dz’. Actually, for any r > 0 we have f\zlzr N(e(z),z,e(x)) do(z) = 0. This is
a consequence of the fact that K(z) has zero trace for any z € R*\ {0}. Indeed, for
any & € R? we have
Ki2):(Iz3—e®e)f® (I3 —e®e) + K(2): Mle]¢ @ Me]é + |ENe]?K(2) :e®e
= |€ Ae|’traceK (2) =0, z € R*\ {0}
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implying that
[N(e,z,e) + (K(2)e-e)(Is —e®e)] : E@E=0, £ R
As the matrix N(e, z,e) + (K(2)e-e)(I3 — e ® e) is symmetric, we obtain N (e, z,e) =

—(K(2)e-e)(I3 — e ®e). By direct computation we obtain f|z|:T(K(z)e ce) do(z) =
0,7 > 0. Similarly we have

(lfi)- Vas fo) (t.5,2.5) = ((lEL(0)]) - Vg Fo0)) (X V)(=si,0))  (15)

where (cp) - V has been computed in Proposition 5.5 [6]. In order to treat the average
of ¢1] fa] Vi f. we need to compute E [(DNe)-V, fa] and therefore the charge density

q/ (DAe)-Vofe(t,s,z,0) do = qdivy [ fo(t,s,z,0)(0Ae)dd
R3

—q g fo(t,s,2,0)div, (0 A€) do
= divy (j[fo(t, )] A €) + j[fo(t, )] - ot,e

= ¢ 106, (R(—swe, e(x))j [F:(1)]).
We obtain the following formula for the vector field ¢; - V
alfo(t,9)] - Vas = a[FL(8)] - Vas +E[FL(b)] - Vs

where 1
ewlf) - Vo= % (E[e 10ty (R(—swe, e(x)) — I3)0E)] - e) e Vs
and therefore

(alf-VE) (ts.2,8) = ((l Fo(0)]) - Vi Fo() (X, V)(=s52,0))
/ R(owe,e(x)Jero[FL(0)] (@) do - (Vg L0 (X, V) (=s:.2,))

where (c1) - V has been computed in Proposition 5.6 [6]. As before, the last average
writes

e@e [F .
/ R(ow,, ()1, [Fo(t))(x) do = 2 /0 Ele - rot,((R(—ow., €) — I3)0F.)| do

BS
= C2EBle oty ((e @ e — L)L (1))]
= C2EBl(exotye) (5 ) Eu(t)] - “ZEB((0 Ae) - VL (1)
Finally the average of ¢;[f.] - Vo5 f- is given by
(alfi)- Vus fo) (t.5,2.8) = ((lEL(0)]) - Vg FL8)) (X, V)(=si,0)) (16)
+ % {E {(e-rotxe) (zj)ﬁ’a(t)} e—F Fﬁe-vxﬁg(t)} -e} e- (Vo FL(8)) (X, V) (=s;2,7)).

We concentrate now on the average of c¢of fg] - Vai fel Before ending the proof of
Proposition 4.1, we need to generalize the Proposition 5.2 [6] to the periodic case.
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Proposition 4.2

Assume that e € C*(R3),V,w, = 0,div,e = 0. Let X+ Vips = XsO0s + Xo - Ve + X5 Vi
be a C vector field on R x R3 x R3, S periodic with respect to s. There is a continuous
vector field & -V y 5 = £0s + & - Vi + & - Vi in involution with respect to Os+b-V, 5 ,
such that for any S periodic function u € C*(R x R? x R®*) Nker(ds +b- V.5 )

(X Viaiu') =& Viu (17)

where
X Viaot = (X Vagau) + (05 + b Vo Jul =0, (u) =0
and
(X Vizap) =& (18)
where
Xs = (Xs) + (0s +b- Vs Jp =0, () =0.

Proof.

The vector field ¢ is uniquely determined by imposing (17) with (X, V)(—s;z,0) €
ker(0s +b- V.5 ) and (18)

<X : vs,x,6U1> = _gsb((xa ’\~7>(_Sa x, i})) + ax,f)(xa ’\~7)<—$, x, ﬁ)&x,f}
where U! is the unique solution of
X Vi (X, V) (=852, 8) — <>< Vs (0, V) (—s; x,@)>+(as+b-vz,ﬁ =0, (U =0
(19)
and
<X : vs,m,ﬁ¢> - 537 Xs — <Xs> + (as + b- Vﬂc,f) )90 = 07 <90> =0.

It remains to check that (17) holds true for any u(s, z,v) = U(z), z = (X, V)(—s;2,0),U €
C?%. We use the notation f,(z,0) = f((X,V)(s;x,0)), for any function f. As x-V,su =
(V.U) s (X Vsus)(X,V)(—s;z,0), it comes that the solution u' of

X Vot — (X Vigau) + (05 +b-Vyz )u' =0, (u')=0

is given by u! = (V,U)_, - U', where U! is the unique solution of (19). Therefore we
have

<X : Vs,x,f;u1> - (vZU>—S : <X : vs,m,f;U1> + <(X : vs,z,@)(sz)—s : U1>
- (VZU)—S : (5 : Vs,a},ﬂ)(xv {7)(_87 l’,?j) + <(X ' vs,az,f))(sz)—s : U1>
=& Ve + (X Viun) (VU)o - UY)

and we are done provided that the last average vanishes. Indeed, as (U') = 0 we write,
thanks to the symmetry of the Hessian matrix (92U)_

(X Vi) (V:U)—s - U') = <(8§U)_s(x  Vawa) (X, V) (=552, D) U1>
— <(8§U),S {X Vias(X,V)(=s;2,0) — <X Vs, @)(_S;x’@)ﬂ , U1>

_ _% (O +b- Vs ) [(2U)_ UL - UY]) = 0.

15



Remark 4.1

We check that if xs = 0, then & = 0 and if Osx = 0, then 0,6 = 0. Therefore if
x(x,0) - Vauz is a C vector field, there is a continuous vector field £(x,v) - Vg5 in
involution with respect to 0s+b-V,5 (and therefore with respect to b-V, 5 ) such that
for any S periodic function u € C*(R x R* x R*) Nker(ds +b- V.5 ) we have

<X : Vm,f) u1> — 5 : v%g u
where
X Vast— (X Vasu)+ (0 +b- Vi )u' =0, <u1> —0.
In particular, for any function u € C*(R?* x R*) Nker(b- V.5 ) we have

<X ’ Vx,f) 'LL1> =& Vm,f) U

1

where u' = u'(x,0) is the unique solution of

X Vegtu—(x-Vesu)+b-Vozu' =0, (u')=0
see also Proposition 5.2 [6].

Thanks to the previous result, we compute the average of ¢o| fg] Vs fal

Proposition 4.3

Assume that e € C*(R?), V,w, = 0,div,e = 0. There is a vector field d(x, ) -V, in
involution with respect to b- V.5 such that for any S periodic fe C2RxR?*xR*N
ker(0s +b- V.5 ) we have

(col ]V /') = d(,5) - Vous |
where fl solves
colf] - Vas f = <00[f] Vi f> + (B +b-Vas ) fL =0, <f1> —0.

Proof.

Recall that co[f] - Ves = (0-€)e -V, + L(E| fl-e)e- Vi — [0 A ye(0 Ae)] - V.
As f € ker(Os + b - V.5 ), we deduce that 0sp] f] = 0 and therefore the vector field
(E[f] -e)e - V3 is in involution with respect to b-V, 5 and 05 +0b- V,; , implying that

L(ELf] - e)e - Vof = (L (B )e- Vaf) =0

and
<%(E[f] -e)e - V@f1> _ %(E[f] e)e- Vs <f1> —0.

Our conclusion follows by applying Proposition 4.2 with the vector field ¢y - V3 =
(0-e)e-V, — [0A 0e(D A e)] - Vi, whose average is cf. Proposition 5.5 [6], see also
Remark 4.1

(rotge - e)

9 (f}/\€>v1~, .

(Go) - Vaez = (0-e) {e-vm + (Oree ®e — e ® Ogee)v - Vi +
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In order to express f! in terms of f(s,z,7) = F((X,V)(—s;x,7)), observe that

(G - Vi (s + 0, (X, V) (052, 0)) = G ((X, V) (02, 7))
( V)(—o0, (X, V)(032,)) *O(X, V) (=53 2,0)(VF)
= 9(, V)(—s:2, 0)(X, V) (=0, (X, V) (03 2,0))e (X, V) (03 2,9)) - (V)

<ao SV f> 5,7, ) V) (—s:2,7) (c0) (x,8) - (VF)_, = (o) - VE)_,
implying that

O(, V) (—s: 2, 0)eo(z,T) - (vwﬁ) - (<50> : VX)VF>_S (0 +b- Vs ) fl =0

or equivalently

[D(X, V) (=5 (X, V) (55 X, V))To((X, V) (55 X, V) = (@) (X, V)] - Vo o F
+ @ﬁ(s, (X, V)(s; X, V) = 0.
Clearly we have
0,5 X(—53 (X, V) (5: X, V)Eo (X, V) (s X, V) = (@), (X, V) =0
and therefore the previous equality becomes
0,5V (=53 (X, V) (5 X, V)G (X, V) (5 X, V) — < 0)s (X, V)] - Vi F
o (V)5 X, 7)) =0

Let us introduce the function

]:(S’ X7 V) = (9%5{7(—8; (x’ {7)(8; X7 V))EO((xv {7)(3; X’ ‘7))
= 8:0\7(_8’ (DC, \~7)<S7 X7 V))(EOx)s + 6{)\7(_8, (DC, \?)(37 X7 V))(EOTJ)S
= (V- e)[(1 — cos(sw,))(Dpee @ e + € @ Opee)V(s; X, V) + sin(sw,)dpee A V(s; X, V)]
— [cos(swe) (I3 — e @ €) + sin(sw,) M[e] + e @ e](V(s; X, V) A Ope(V(s; X, V) Ae))

and therefore the S periodic function s — f1(s, (X, V)(s; X, V)) has no Fourier modes
at the frequencies kw., k > 4. Moreover, since

%/OS FH(s, (0, V)(55 X, V) ds = <f1> (0,X,V)=0

we deduce that

3
(s, (X, V)(s: X, V) Z [Ar(X, V) cos(ksw,) + Bp(X, V) sin(ksw,)] - Vi
k=1

3
d—fl(s, (X0, V)( Z [—kweAr(X, V) sin(kswe)+kwBr(X, V) cos(ksw,)]-V F
s
=1
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for some vector fields (Ayg, Bi)1<k<3 to be determined. We have for k € {1,2, 3}
N 1 /S N N 1 /s -
Ap(X, V) = e /f(s,X, V) sin(ksw,) ds, Bp(X,V) = i /F(S,X, V) cos(ksw,) ds
T Jo T Jo

and finally we obtain

s, @, 0) = Z[Ak((x, V)(—s;x,0)) cos(ksw,) + Be((X, V) (—s; x, D)) sin(ksw,)]

k=1

(Ve F)(X, V) (=53 2,9)).

In particular the solution of

Co-Vei (X, V)(=s;2,0)— <zo Vs (X,V)(—s;, 17)>+(8S+b-vm )J'=0, (U')=0

is given by

U= (0, [Ap((X,V)(=s:2,8)) cos(kswe) + Bi((X, V) (—s; 2, 7)) sin(ksw,)])

k=1

and the vector field d(z,?) - V. writes, cf. Proposition 4.2, Remark 4.1
d(ZE, 17) . V:Cﬂj = d{, . ij == <(Eo . Vw; )U$> (O,m, f)) . Vﬁ
3
= <(Eo Vi )Z[(Ak),s cos(kswe) + (By)—s sin(kswc)]> (0,z,0) - V5.

k=1
Actually the vector field d - V, ; is parallel to the vector field b-V,; . If f(s, x,0) =
@ € ker(0s +b- V.5 ), we have

Co* Vi f_<60'v:c7f) ]E>:0

and f' = 0. Asin the proof of Proposition 5.7 [6] we deduce that dz(z,?) - ¥ = 0.
Similarly, considering f(s,z,?) = (0 - e(z)) € ker(ds +b- V.5 ), we obtain

P52, 0) = (f;ce) Dyce- (BAe)—Dye - (vNe)®(0—(0- 6)6)4‘:(:(?7 —(5-e)e) @ (7 Ae)

and d;(x,0) - e = 0, cf. Proposition 5.7 [6]. O

We come back to the proof of Proposition 4.1. We know by Proposition 4.3 that

fe € ker(0s +b-V, 5 ) and

ol Ve fo = (olfdl - Vs o) + (040 Vg )2 =0, (f2) =0
imply (use also the involution of d - V with respect to b - V)
<Co[fa] Voo ]i—l> =d(x,7) - Vaz [ (20)

— O, V) (=i, )d(2,7) - (. p o) (X, V) (=532, )
= (d-Vx g Fe(t)) .

The equation (12) follows by the equation (10), thanks to the equalities (14), (15),
(16), (20), which ends the proof of Proposition 4.1. O
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Remark 4.2
When the particle density E. satisfies the constraint b-VX,VFE = 0, we have fa(t, x,0) ~
fo(t,t)e, x,0) = F.(t, (X, V)(—=t/e;2,0)) = F.(t,2,0). Therefore the model (12) reduces
to the model with well prepared initial conditions (64) [6]. Indeed, if the particle density
verifies b - VX’VF 0, we claim that D[F] = 0. Clearly we have j[F] = p[(V - e)Fle,
implying that

JIE]Ae=0, N(e(X),X — X' e(X")j[F(X")] =0
and (see also Remark 5.3 [6])

V Ae ~

VL (f/-e)

We

(V-e)

We

F (e - rot e) F

, I

p [(e - Tot )

c

As we know that d - V.5 is parallel to b-V,5 , we also have d - VXJ;F = 0. By
construction, the vector fields <a[ﬁ]> Vv <co[]5]> Vv <01 [F}> Vv D[F] Vxv

are in involution with respect to b -V y y. Therefore if F( ) satisfies the constraint
b- VXJ;FE(O) =0, so is at any time t € [0,T], i.e., b- VXVF (t)=0,t€[0,T].
);

The well posedness of the model (10), (11), or equivalently (12), (13), thanks to Propo-
sition 4.1, follows by standard arguments when analyzing Vlasov-Poisson like equations.
The details are left to the reader.

Theorem 4.1

Consider a non negative, smooth, compactly supported initial particle density Fi, €
CH(R* x R®) and a smooth magnetic field B° = 2, B = Be € CZ(R?),V,B =0, B #
0,div,e = 0. Let T be any positive time. Then it exists ey > 0 such that for any
0 < & < e there is a unique particle density F. € C}([0,T] x R x R?) satisfying for
any (t,X,V) €[0,7] x R® x R?

O, F. + <c0[ﬁ;]> Vb te (<a[ﬁ’5]> + <01 [ﬁ€]> + D[ﬁs]) S

and

F.(0,X,V)=Fu(X,V), (X,V)eR®xR.
If for some integer k > 2 we have Fy, € C*R? x R%),e € C*(R3), then F €
C*([0,T] x R? x R3).
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